The Influence of Climatic Conditions Associated with Altitude on the Volatile Composition of Cabernet Sauvignon Wines from Argentina, Spain and Portugal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vineyard Conditions and Wines
- Wines from Argentina (AR): altitudes of 2400 m a.s.l. (AR-2400), 1200 m a.s.l. (AR-1200) and 900 m a.s.l. (AR-900);
- Wines from Portugal (PT): an altitude of 77 m a.s.l. (PT-77);
- Wines from Spain (SP): altitudes of 886 m a.s.l. (SP-886), 413 m a.s.l. (SP-413), 240 m a.s.l. (SP-240) and 155 m a.s.l. (SP-155).
2.2. Chemical Composition of Wines
2.3. Identification and Quantification of the Wines’ Volatile Compounds
2.4. Statistical Analysis
3. Results and Discussion
3.1. Climatic Characteristics of the Wine-Growing Regions
3.2. Chemical Parameters of Cabernet Sauvignon Wines
3.3. Total Volatile Composition of Cabernet Sauvignon Wines
3.4. Volatile Composition of Cabernet Sauvignon Wine
3.5. Cabernet Sauvignon Wine Volatiles by Individual Compounds
3.6. Correlation between the Wines’ Volatile Composition and Vineyards’ Altitude
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- OIV. State of the World Vine and Wine Sector in 2022; International Organisation of Vine and Wine: Dijon, France, 2023. [Google Scholar]
- Jones, G.V. Climate, grapes and wine, structure and suitability in a changing climate. Acta Hortic. 2012, 931, 19–28. [Google Scholar] [CrossRef]
- Santos, J.A.; Fraga, H.; Malheiro, A.C.; Moutinho-Pereira, J.; Dinis, L.T.; Correia, C.; Moriondo, M.; Leolini, L.; Dibari, C.; Costafreda-Aumedes, S.; et al. A Review of the Potential Climate Change Impacts and Adaptation Options for European Viticulture. Appl. Sci. 2020, 10, 3092. [Google Scholar] [CrossRef]
- Robinson, A.L.; Adams, D.O.; Boss, P.K.; Heymann, H.; Solomon, P.S.; Trengove, R.D. The relationship between sensory attributes and wine composition for Australian Cabernet Sauvignon wines. Aust. J. Grape Wine Res. 2011, 17, 327–340. [Google Scholar] [CrossRef]
- Jones, G.V.; Davis, R.E. Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. Am. J. Enol. Vitic. 2000, 51, 249–261. [Google Scholar] [CrossRef]
- Winkler, A.J.; Cook, J.; Kliewer, W.M.; Lider, L.A. General Viticulture; University of California Press: Berkeley, CA, USA, 1974. [Google Scholar]
- Huglin, P. Biologie Et Écologie de la Vigne; Payot Lausanne: Paris, France, 1986. [Google Scholar]
- Fregoni, C.; Pezzutto, S. Principes et premières approches del’indice bioclimatique de qualité de Fregoni. Progrès Agric. Et Vitic. 2000, 117, 390–396. [Google Scholar]
- Tonietto, J.; Carbonneau, A. A multicriteria climatic classification system for grape-growing regions worldwide. Agric. Forest Meteorol. 2004, 124, 81–97. [Google Scholar] [CrossRef]
- IPPC (Intergovernmental Panel on Climate Change). Sixth Assessment Report. 2023. Available online: https://www.ipcc.ch/report/ar6/syr/downloads/press/IPCC_AR6_SYR_SlideDeck.pdf (accessed on 11 December 2023).
