From Waste to Resource: Use of Lemna minor L. as Unconventional Fertilizer for Lettuce (Lactuca sativa L.)
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Trials Description
2.2. Crop Measurements
2.3. Nutrient Use Efficiency
- (a)
- PFP = Yf/NA (g g−1)
- (b)
- NUEa = (Yf − Yc)/NA (g g−1)
- (c)
- NUEp = (Yf − Yc)/(TNf − TNc) (g g−1)
- (d)
- REC = TNf − TNc/NA (g g−1)
2.4. Statistical Analysis
3. Results and Discussion
3.1. Lemna Composition
3.2. Summer Growing Cycle
3.3. Autumn Growing Cycle
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Acosta, K.; Appenroth, K.J.; Borisjuk, L.; Edelman, M.; Heinig, U.; Jansen, M.A.; Oyama, T.; Pasaribu, B.; Schubert, I.; Sorrels, S.; et al. Return of the Lemnaceae: Duckweed as a model plant system in the genomics and postgenomics era. Plant Cell 2021, 33, 3207–3234. [Google Scholar] [CrossRef]
- Les, D.H.; Crawford, D.J.; Landolt, E.; Gabel, J.D.; Kimball, R.T. Phylogeny and systematics of Lemnaceae, the duckweed family. Syst. Bot. 2002, 27, 221–240. [Google Scholar]
- Ziegler, P.; Appenroth, K.J.; Sree, K.S. Survival strategies of duckweeds, the world’s smallest Angiosperms. Plants 2023, 12, 2215. [Google Scholar] [CrossRef]
- Sil, S.K.; Gupta, S.; Neela, F.A. Anatomical features and antimicrobial activity of duckweed. Bang. J. Bot. 2023, 52, 105–110. [Google Scholar] [CrossRef]
- Mateo-Elizalde, C.; Lynn, J.; Ernst, E.; Martienssen, R. Duckweeds. Curr. Biol. 2023, 33, R89–R91. [Google Scholar] [CrossRef] [PubMed]
- Landesman, L.; Parker, N.C.; Fedler, C.B.; Konikoff, M. Modeling duckweed growth in wastewater treatment systems. Livest. Res. Rural Dev. 2005, 17, 1–8. [Google Scholar]
- Andrade-Pereira, D.; Cuddington, K. Range expansion risk for a newly established invasive duckweed species in Europe and Canada. Plant Ecol. 2024, 225, 839–850. [Google Scholar] [CrossRef]
- Gul, B.; Rabial, S.; Khan, H. Efficacy of herbicides for control of duckweed (Lemna minor L.). Sarhad J. Agric. 2021, 37, 1194–1200. [Google Scholar] [CrossRef]
- Luo, J.; Hu, S.; Li, T.; He, F.; Tian, C.; Han, Y.; Mao, Y.; Jing, L.; Yang, L.; Wang, Y. A preliminary study of the impacts of duckweed coverage during rice growth on grain yield and quality. Plants 2023, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Janse, J.H.; Van Puijenbroek, P.J.T.M. Effects of eutrophication in drainage ditches. Environ. Pollut. 1998, 102 (Suppl. S1), 547–552. [Google Scholar] [CrossRef]
- Feller, J.; Taylor, M.; Lunt, P.H. Predicting Lemna growth based on climate change and eutrophication in temperate freshwater drainage ditches. Hydrobiologia 2024, 851, 2529–2541. [Google Scholar] [CrossRef]
- Vu, G.T.H.; Fourounjian, P.; Wang, W.; Cao, X.H. Future Prospects of Duckweed Research and Applications. In The Duckweed Genomes; Cao, X.H., Fourounjian, P., Wang, W., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 179–185. [Google Scholar]
- Ekperusi, A.O.; Sikoki, F.D.; Nwachukwu, E.O. Application of common duckweed (Lemna minor) in phytoremediation of chemicals in the environment: State and future perspective. Chemosphere 2019, 223, 285–309. [Google Scholar] [CrossRef]
- Cui, W.; Cheng, J.J. Growing duckweed for biofuel production: A review. Plant Biol. 2015, 17, 16–23. [Google Scholar] [CrossRef]
- Baek, G.; Saeed, M.; Choi, H.K. Duckweeds: Their utilization, metabolites and cultivation. Appl. Biol. Chem. 2021, 64, 73. [Google Scholar] [CrossRef]
