Multivariate Analysis and Optimization Scheme of the Relationship between Leaf Nutrients and Fruit Quality in ‘Bingtang’ Sweet Orange Orchards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Plant Materials
2.3. Leaf Minerals and Fruit Quality Parameter Analysis
2.4. Statistical Analysis
3. Results
3.1. Nutritional Status of Citrus Orchard
3.1.1. Leaf-Nutrient Status
3.1.2. Fruit Quality Characteristics
3.2. Relationship between Fruit Quality and Leaf Nutrients
3.2.1. Pearson Correlation Coefficients between Fruit Quality and Leaf Nutrients
3.2.2. Canonical Correlation Coefficients between Fruit Quality and Leaf Nutrients
Chi-Square Test for CCA
CCA between Leaf-Nutrient Concentrations and Fruit Quality Attributes
3.2.3. Screening for Leaf-Nutrient Factors Affecting ‘Bingtang’ Sweet Orange Quality
3.3. Optimization Scheme for Leaf-Nutrient Content in ‘Bingtang’ Sweet Orange
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, S.; Zhou, W.J.; Liu, P.; Tan, J.; Song, B. Multivariate analysis and optimization of relationship between soil nutrients and fruit quality in C. sinensis (L.) osbeck orchard. Soils 2021, 53, 97–104. (In Chinese) [Google Scholar]
- Lu, Z.J.; Yu, H.Z.; Mi, L.F.; Liu, Y.X.; Huang, Y.L.; Xie, Y.X.; Li, N.Y.; Zhong, B.L. The effects of inarching Citrus reticulata Blanco var. tangerine on the tree vigor, nutrient status and fruit quality of Citrus sinensis Osbeck ‘Newhall’ trees that have Poncirus trifoliata (L.) Raf. as rootstocks. Sci. Hortic. 2019, 256, 108600. [Google Scholar] [CrossRef]
- Matsuoka, K. Methods for nutrient diagnosis of fruit trees early in the growing season by using simultaneous multi-element analysis. Hort. J. 2020, 89, 197–207. [Google Scholar] [CrossRef]
- Li, H.Y.; Zhu, N.Y.; Wang, S.C.; Gao, M.N.; Xia, L.Z.; Kerr, P.G.; Wu, Y.H. Dual benefits of long-term ecological agricultural engineering: Mitigation of nutrient losses and improvement of soil quality. Sci. Total Environ. 2020, 721, 137848. [Google Scholar] [CrossRef]
- Qiu, F.Y.; Liu, W.H.; Chen, L.; Wang, Y.; Ma, Y.Y.; Liu, Q.; Yi, S.L.; Xie, R.J.; Zheng, Y.Q. Bacillus subtilis biofertilizer application reduces chemical fertilization and improves fruit quality in fertigated Tarocco blood orange groves. Sci. Hortic. 2021, 281, 110004. [Google Scholar] [CrossRef]
- Liu, Y.N.; Bai, M.J.; Li, Y.N.; Zhang, B.Z.; Wu, X.B.; Shi, Y.; Liu, H.R. Evaluating the combined effects of water and fertilizer coupling schemes on pear vegetative growth and quality in north China. Agronomy 2023, 13, 867. [Google Scholar] [CrossRef]
- Zegbe, J.A.; Serna-Pérez, A.; Mena-Covarrubias, J. Mineral nutrition enhances yield and affects fruit quality of ‘Cristalina’ cactus pear. Sci. Hortic. 2014, 167, 63–70. [Google Scholar] [CrossRef]
- Hu, C.X.; Dong, Z.H.; Zhao, Y.Y.; Jia, W.; Cai, M.M.; Zhan, T.; Tan, Q.L.; Li, J.X. Floral analysis in fruit crops: A potential tool for nutrient constraints diagnosis. In Fruit Crops; Elsevier: New Dehli, India, 2020; pp. 157–172. [Google Scholar] [CrossRef]