- Belancic, A.; Agosin, E.; Ibacache, A.; Bordeu, E.; Baumes, R.; Razungles, A.; Bayonove, C. Influence of Sun Exposure on the Aromatic Composition of Chilean Muscat Grape Cultivars Moscatel de Alejandría and Moscatel rosada. Am. J. Enol. Vitic. 1997, 48, 181–186. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Destrac-Irvine, A. Modified grape composition under climate change conditions requires adaptations in the vineyard. OENO One 2017, 51, 147–154. [Google Scholar] [CrossRef]
- Poni, S.; Bernizzoni, F.; Civardi, S.; Libelli, N. Effects of Climate Change on the Volatile Organic Compounds in Grapes and Wines. In Grapevine in a Changing Environment; Academic Press: New York, NY, USA, 2018; pp. 155–177. [Google Scholar]
- Schultz, H.R.; Jones, G.J. Climate Induced Historic and Future Changes in Viticulture. J. Wine Res. 2010, 21, 137–145. [Google Scholar] [CrossRef]
- Costa, J.M.; Catarino, S.; Escalona, J.M.; Comuzzo, P. (Eds.) Achieving a more sustainable wine supply chain—Environmental and socioeconomic issues of the industry. In Improving Sustainable Viticulture and Winemaking Practices; Academic Press: New York, NY, USA; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–24. [Google Scholar]
- Alessandrini, M.; Gaiotti, F.; Belfiore, N.; Matarese, F.; D’Onofrio, C.; Tomasi, D. Influence of vineyard altitude on Glera grape ripening (Vitis vinifera L.): Effects on aroma evolution and wine sensory profile. J. Sci. Food Agric. 2017, 97, 2695–2705. [Google Scholar] [CrossRef]
- Falcao, L.D.; de Revel, G.; Perello, M.C.; Moutsiou, A.; Zanus, M.C.; Bordignon-Luiz, M.T. A survey of seasonal temperatures and vineyard altitude influences on 2-methoxy-3-isobutylpyrazine, C13-norisoprenoids, and the sensory profile of Brazilian Cabernet sauvignon wines. J. Agric. Food Chem. 2007, 55, 3605–3612. [Google Scholar] [CrossRef]
- Jiang, B.; Zhang, Z.W.; Zhang, J.X. Effect of terrain on the volatiles of Cabernet Sauvignon wines grown in Loess Plateau region of China. Afr. J. Biotechol. 2012, 11, 8280–8287. [Google Scholar] [CrossRef]
- Lukic, I.; Radeka, S.; Budíc-Leto, I.; Bubola, M.; Vrhovsek, U. Targeted UPLC-QqQ-MS/MS profiling of phenolic compounds for differentiation of monovarietal wines and corroboration of particular varietal typicity concepts. Food Chem. 2019, 300, 125251. [Google Scholar] [CrossRef] [PubMed]
- Ghiglieno, I.; Carlin, S.; Cola, G.; Vrhovsek, U.; Valenti, L.; Garcia-Aloy, M.; Mattivi, F. Impact of meteorological conditions, canopy shading and leaf removal on yield, must quality, and norisoprenoid compounds content in Franciacorta sparkling wine. Front. Plant Sci. 2023, 14, 1125560. [Google Scholar] [CrossRef]
- OIV. Compendium of International Methods of Wine and Must Analysis; International Organisation of Vine and Wine: Paris, France, 2018. [Google Scholar]