- Sońta, M.; Rekiel, A.; Batorska, M. Use of duckweed (Lemna L.) in sustainable livestock production and aquaculture—A review. Ann. Anim. Sci. 2019, 19, 257–271. [Google Scholar] [CrossRef]
- Xu, J.; Shen, Y.; Zheng, Y.; Smith, G.; Sun, X.S.; Wang, D.; Zhao, Y.; Zhang, W.; Li, Y. Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Rev. Int. 2023, 39, 3620–3634. [Google Scholar] [CrossRef]
- Mahofa, R.; Kapenzi, R.; Masaka, J. The effects of different types of duckweed manure on height and yield of floridade tomatoes. Midlands States Univ. J. Sci. Agric. Technol. 2014, 5, 135–152. [Google Scholar]
- Chikuvire, T.J.; Muchaonyerwa, P.; Zengeni, R. Improvement of nitrogen uptake and dry matter content of Swiss chard by pre-incubation of duckweeds in soil. Int. J. Recycl. Org. Waste Agricul. 2019, 8, 235–244. [Google Scholar] [CrossRef]
- Jilimane, K. Nitrogen and Phosphorus Release in Soil and Fertiliser Value of Lemna minor Biomass Relative to Chicken Litter Compost. Ph.D. Thesis, School of Agricultural, Earth and Environmental Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa, 2019. [Google Scholar]
- Kreider, A.N.; Fernandez Pulido, C.R.; Bruns, M.A.; Brennan, R.A. Duckweed as an agricultural amendment: Nitrogen mineralization, leaching, and sorghum uptake. J. Environm. Quality 2019, 48, 469–475. [Google Scholar] [CrossRef]
- Li, J.; Lens, P.N.L.; Otero-Gonzales, L.; Du Laing, G. Production of selenium and zinc-enriched Lemna and Azolla as potential micronutrient-enriched bioproducts. Water Res. 2020, 172, 115522. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Pulido, C.R.; Caballero, J.; Bruns, M.A.; Brennan, R.A. Recovery of waste nutrients by duckweed for reuse in sustainable agriculture: Second-year results of a field pilot study with sorghum. Ecol. Eng. 2021, 168, 106273. [Google Scholar] [CrossRef]
- Li, J.; Otero-Gonzales, L.; Parao, A.; Tack, P.; Folens, K.; Ferrer, I.; Lens, P.N.L.; Du Laing, G. Valorization of selenium-enriched sludge and duckweed generated from wastewater as micronutrient biofertilizer. Chemosphere 2021, 281, 130767. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Pulido, C.R.; Femeena, P.V.; Brennan, R.A. Nutrient cycling with duckweed for the fertilization of root, fruit, leaf, and grain crops: Impacts on plant–soil–leachate systems. Agriculture 2024, 14, 188. [Google Scholar] [CrossRef]
- Pratiwi, A.; Aji, O.R.; Sumbudi, M. Growth response and biochemistry of red spinach (Amaranthus tricolor L.) with the application of liquid organic fertilizer Lemna sp. J. Biotechnol. Nat. Sci. 2022, 2, 61–69. [Google Scholar] [CrossRef]
- Chojnacka, K.; Mikula, K.; Skrzypczak, D.; Izydorczyk, G.; Gorazda, K.; Kulczycka, J.; Kominko, H.; Moustakas, K.; Witek-Krowiak, A. Practical aspects of biowastes conversion to fertilizers. Biomass Convers. Biorefin. 2024, 14, 1515–1533. [Google Scholar] [CrossRef]
- Ahmed, M.; Rauf, M.; Saeed, N.A. Excessive use of nitrogenous fertilizers: An unawareness causing serious threats to environment and human health. Environ. Sci. Pollut. Res. 2017, 24, 26983–26987. [Google Scholar] [CrossRef] [PubMed]
- Chojnacka, K.; Moustakas, K.; Witek-Krowiak, A. Bio-Based Fertilizers: A Practical Approach towards Circular Economy. Bioresour. Technol. 2020, 295, 122223. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, Z.; Hossain, N.S.; Hussain, S.G.; Khan, A.H. Effect of Duckweed (Lemna minor) as complement to fertilizer nitrogen on the growth and yield of rice. Int. J. Trop. Agric. 1990, 8, 72–79. [Google Scholar]