- Tu, A.G.; Xie, S.H.; Zheng, H.J.; Li, H.R.; Li, Y.; Mo, M.H. Long-term effects of living grass mulching on soil and water conservation and fruit yield of citrus orchard in south China. Agric. Water Manag. 2021, 252, 106897. [Google Scholar] [CrossRef]
- Li, Y.; Han, M.Q.; Lin, F.; Ten, Y.; Lin, J.; Zhu, D.H.; Chen, L.S. Soil chemical properties, ‘Guanximiyou’ pummelo leaf mineral nutrient status and fruit quality in the southern region of Fujian province, China. J. Soil Sci. Plant Nut. 2015, 15, 615–628. [Google Scholar] [CrossRef]
- Deljanin, I.; Antanasijević, D.; Bjelajac, A.; Urošević, M.A.; Nikolić, M.; Perić-Grujić, A.; Ristić, M. Chemometrics in biomonitoring: Distribution and correlation of trace elements in tree leaves. Sci. Total Environ. 2016, 545, 361–371. [Google Scholar] [CrossRef]
- Gui, H.P.; Tan, Q.L.; Hu, C.X.; Zhang, Y.; Zheng, C.S.; Sun, X.C.; Zhao, X.H. Floral analysis for Satsuma mandarin (Citrus unshiu Marc.) nutrient diagnosis based on the relationship between flowers and leaves. Sci. Hortic. 2014, 169, 51–56. [Google Scholar] [CrossRef]
- Chen, Y.W.; Li, F.F.; Wu, Y.C.; Zhou, T.; Chang, Y.Y.; Lian, X.F.; Yin, T.; Ye, L.; Li, Y.S.; Lu, X.P. Profiles of citrus orchard nutrition and fruit quality in Hunan Province, China. Int. J. Fruit Sci. 2022, 22, 779–793. [Google Scholar] [CrossRef]
- Prakash, R.; Jokhan, A.D.; Singh, R.J. Effects of foliar application of gibberellic acid, boric acid and sucrose on noni (M. citrifolia L.) fruit growth and quality. Sci. Hortic. 2022, 301, 111098. [Google Scholar] [CrossRef]
- Khalid, S.; Malik, A.U.; Saleem, B.A.; Khan, A.S.; Khalid, M.S.; Amin, M. Tree age and canopy position affect rind quality, fruit quality and rind nutrient content of ‘Kinnow’mandarin (Citrus nobilis Lour× Citrus deliciosa Tenora). Sci. Hortic. 2012, 135, 137–144. [Google Scholar] [CrossRef]
- Li, Y.S.; Xiao, J.N.; Yan, Y.F.; Liu, W.Q.; Cui, P.; Xu, C.D.; Nan, L.J.; Liu, X. Multivariate analysis and optimization of the relationship between soil nutrients and berry quality of Vitis vinifera cv. Cabernet Franc Vineyards in the Eastern Foothills of the Helan Mountains, China. Horticulturae 2024, 10, 61. [Google Scholar] [CrossRef]
- Guo, K.B.; Gou, Z.; Guo, Y.; Qiao, G. The effects of soil nutrient on fruit quality of ‘Hayward’ kiwifruit (Actinidia chinensis) in Northwest China. Eur. J. Hortic. Sci. 2020, 85, 471–476. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.J.; Zhuo, B.B.; Li, X.L.; Sun, J.; Zhang, J.K.; Wei, Q.P. Multivariate analysis of relationship between soil nutrient factors and fruit quality characteristic of ‘Fuji’ apple in two dominant production regions of China. Chinese J. Appl. Ecol. 2017, 28, 105–114. (In Chinese) [Google Scholar]