- Coelho, E.; Lemos, M.; Genisheva, Z.; Domingues, L.; Vilanova, M.; Oliveira, J.M. Validation of a LLME/GC-MS Methodology for Quantification of Volatile Compounds in Fermented Beverages. Molecules 2020, 25, 621. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Strategies in vineyard establishment to face global warming in viticulture: A mini review. J. Sci. Food Agric. 2020, 98, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Gamboa, G.; Zheng, W.; Martínez de Toda, F. Current viticultural techniques to mitigate the effects of global warming on grape and wine quality: A comprehensive review. Food Res. Int. 2021, 139, 109946. [Google Scholar] [CrossRef]
- Jones, G.V. Climate and terroir: Impacts of climate variability and change on wine. In Fine Wine and Terroir—The Geoscience Perspective; Macqueen, R.W., Meinert, L.D., Eds.; Geological Association of Canada: St. John’s, NL, Canada, 2006; pp. 203–217. [Google Scholar]
- Mansour, G.; Ghanem, C.; Mercenaro, L.; Nassif, N.; Hassoun, G.; Del Caro, A. Effects of altitude on the chemical composition of grapes and wine: A review. OENO One 2022, 56, 227–239. [Google Scholar] [CrossRef]
- Yue, T.X.; Chi, M.; Song, C.Z.; Liu, M.Y.; Meng, J.F.; Zhang, Z.W.; Li, M.H. Aroma characterization of Cabernet Sauvignon wine from the Plateau of Yunnan (China) with different altitudes using SPME-GC/MS. Int. J. Food Prop. 2015, 18, 1584–1596. [Google Scholar] [CrossRef]
- Qian, X.; Jia, F.; Cai, J.; Shi, Y.; Duan, C.; Lan, Y. Characterization and Evolution of Volatile Compounds of Cabernet Sauvignon Wines from Two Different Clones during Oak Barrel Aging. Foods 2022, 11, 74. [Google Scholar] [CrossRef]
- Pérez-Olivero, S.J.; Pérez-Pont, M.L.; Conde, J.E.; Pérez-Trujillo, J.P. Determination of lactones in wines by headspace solid-phase microextraction and gas chromatography coupled with mass spectrometry. J. Anal. Meth. Chem. 2014, 2014, 863019. [Google Scholar] [CrossRef] [PubMed]
- Rocha, S.M.; Coutinho, P.; Coelho, E.; Barros, A.S.; Delgadillo, I.; Coimbra, M.A. Relationships between the varietal volatile composition of the musts and white wine aroma quality. A four-year feasibility study. LWT-Food Sci. Technol. 2010, 43, 1508–1516. [Google Scholar] [CrossRef]
- Gonzalez-Barreiro, C.; Rial-Otero, R.; Cancho-Grande, B.; Simal-Gandara, J. Wine aroma compounds in grapes: A critical review. Critical Rev. Food Sci. Nutr. 2015, 55, 202–218. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Zhu, B.Q.; Wang, Y.H.; Lu, L.; Lan, Y.B.; Reeves, M.J.; Duan, C.Q. Influence of pre-fermentation cold maceration treatment on aroma compounds of cabernet sauvignon wines fermented in different industrial scale fermenters. Food Chem. 2014, 154, 217–229. [Google Scholar] [CrossRef] [PubMed]
- Aznar, M.; Lopez, R.; Cacho, J.; Ferreira, V. Prediction of Aged Red Wine Aroma Properties from Aroma Chemical Composition. Partial Least Squares Regression Models. J. Agric. Food Chem. 2003, 51, 2700–2707. [Google Scholar] [CrossRef] [PubMed]
- Antalick, G.; Perello, M.C.; de Revel, G. Characterization of fruity aroma modifications in red wines during malolactic fermentation. J. Agric. Food Chem. 2012, 60, 12371–12383. [Google Scholar] [CrossRef] [PubMed]
- Tao, Y.; Li, H.; Wang, H.; Zhang, L. Volatile compounds of young Cabernet Sauvignon red wine from Changli County (China). J. Food Comp. Anal. 2008, 21, 689–694. [Google Scholar] [CrossRef]