- Das, R.; Bhattacharjee, C. Lettuce. In Nutritional Composition and Antioxidant Properties of Fruits and Vegetables; Elsevier: Amsterdam, The Netherlands, 2020; pp. 143–157. [Google Scholar] [CrossRef]
- MIPAF-Ministero Politiche Agricole e Forestali (Italy). Metodi Ufficiali di Analisi Chimica del Suolo. Decreto Ministeriale del 13/09/1999. In Gazzetta Ufficiale della Repubblica Italiana; 1999, n. 248, 21/10/1999 Supplemento Ordinario n. 185; Available online: http://www.gazzettaufficiale.it/eli/gu/1999/10/21/248/so/185/sg/pdf (accessed on 3 December 2024). (In Italian)
- Kalra, P.Y. (Ed.) Handbook of Reference Methods for Plant Analysis; Taylor & Francis Group: Boca Raton, FL, USA, 1998; Volume 38, ISBN 9781574441246. [Google Scholar]
- Cataldo, D.A.; Haroon, M.; Schrader, L.E.; Youngs, V.L. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant. Anal. 1975, 6, 71–80. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1987; Volume 148, pp. 350–382. [Google Scholar] [CrossRef]
- Elia, A.; Conversa, G. Agronomic and physiological responses of a tomato crop to nitrogen input. Eur. J. Agron. 2012, 40, 64–74. [Google Scholar] [CrossRef]
- Di Gioia, F.; Gonnella, M.; Buono, V.; Ayala, O.; Santamaria, P. Agronomic, physiological and quality response of romaine and red oak-leaf lettuce to nitrogen input. Ital. J. Agron. 2017, 12, 47–58. [Google Scholar] [CrossRef]
- Hasan, M.R.; Chakrabarti, R. Use of algae and aquatic macrophytes as feed in small-scale aquaculture: A review. FAO Fish. Aquacult. Tech. Paper. 2009, 531, 100–123. [Google Scholar]
- Prada, O.J.; Diaz, O.L.; Rocha, K.T. Common duckweed (Lemna minor): Food and environmental potential. Review. Rev. Mex. Cienc. Pecu. 2024, 15, 404–424. [Google Scholar] [CrossRef]
- Ullah, H.; Gul, B.; Khan, H.; Zeb, U. Effect of salt stress on proximate composition of duckweed (Lemna minor L.). Heliyon 2021, 7, e07399. [Google Scholar] [CrossRef]
- Ullah, H.; Gul, B.; Khan, H.; Akhtar, N.; Rehman, K.U.; Zeb, U. Effect of growth medium nitrogen and phosphorus on nutritional composition of Lemna minor (an alternative fish and poultry feed). BMC Plant Biol. 2022, 22, 214. [Google Scholar] [CrossRef]
- Appenroth, K.J.; Sree, K.S.; Böhm, V.; Hammann, S.; Vetter, W.; Leiterer, M.; Jahreis, G. Nutritional Value of Duckweeds (Lemnaceae) as Human Food. Food Chem. 2017, 217, 266–273. [Google Scholar] [CrossRef] [PubMed]
- MIPAF-Ministero Politiche Agricole e Forestali (Italy). Nuove Norme per la Disciplina dei Fertilizzanti. Decreto Ministeriale del 19/10/1984. In Gazzetta Ufficiale della Repubblica Italiana; 1984, n. 305, 6/11/1984 Supplemento Ordinario n. 64; Available online: https://www.gazzettaufficiale.it/eli/id/1984/11/06/084U0748/sg (accessed on 3 December 2024). (In Italian)
- Harvey, R.M.; Fox, J.L. Nutrient removal using Lemna minor. J. Water Pollut. Control Fed. 1973, 45, 1928–1938. [Google Scholar]
- Vladimirova, I.N.; Georgiyants, V.A. Biologically Active Compounds from Lemna minor S. F. Gray. Pharm. Chem. J. 2014, 47, 599–601. [Google Scholar] [CrossRef]
- Hutabarat, R.C.S.M.; Indradewa, D. Effects of water flow rate and surface cover plant density on the growth of duckweed (Lemna minor L.). Ilmu Pertan. Agric. Sci. 2020, 5, 98–109. [Google Scholar] [CrossRef]
- Copernicus Report (2022). Available online: https://climate.copernicus.eu/esotc/2022/temperature (accessed on 10 October 2024).