- Jin, X.L.; Ma, C.L.; Yang, L.T.; Chen, L.S. Alterations of physiology and gene expression due to long-term magnesium-deficiency differ between leaves and roots of Citrus reticulata. J. Plant Physiol. 2016, 198, 103–115. [Google Scholar] [CrossRef]
- Continella, A.; Pannitteri, C.; Malfa, S.L.; Legua, P.; Distefano, G.; Nicolosi, E.; Gentile, A. Influence of different rootstocks on yield precocity and fruit quality of ‘Tarocco Scirè’ pigmented sweet orange. Sci. Hortic. 2018, 230, 62–67. [Google Scholar] [CrossRef]
- Liu, G.D.; Chen, Y.H.; He, X.X.; Yao, F.X.; Guan, G.; Zhong, B.L.; Zhou, G.F. Seasonal changes of mineral nutrients in the fruit of navel orange plants grafted on trifoliate orange and citrange. Sci. Hortic. 2020, 264, 109156. [Google Scholar] [CrossRef]
- Yao, L.X.; Bai, C.H.; Luo, D.L. Diagnosis and management of nutrient constraints in litchi. In Fruit Crops; Elsevier: New Dehli, India, 2020; pp. 661–679. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. [Google Scholar]
- Bao, S.D. Methods of Soil and Agrochemistry Analysis; China Agriculture Science & Technology Press: Beijing, China, 2000. [Google Scholar]
- GB5009.86–2016; Chinese National Standard on Food Safety. Determination of Ascorbic Acid in Foods. National Health and Family Planning Commission of the People’s Republic of China: Beijing, China, 2016. (In Chinese)
- Lu, J.W. Study on Soil and Plant Nutritional Status and Balanced Fertilization Techniques in Citrus Orchards in Hubei. Ph.D. Thesis, Huangzhong Agriculture University, Wuhan, China, 2003. (In Chinese). [Google Scholar]
- Dominguez, N.; García-Escudero, E.; Romero, I.; Benito, A.; Martín, I. Leaf blade and petiole nutritional evolution and variability throughout the crop season for Vitis vinifera L. cv. Graciano. J. Agric. Res. 2015, 13, e0801. [Google Scholar] [CrossRef]
- Ge, S.F.; Zhu, Z.L.; Peng, L.; Chen, Q.; Jiang, Y.M. Soil Nutrient Status and Leaf Nutrient Diagnosis in the Main Apple Producing Regions in China. Hortic. Plant J. 2018, 4, 89–93. [Google Scholar] [CrossRef]
- Long, A.; Zhang, J.; Yang, L.T.; Ye, X.; Lai, N.W.; Tan, L.L.; Lin, D.; Chen, L.S. Effects of low pH on photosynthesis, related physiological parameters, and nutrient profiles of citrus. Front. Plant Sci. 2017, 8, 185. [Google Scholar] [CrossRef] [PubMed]
- Cai, L.Y.; Zhang, J.; Ren, Q.Q.; Lai, Y.H.; Peng, M.Y.; Deng, C.L.; Ye, X.; Yang, L.T.; Huang, Z.R.; Chen, L.S. Increased pH-mediated alleviation of copper-toxicity and growth response function in Citrus sinensis seedlings. Sci. Hortic. 2021, 288, 110310. [Google Scholar] [CrossRef]
- Gui, N.B.; Wang, M.J.; Zou, Q.Y.; Wang, Z.H.; Jiang, S.Z.; Chen, X.; Zha, Y.X.; Xiang, L.; Zhao, L. Water-potassium coupling at different growth stages improved kiwifruit (Actinidia spp.) quality and water/potassium productivity without yield loss in the humid areas of South China. Agr. Water Manage. 2023, 289, 108552. [Google Scholar] [CrossRef]