- Kalua, C.M.; Boss, P.K. Evolution of Volatile Compounds during the Development of Cabernet Sauvignon Grapes (Vitis vinifera L.). J. Agric. Food Chem. 2010, 57, 3818–3830. [Google Scholar] [CrossRef] [PubMed]
- Mosblech, A.; Feussner, I.; Heilmann, I. Oxylipins: Structurally diverse metabolites from fatty acid oxidation. Plant Physiol. Biochem. 2009, 47, 511–517. [Google Scholar] [CrossRef]
- Shiojiri, K.; Kishimoto, K.; Ozawa, R.; Kugimiya, S.; Urashimo, S.; Arimura, G.; Horiuchi, J.; Nishioka, T.; Matsui, K.; Takabayashi, J. Changing green leaf volatile biosynthesis in plants: An approach for improving plant resistance against both herbivores and pathogens. Proc. Nat. Acad. Sci. USA 2006, 103, 16672–16676. [Google Scholar] [CrossRef]
- Xu, X.Q.; Liu, B.; Zhu, B.Q.; Lan, Y.B.; Gao, Y.; Wang, D.; Reeves, M.J.; Duan, C.Q. Differences in volatile profiles of Cabernet Sauvignon grapes grown in two distinct regions of China and their responses to weather conditions. Plant Phys. Biochem. 2015, 89, 123–133. [Google Scholar] [CrossRef]
- Lu, H.C.; Chen, W.K.; Wang, Y.; Bai, X.J.; Cheng, G.; Duan, C.Q.; Wang, J.; He, F. Effect of the Seasonal Climatic Variations on the Accumulation of Fruit Volatiles in Four Grape Varieties Under the Double Cropping System. Front Plant Sci. 2022, 27, 809558. [Google Scholar] [CrossRef] [PubMed]
- Xie, S.; Lei, Y.; Wang, Y.; Ren, R.; Zhang, Z. Influence of continental climates on the volatile profile of Cabernet Sauvignon grapes from five Chinese viticulture regions. Plant Growth Regul. 2019, 87, 83–92. [Google Scholar] [CrossRef]
- Fenoll, J.; Manso, A.; Hellín, P.; Ruiz, L.; Flores, P. Changes in the aromatic composition of the Vitis vinifera grape Muscat Hamburg during ripening. Food Chem. 2009, 114, 420–428. [Google Scholar] [CrossRef]
- Swiegers, J.H.; Pretorius, I.S. Yeast modulation of wine flavor. In Advances in Applied Microbiology; Laskin, A.I., Bennett, J.W., Gadd, G.M., Eds.; Academic Press: San Diego, CA, USA, 2005; Volume 57, pp. 131–175. [Google Scholar]
- Pons, A.; Allamy, L.; Schüttler, A.; Rauhut, D.; Thibon, C.; Darriet, P. What is the expected impact of climate change on wine aroma compounds and their precursors in grape? OENO One 2017, 51, 141–146. [Google Scholar] [CrossRef]
- Lecourieux, F.; Kappel, C.; Pieri, P.; Charon, J.; Pillet, J.; Hilbert, G.; Renaud, C.; Gomès, E.; Delrot, S.; Lecourieux, D. Dissecting the biochemical and transcriptomic effects of a locally applied heat treatment on developing Cabernet Sauvignon grape berries. Front. Plant Sci. 2017, 8, 53. [Google Scholar] [CrossRef]
- Scafidi, P.; Pisciotta, A.; Patti, D.; Tamborra, P.; Di Lorenzo, R.; Barbagallo, M.G. Effect of artificial shading on the tannin accumulation and aromatic composition of the Grillo cultivar (Vitis vinifera L.). BMC Plant Biol. 2013, 13, 175. [Google Scholar] [CrossRef] [PubMed]
- Kennison, K.R.; Gibberd, M.R.; Pollnitz, A.P.; Wilkinson, K.L. Smoke-derived taint in wine: The release of smoke-derived volatile phenols during fermentation of Merlot juice following grapevine exposure to smoke. J. Agric. Food Chem. 2008, 5616, 7379–7383. [Google Scholar] [CrossRef]