- Moyo, C.C.; Kissel, D.E.; Cabrera, M.L. Temperature effects on soil urease activity. Soil Biol. Biochem. 1989, 21, 935–938. [Google Scholar] [CrossRef]
- Taylor, A.E.; Myrold, D.D.; Bottomley, P.J. Temperature affects the kinetics of nitrite oxidation and nitrification coupling in four agricultural soils. Soil Biol. Biochem. 2019, 136, 107523. [Google Scholar] [CrossRef]
- Tesi, R. Orticoltura Mediterranea Sostenibile; Pàtron Editore: Bologna, Italy, 2010. [Google Scholar]
- Nicolas-Espinosa, J.; Garcia-Ibañez, P.; Lopez-Zaplana, A.; Yepes-Molina, L.; Albaladejo-Marico, L.; Carvajal, M. Confronting secondary metabolites with water uptake and transport in plants under abiotic stress. Int. J. Mol. Sci. 2023, 24, 2826. [Google Scholar] [CrossRef]
- Hounsome, N.; Hounsome, B.; Tomos, D.; Edwards-Jones, G. Plant Metabolites and Nutritional Quality of Vegetables. J. Food Sci. 2008, 73, R48–R65. [Google Scholar] [CrossRef] [PubMed]
- Colla, G.; Kim, H.J.; Kyriacou, M.C.; Rouphael, Y. Nitrate in fruits and vegetables. Sci. Hortic. 2018, 237, 221–238. [Google Scholar] [CrossRef]
- Santamaria, P. Nitrate in vegetables: Toxicity, content, intake and EC regulation. J. Sci. Food Agric. 2006, 86, 10–17. [Google Scholar] [CrossRef]
- The European Commission. Commission Regulation (EU) No 1258/2011 of 2 December 2011 Amending Regulation (EC) No 1881/2006 as Regards Maximum Levels for Nitrates in Foodstuffs Text with EEA Relevance. Available online: https://faolex.fao.org/docs/pdf/eur108181.pdf (accessed on 4 December 2024).
- Kreider, A.N. Behavior of Duckweed as an Agricultural Amendment: Nitrogen Mineralization, Leaching, and Sorghum Uptake. Master’s Thesis, Pennsylvania State University, University Park, PA, USA, 2015. [Google Scholar]
- Fernandez Pulido, C.R. Duckweed as a Sustainable Soil Amendment to Support Crop Growth, Enhance Soil Quality, and Reduce Agricultural Runoff. Master’s Thesis, Pennsylvania State University, University Park, PA, USA, 2016. [Google Scholar]
- Anas, M.; Liao, F.; Verma, K.K.; Sarwar, M.A.; Mahmood, A.; Chen, Z.-L.; Li, Q.; Zeng, X.-P.; Liu, Y.; Li, Y.-R. Fate of Nitrogen in Agriculture and Environment: Agronomic, Eco-Physiological and Molecular Approaches to Improve Nitrogen Use Efficiency. Biol. Res. 2020, 53, 47. [Google Scholar] [CrossRef]
- Congreves, K.A.; Otchere, O.; Ferland, D.; Farzadfar, S.; Williams, S.; Arcand, M.M. Nitrogen use efficiency definitions of today and tomorrow. Front. Plant Sci. 2021, 12, 637108. [Google Scholar] [CrossRef] [PubMed]
- Folina, A.; Tataridas, A.; Mavroeidis, A.; Kousta, A.; Katsenios, N.; Efthimiadou, A.; Travlos, I.S.; Roussis, I.; Darawsheh, M.K.; Papastylianou, P.; et al. Evaluation of various nitrogen indices in N-Fertilizers with inhibitors in field crops: A review. Agronomy 2021, 11, 418. [Google Scholar] [CrossRef]