- Cao, S.; Ouyang, M.Y.; Zhou, W.J.; Cui, H.J.; Duan, Q.T.; Song, B. Soil nutrient status of citrus orchard and its effects on nutrients in citrus leaf in Hunan Province. Soils 2019, 51, 665–671. (In Chinese) [Google Scholar]
- Zhang, S.W.; Yang, W.H.; Muneer, M.A.; Ji, Z.J.; Tong, L.; Zhang, X.; Li, X.X.; Wang, W.Q.; Zhang, F.S.; Wu, L.Q. Integrated use of lime with Mg fertilizer significantly improves the pomelo yield, quality, economic returns and soil physicochemical properties under acidic soil of southern China. Sci. Hortic. 2021, 290, 110502. [Google Scholar] [CrossRef]
- Wang, G.Y.; Zhang, X.Z.; Wang, Y.; Xu, X.F.; Han, Z.H. Key minerals influencing apple quality in Chinese orchard identified by nutritional diagnosis of leaf and soil analysis. J. Integr. Agr. 2015, 14, 864–874. [Google Scholar] [CrossRef]
- Nasir, M.Y.; Khan, A.S.; Basra, S.M.A.; Malik, A.U. Foliar application of moringa leaf extract, potassium and zinc influence yield and fruit quality of ‘Kinnow’ mandarin. Sci. Hortic. 2016, 210, 227–235. [Google Scholar] [CrossRef]
- Brunetto, G.; Melo, G.E.B.D.; Toselli, M.; Quartileri, M.; Tagliavini, M. The role of mineral nutrition on yields and fruit quality in grapevine, pear and apple. Rev. Bras. Frutic. 2015, 37, 1089–1104. [Google Scholar] [CrossRef]
- Hallman, L.M.; Kadyampakeni, D.M.; Ferrarezi, R.S.; Wright, A.L.; Ritenour, M.A.; Johnson, E.G.; Rossi, L. Impact of ground applied micronutrients on root growth and fruit yield of severely huanglongbing-affected grapefruit trees. Horticulturae 2022, 8, 763. [Google Scholar] [CrossRef]
- Chen, H.H.; Chen, X.F.; Zheng, Z.C.; Huang, W.L.; Guo, J.X.; Yang, L.T.; Chen, L.S. Characterization of copper-induced-release of exudates by Citrus sinensis roots and their possible roles in copper-tolerance. Chemosphere 2022, 308, 136348. [Google Scholar] [CrossRef] [PubMed]
- Xing, F.; Fu, X.Z.; Wang, N.Q.; Xi, J.L.; Huang, Y.; Zhou, W.; Ling, L.L.; Peng, L.Z. Physiological changes and expression characteristics of ZIP family genes under zinc deficiency in navel orange (Citrus sinensis). J. Integr. Agric. 2016, 15, 803–811. [Google Scholar] [CrossRef]
- Maity, A.; Marathe, R.A.; Sarkar, A.; Basak, B.B. Phosphorus and potassium supplementing bio-mineral fertilizer augments soil fertility and improves fruit yield and quality of pomegranate. Sci. Hortic. 2022, 303, 111234. [Google Scholar] [CrossRef]
- Vashisth, T.; Kadyampakeni, D. Diagnosis and management of nutrient constraints in citrus. In Fruit Crops; Elsevier: New Dehli, India, 2020; pp. 723–737. [Google Scholar] [CrossRef]
Sub-Regions | Sampling Time (y) | Longitude (E) | Latitude (N) | Altitude (m) | Annual Precipitation (mm) | Annual Temperature (°C) |
---|---|---|---|---|---|---|
Bai Lin Town (n = 12) | 2019 | 113°28′–113°33′ | 26°34′–26°39′ | 164.13–236.20 | 1480.2 | 17.6 |
Bian Jiang Town (n = 8) | 2019 | 112°58′–113°12′ | 26°01′–26°16′ | 121.29–191.69 | 1417.0 | 17.6 |