- Chatonnet, P.; Viala, C.; Dubourdieu, D. Influence of polyphenolic components of red wines on the microbial synthesis of volatile phenols. Am. J. Enol. Vitic. 1997, 484, 443–448. [Google Scholar] [CrossRef]
- Towey, J.P.; Waterhouse, A.L. The extraction of volatile compounds from French and American oak barrels in Chardonnay during three successive vintages. Am. J. Enol. Vitic. 1996, 47, 163–172. [Google Scholar] [CrossRef]
- Simpson, R.F.; Amon, J.M.; Daw, A.J. Off-flavour in wine caused by guaiacol. Food Technol. Aust. 1986, 38, 31–33. [Google Scholar]
- Sefton, M.A. Hydrolytically-released volatile secondary metabolites from juice sample of Vitis vinifera grape cvs Merlot and Cabernet Sauvignon. Aust. J. Grape Wine Res. 1998, 4, 30–38. [Google Scholar] [CrossRef]
- Van Leeuwen, C.; Seguin, G. The concept of terroir in viticulture. J. Wine Res. 2006, 17, 1–10. [Google Scholar] [CrossRef]
- Martínez de Toda, F.; Ramos, M.C. Variability in grape compositionand phenology of ‘Tempranillo’ in zones located at different elevations and with differences in the climatic conditions. Vitis 2019, 58, 131–139. [Google Scholar]
Country | Argentina (AR) | Spain (SP) | Portugal (PT) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Location | Jujuy | Mendoza-San Carlos | Mendoza-Ugarteche | Albacete | Navarra | Penedes | Lérida | Lisbon | ||
Altitude (m a.s.l.) | 2400 (AR-2400) | 1200 (AR-1200) | 900 (AR-900) | 866 (SP-866) | 413 (SP-413) | 240 (SP-240) | 155 (SP-155) | 77 (PT-77) | ||
Soil type | Sandy loam with gravel | Sandy loam | Sandy loam | Clay loam | Sandy loam | Clay loam | Gravels | Sandy loam | ||
Winkler Index | 1742 | 2048 | 1671 | 2063 | 1845 | 2297 | 2067 | 2064 | ||
III | IV | III | IV | III | V | IV | IV | |||
Huglin Index | 2248 | 3486 | 2285 | 2936 | 2550 | 3348 | 3145 | 2542 | ||
Temperate Warm | Very Warm | Temperate Warm | Warm | Warm | Very Warm | Very Warm | Warm | |||
Min Temperature (°C) | 6.9 | 10.2 | 9.2 | 14.3 | 9.0 | 14.6 | 10.6 | 10.9 | ||
Max Temperature (°C) | 22.1 | 24.7 | 23.5 | 20.5 | 21.4 | 22.4 | 22.1 | 22.3 | ||
Average Temperature (°C) | 14.5 | 17.5 | 16.3 | 8.2 | 15.2 | 18.5 | 16.3 | 16.6 | ||
Precipitation (mm) | 733 | 17 | 365 | 375 | 364 | 310 | 373 | 798 |
Country | Altitude | Density | Ethanol | Dry Matter | Glucose+Fructose | Total SO2 | Free SO2 | Lactic Acid | Total Acidity | Glycerol | pH |
---|---|---|---|---|---|---|---|---|---|---|---|
(g/mL) | (% vol) | (g/L) | (g/L) | (mg/L) | (mg/L) | (g/L) | (g/L of TA) | (g/L) | |||
Argentina (AR) | AR-2400 | 0.993 | 12.5 ab | 29 ab | 0.1 | 34 | 3 | 1.6 | 5.4 a | 3.76 | |
Argentina (AR) | AR-1200 | 0.994 | 12.0 b | 31 ab | 0.1 | 65 | 8 | 1.0 | 4.6 b | 7.7 | 3.63 |
Argentina (AR) | AR-900 | 0.993 | 12.6 ab | 30 ab | 0.2 | 57 | 14 | 1.3 | 4.9 ab | 7.6 | 3.73 |
Spain (SP) | SP-886 | 0.993 | 12.5 ab | 28 ab | 0.3 | 66 | 20 | 1.0 | 5.5 a | 6.2 | 3.51 |
Spain (SP) | SP-413 | 0.992 | 12.4 ab | 24 b | 0.3 | 28 | 1 | 0.6 | 4.9 ab | 7.6 | 3.40 |
Spain (SP) | SP-240 | 0.994 | 12.6 ab | 34 ab | 0.3 | 45 | 18 | 0.6 | 4.6 b | 6.3 | 3.46 |
Spain (SP) | SP-155 | 0.994 | 12.7 ab | 34 ab | 0.4 | 70 | 20 | 0.6 | 4.8 ab | 7.0 | 3.41 |