- Valenzuela, H. Optimizing the Nitrogen Use Efficiency in Vegetable Crops. Nitrogen 2024, 5, 106–143. [Google Scholar] [CrossRef]
- Thompson, R.B.; Incrocci, L.; van Ruijven, J.; Massa, D. Reducing Contamination of Water Bodies from European Vegetable Production Systems; Elsevier: Amsterdam, The Netherlands, 2020. [Google Scholar] [CrossRef]
- Xin, Z.; Davidson, E.; Mauzerall, D.; Searchinger, T.; Dumas, P.; Shen, Y. Managing Nitrogen for Sustainable Development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef]
- Hirel, B.; Lemaire, G. From agronomy and ecophysiology to molecular genetics for improving nitrogen use efficiency in crops. J. Crop Improv. 2005, 15, 213–257. [Google Scholar] [CrossRef]
- Regni, L.; Del Buono, D.; Miras-Moreno, B.; Senizza, B.; Lucini, L.; Trevisan, M.; Morelli Venturi, D.; Costantino, F.; Proietti, P. Biostimulant Effects of an Aqueous Extract of Duckweed (Lemna minor L.) on Physiological and Biochemical Traits in the Olive Tree. Agriculture 2021, 11, 1299. [Google Scholar] [CrossRef]
- Dobermann, A. Nitrogen use efficiency—State of the art. In Proceedings of the IFA International Workshop on Enhanced Efficiency Fertilizers, Frankfurt, Germany, 28–30 June 2005; pp. 1–16. [Google Scholar]
- Greenwood, D.J.; Kubo, K.; Burn, S.I.G.; Draycott, A. Apparent recovery of fertilizer N by vegetable crops. Soil Sci. Plant Nutr. 1989, 35, 367–381. [Google Scholar] [CrossRef]
- Tei, F.; Benincasa, P.; Guiducci, M. Nitrogen fertilisation on lettuce, processing tomato and sweet pepper: Yield, nitrogen uptake and the risk of nitrate leaching. Acta Hortic. 1999, 506, 61–67. [Google Scholar] [CrossRef]
- Tei, F.; Benincasa, P.; Guiducci, M. Effect of nitrogen availability on growth and nitrogen uptake in lettuce. Acta Hortic. 2000, 533, 385–392. [Google Scholar] [CrossRef]
Parameter | Units | Value |
---|---|---|
pH | 7.9 | |
Electrical Conductivity (EC) | dS m−1 | 2.1 |
Salinity | ‰ | 2.7 |
Total Nitrogen | N g kg−1 | 1.8 |
Available Phosphorus | P2O5 mg kg−1 | 84 |
Exchangable Potassium | K2O mg kg−1 | 345 |
Organic Matter | % | 2.9 |
C/N ratio | 9.6 | |
Total Limestone | % | 3.4 |
C.E.C. | meq 100 g−1 | 15.8 |
Parameter | Units | Value |
---|---|---|
Organic C | % | 39.6 |
Total N | % | 4.3 |
NO3-N | % | <0.1 |
NH4-N | % | <0.1 |
P | % | 2.4 |
K | % | 5.3 |
Ca | % | 4.0 |
Mg | % | 0.7 |
Na | % | 0.3 |
Cl | % | 1.3 |
S | % | 1.0 |
Fe | ppm | 13,500 |
Mn | ppm | 350 |
Cu | ppm | 78 |
Zn | ppm | 97 |
B | ppm | 573 |
Mo | ppm | 4.0 |
C:N ratio | 9.2 |
Trial | Treatment | N Dose (kg ha−1) | Dose of Fertilizer (g pot−1) |
---|---|---|---|
Summer | Control | 0 | - |
Urea | 60 | 0.5 | |
L60 | 60 | 4.7 | |
L120 | 120 | 9.4 | |
L180 | 180 | 14.1 | |
Autumn | Control | 0 | - |