Da Bujiang Town (n = 15) | 2019 | 113°23′–113°33′ | 26°09′–26°16′ | 278.96–652.28 | 1500.0 | 17.5 |
Gao Tingsi Town (n = 10) | 2019 | 112°50′–112°57′ | 26°01′–26°06′ | 125.09–187.96 | 1300.0 | 17.5 |
Huang Ni Town (n = 8) | 2020 | 113°05′–113°15′ | 26°08′–26°15′ | 163.77–185.98 | 1300.0 | 17.5 |
Li Yutang Town (n = 9) | 2020 | 113°14′–113°26′ | 26°06′–26°17′ | 218.04–495.36 | 1310.0 | 17.5 |
Long Xingshi Town (n = 14) | 2020 | 113°18′–113°28′ | 26°14′–26°21′ | 207.41–451.01 | 1450.0 | 18.1 |
Ma Tian Town (n = 10) | 2021 | 112°49′–113°00′ | 26°04′–26°10′ | 139.71–285.17 | 1300.0 | 17.5 |
Tai He Town (n = 6) | 2021 | 113°11′–113°19′ | 26°12′–26°20′ | 156.08–162.22 | 1480.2 | 17.6 |
Jin Gui Town (n = 16) | 2021 | 113°04′–113°13′ | 26°14′–26°20′ | 120.99–288.95 | 1250.0 | 17.5 |
Yang Tang Town (n = 8) | 2022 | 112°49′–112°55′ | 25°58′–26°04′ | 181.08–206.07 | 1460.0 | 17.5 |
Yue Lai Town (n = 4) | 2022 | 112°46′–112°50′ | 26°05′–26°11′ | 240.43–244.45 | 1200.0 | 17.4 |
Nutrient | Range | Mean ± SD | CV (%) | Optimum Range | Deficiency | Optimum | Excess |
---|---|---|---|---|---|---|---|
Samples (%) | Samples (%) | Samples (%) | |||||
N (%) | 1.33–4.92 | 2.41 ± 0.44 | 18.16 | 2.50–3.30 | 66.67 | 31.94 | 1.39 |
P (%) | 0.10–0.47 | 0.28 ± 0.10 | 36.60 | 0.15–0.18 | 22.22 | 9.72 | 68.06 |
K (%) | 0.47–2.11 | 1.30 ± 0.39 | 30.03 | 1.00–2.00 | 20.83 | 73.61 | 5.56 |
Ca (%) | 0.51–2.99 | 1.00 ± 0.19 | 31.90 | 2.00–5.00 | 75.63 | 24.37 | 0 |
Mg (%) | 0.11–0.41 | 0.26 ± 0.02 | 31.38 | 0.30–0.50 | 70.12 | 29.88 | 0 |
S (mg/kg) | 180–640 | 340 ± 11.05 | 32.93 | 250–400 | 26.39 | 48.61 | 25.00 |
Fe (mg/kg) | 20.48–170.10 | 109.65 ± 34.32 | 31.30 | 75.00–120.00 | 20.83 | 45.83 | 33.33 |
Mn (mg/kg) | 13.48–109.69 | 51.93 ± 38.23 | 73.61 | 20.00–50.00 | 4.17 | 26.39 | 69.44 |
Cu (mg/kg) | 2.60–36.11 | 13.84 ± 7.89 | 57.01 | 4.00–10.00 | 31.94 | 30.56 | 37.50 |
Zn (mg/kg) | 12.05–51.48 | 19.59 ± 11.12 | 56.77 | 20.00–30.00 | 63.89 | 20.83 | 15.28 |
B (mg/kg) | 5.48–53.95 | 21.58 ± 9.50 | 44.01 | 30.00–100.00 | 87.50 | 12.50 | 0 |
Item | SFW (g) | FSI | TSS (%) | TA (%) | Vc (mg/100 g) | MI |
---|---|---|---|---|---|---|
Range | 82.00–302.00 | 0.78–1.26 | 9.40–15.43 | 0.41–1.19 | 37.75–154.07 | 9.63–102.56 |
Mean ± SD | 143.14 ± 12.47 | 0.94 ± 0.09 | 12.69 ± 1.52 | 0.62 ± 0.26 | 62.33 ± 18.02 | 26.52 ± 6.30 |
CV (%) | 8.66 | 9.57 | 11.98 | 31.62 | 28.90 | 23.49 |
Typical Vector | Canonical Correlation Coefficient λi | Eigenvalue λi2 | Wilk’s | Chi-Square Value | Freedom Degree | Significant Level | Cumulative Contribution Ratio λi/∑λi2 |
---|---|---|---|---|---|---|---|
1 | 0.814 ** | 0.663 | 0.080 | 156.651 | 66 | 0.0001 | 0.863 |
2 | 0.571 | 0.326 | 0.430 | 52.268 | 36 | 0.0590 | 0.124 |
3 | 0.463 | 0.215 | 0.638 | 27.818 | 24 | 0.2678 | 0.010 |
4 | 0.372 | 0.139 | 0.813 | 12.841 | 14 | 0.5391 | 0.002 |
5 | 0.237 | 0.056 | 0.944 | 3.593 | 6 | 0.7316 | 0.001 |
Fruit Quality | Leaf-Nutrient Factor | Regression Equation | F-Value |
---|---|---|---|
SFW (y1) | x1, x3, x4, x6, x8, x10 | y1 = −66.157 + 3.253x1 + 5.421x3 + 5.094x4 + 85.608x6 + 0.145x8 − 1.800x10 | 9.327 ** |
FSI (y2) | x1, x3, x4, x5, x6, x7, x9, x10 | y2 = 0.722 + 0.003x1 + 0.005x3 − 0.007x4 + 0.062x5 + 0.126x6 + 0.001x7 + 0.001x9 − 0.003x10 | 8.515 ** |
TSS (y3) | x6, x10 | y3 = 11.067 − 2.539x6 + 0.039x10 | 6.601 ** |
TA (y4) | x4, x5, x7, x10 | y4 = 0.284 + 0.024x4 + 0.637x5 − 0.001x7 − 0.004x10 | 11.990 ** |
Vc (y5) | x3, x8, x9 | y5 = 40.109 + 2.092x3 − 0.058x8 + 0.064x9 | 8.529 ** |
MI (y6) | x5, x7 | y6 = 45.042 − 42.159x5 + 0.070x7 | 10.470 ** |
Leaf-Nutrient Factor | SFW (g) | FSI | TSS (%) | TA (%) | Vc (mg/100 g) | MI | Optimum Range |
---|---|---|---|---|---|---|---|
N (%) | 4.92 | 4.92 | 2.41 | 2.41 | 2.41 | 2.41 | 2.41–4.92 |
P (%) | 0.28 | 0.10 | 0.28 | 0.28 | 0.10 | 0.10 | 0.10–0.28 |
K (%) | 2.11 | 2.11 | 1.30 | 1.30 | 2.11 | 1.30 | 1.30–2.11 |
Ca (%) | 2.99 | 2.99 | 2.99 | 2.99 | 2.99 | 2.99 | 2.99 |
Mg (%) | 0.26 | 0.39 | 0.26 | 0.41 | 0.26 | 0.26 | 0.26–0.41 |
S (mg/kg) | 640 | 640 | 340 | 340 | 340 | 340 | 340–640 |
Fe (mg/kg) | 127.46 | 127.46 | 89.65 | 127.46 | 89.65 | 127.46 | 89.65–127.46 |
Mn (mg/kg) | 51.93 | 13.48 | 51.93 | 51.93 | 51.93 | 51.93 | 13.48–51.93 |
Cu (mg/kg) | 2.60 | 13.84 | 13.84 | 13.84 | 13.84 | 2.60 | 2.60–13.84 |
Zn (mg/kg) | 15.59 | 15.59 | 51.48 | 15.59 | 51.48 | 51.48 | 15.59–51.48 |
B (mg/kg) | 53.95 | 53.95 | 53.95 | 53.95 | 53.95 | 53.95 | 53.95 |
Objective value | 206.12 | 1.01 | 15.45 | 0.40 | 92.76 | 37.81 | —— |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, S.; Zeng, B.; Zhou, X.; Deng, S.; Zhang, W.; Luo, S.; Ouyang, M.; Yang, S. Multivariate Analysis and Optimization Scheme of the Relationship between Leaf Nutrients and Fruit Quality in ‘Bingtang’ Sweet Orange Orchards. Horticulturae 2024, 10, 976. https://doi.org/10.3390/horticulturae10090976
Cao S, Zeng B, Zhou X, Deng S, Zhang W, Luo S, Ouyang M, Yang S. Multivariate Analysis and Optimization Scheme of the Relationship between Leaf Nutrients and Fruit Quality in ‘Bingtang’ Sweet Orange Orchards. Horticulturae. 2024; 10(9):976. https://doi.org/10.3390/horticulturae10090976
Chicago/Turabian StyleCao, Sheng, Bin Zeng, Xuan Zhou, Sufeng Deng, Wen Zhang, Sainan Luo, Mengyun Ouyang, and Shuizhi Yang. 2024. "Multivariate Analysis and Optimization Scheme of the Relationship between Leaf Nutrients and Fruit Quality in ‘Bingtang’ Sweet Orange Orchards" Horticulturae 10, no. 9: 976. https://doi.org/10.3390/horticulturae10090976
APA StyleCao, S., Zeng, B., Zhou, X., Deng, S., Zhang, W., Luo, S., Ouyang, M., & Yang, S. (2024). Multivariate Analysis and Optimization Scheme of the Relationship between Leaf Nutrients and Fruit Quality in ‘Bingtang’ Sweet Orange Orchards. Horticulturae, 10(9), 976. https://doi.org/10.3390/horticulturae10090976