Urea | 60 | 0.5 | |
COF | 60 | 1.8 | |
L60 | 60 | 4.7 | |
L120 | 120 | 9.4 | |
L180 | 180 | 14.1 |
Treatment | PFP f.w. (g g−1) | NUEa f.w. (g g−1) | NUEp f.w. (g g−1) | PFP d.w. (g g−1) | NUEa d.w. (g g−1) | NUEp d.w. (g g−1) | REC (g g−1) |
---|---|---|---|---|---|---|---|
L 60 | 279.94 a | 67.23 | 786.95 | 30.42 a | 6.01 | 79.29 | 0.14 |
L 120 | 138.32 ab | 31.96 | 654.22 | 14.99 ab | 2.78 | 41.49 | 0.07 |
L 180 | 60.62 b | −10.29 | −1976.62 | 6.94 b | −1.19 | −139.75 | −0.03 |
* | n.s. | n.s. | * | n.s. | n.s. | n.s. |
Treatment | Chlorophyll a (μg mg−1 f.w.) | Chlorophyll b (μg mg−1 f.w.) | Chlorophyll a + b (μg mg−1 f.w.) | Carotenoids (μg mg−1 f.w.) |
---|---|---|---|---|
Controllo | 0.847 ± 0.013 | 0.286 ± 0.021 ab | 1.133 ± 0.034 | 0.244 ± 0.015 |
Urea | 0.730 ± 0.022 | 0.246 ± 0.022 b | 0.976 ± 0.024 | 0.209 ± 0.008 |
COF | 0.769 ± 0.071 | 0.272 ± 0.025 ab | 1.041 ± 0.095 | 0.223 ± 0.013 |
L 60 | 0.766 ± 0.032 | 0.255 ± 0.022 b | 1.021 ± 0.053 | 0.215 ± 0.009 |
L 120 | 0.770 ± 0.052 | 0.270 ± 0.014 ab | 1.040 ± 0.062 | 0.219 ± 0.021 |
L 180 | 0.835 ± 0.072 | 0.299 ± 0.022 a | 1.133 ± 0.094 | 0.224 ± 0.021 |
n.s. | * | n.s. | n.s. |
Treatment | PFP f.w. (g g−1) | NUEa f.w. (g g−1) | NUEp f.w. (g g−1) | PFP d.w. (g g−1) | NUEa d.w. (g g−1) | NUEp d.w. (g g−1) | REC (g g−1) |
---|---|---|---|---|---|---|---|
Urea | 413.79 ab | −40.89 bc | 600.08 | 25.68 b | −3.03 b | 29.46 | −0.08 b |
COF | 400.46 ab | −54.22 c | −432.58 | 25.57 b | −3.14 b | −20.22 | −0.08 b |
L60 | 622.48 a | 167.80 a | 543.28 | 35.87 a | 7.16 a | 23.14 | 0.30 a |
L120 | 345.88 b | 118.53 ab | 576.04 | 19.15 bc | 4.79 ab | 22.14 | 0.21 a |
L180 | 245.13 b | 93.57 abc | 581.01 | 13.28 c | 3.71 ab | 22.97 | 0.16 ab |
** | * | n.s. | *** | * | n.s. | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldi, A.; Verdi, L.; Piacenti, L.; Lenzi, A. From Waste to Resource: Use of Lemna minor L. as Unconventional Fertilizer for Lettuce (Lactuca sativa L.). Horticulturae 2025, 11, 20. https://doi.org/10.3390/horticulturae11010020
Baldi A, Verdi L, Piacenti L, Lenzi A. From Waste to Resource: Use of Lemna minor L. as Unconventional Fertilizer for Lettuce (Lactuca sativa L.). Horticulturae. 2025; 11(1):20. https://doi.org/10.3390/horticulturae11010020
Chicago/Turabian StyleBaldi, Ada, Leonardo Verdi, Lorenzo Piacenti, and Anna Lenzi. 2025. "From Waste to Resource: Use of Lemna minor L. as Unconventional Fertilizer for Lettuce (Lactuca sativa L.)" Horticulturae 11, no. 1: 20. https://doi.org/10.3390/horticulturae11010020
APA StyleBaldi, A., Verdi, L., Piacenti, L., & Lenzi, A. (2025). From Waste to Resource: Use of Lemna minor L. as Unconventional Fertilizer for Lettuce (Lactuca sativa L.). Horticulturae, 11(1), 20. https://doi.org/10.3390/horticulturae11010020