Portugal (PT) | PT-77 | 0.992 | 12.7 ab | 25 ab | 0.1 | 35 | 7 | 1.0 | 4.8 ab | 7.4 | 3.70 |
Sig. A | ns | * | * | ns | ns | ns | ns | ** | ns | ns | |
Sig. C | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Volatile Group | Argentina | Spain | Portugal | Sig. A | AR | SP | PT | Sig. C | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AR-2400 | AR-1200 | AR-900 | SP-886 | SP-413 | SP-240 | SP-155 | PT-77 | ||||||
Acetates | 652.8 d | 449.1 f | 421.9 f | 900.7 a | 721.2 c | 842.0 b | 647.3 d | 563.0 e | *** | 507.9 b | 781.6 a | 563.0 b | *** |
Volatile Acids | 1743.7 a | 770.1 e | 1135.7 cd | 1545.3 b | 1233.5 c | 1035.7 d | 1209.7 c | 1403.7 b | *** | 1216.5 | 1134.6 | 1403.7 | ns |
Alcohols | 27,226.1 d | 32,566.6 bc | 28,056.3 d | 29,865.3 cd | 34,512.3 ab | 29,805.5 cd | 34,680.8 ab | 36,807.9 a | *** | 29,283.0 b | 32,158.9 b | 38,807.9 a | *** |
C6 compounds | 875.6 a | 526.1 d | 706.4 b | 537.3 d | 816.2 a | 449.8 e | 235.2 f | 612.5 c | *** | 702.7 | 633.0 | 612.5 | ns |
Aldehydes | 164.5 a | 145.6 b | 77.2 cd | 13.8 e | 31.5 d | 33.7 d | 14.6 e | 18.9 e | *** | 129.1 a | 32.6 b | 18.9 b | *** |
Esteres | 6314.3 a | 3378.6 c | 3868.6 b | 2863.2 de | 2567.7 ef | 2406.8 f | 2284.3 f | 3109.3 cd | *** | 4520.5 a | 2487.2 b | 3109.3 ab | ** |
Lactones | 590.1 b | 324.1 cd | 481.8 bc | 315.1 d | 377.0 cd | 242.4 d | 370.1 cd | 1959.6 a | *** | 465.3 b | 309.7 c | 1959.6 a | *** |
Volatile Phenols | 820.1 c | 1081.6 ab | 638.4 d | 1163.2 a | 678.7 cd | 972.3 b | 1042.4 ab | 819.2 c | *** | 846.7 | 825.5 | 819.2 | ns |
Terpenes | 300.4 a | 96.2 c | 101.9 cd | 183.5 b | 42.1 e | 72.9 d | 37.7 e | 88.4 cd | *** | 166.2 | 57.5 | 88.4 | ns |
Carbonyl compounds | 160.0 c | 21.3 e | 87.5 d | 383.8 a | 15.5 e | 207.5 b | 160.1 c | 16.6 e | *** | 89.6 ab | 111.5 a | 16.6 b | * |
Volatile Compouds | Altitud (A) | Sig. A | Country (C) | Sig. C | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
AR-2400 | AR-1200 | AR-900 | SP-886 | SP-413 | SP-240 | SP-155 | PT-77 | Argentina (AR) | Spain (SP) | Portugal (PT) | |||
Isoamyl acetate | 238.1 e | 214.2 e | 219.4 e | 599.6 a | 448.3 c | 538.8 b | 417.3 c | 295.7 d | *** | 223.9 b | 501.0 a | 295.7 b | *** |
Phenylethyl acetate | 73.8 e | 67.9 e | 67.4 e | 174.1 a | 98.5 d | 160.8 b | 119.2 c | 120.6 c | *** | 69.7 b | 138.1 a | 120.6 a | *** |
Diethyl malate | 340.9 a | 167.0 bc | 135.1 de | 127.0 de | 174.4 b | 142.3 cd | 110.7 e | 146.6 cd | *** | 214.3 a | 138.6 b | 146.6 ab | * |
Isobutanoic acid | 54.3 c | 71.1 a | 55.0 c | 63.5 b | 73.3 a | 38.1 d | 42.7 d | 67.1 ab | *** | 60.1 | 54.4 | 67.1 | ns |
Butyric acid | 23.0 ab | 17.8 cd | 25.8 a | 22.7 ab | 25.9 a | 14.1 e | 15.6 de | 19.6 bc | *** | 22.2 | 19.6 | 19.6 | ns |
2+3-methylbutyric acid | 115.3 d | 204.0 c | 293.2 b | 175.1 c | 328.0 a | 136.4 d | 142.7 d | 337.1 a | *** | 204.2 b | 195.6 b | 337.1 a | * |
Hexanoic acid | 405.1 a | 246.1 c | 385.5 a | 387.4 a | 413.8 a | 251.9 bc | 295.1 b | 389.2 a | *** | 345.6 | 337.0 | 389.2 | ns |
Octanoic acid | 425.9 c | 208.0 e | 327.2 d | 664.6 a | 322.3 d | 474.2 bc | 518.3 b | 463.1 c | *** | 320.4 a | 494.8 a | 463.1 ab | ** |
Decanoic acid | 25.4 f | 23.0 f | 49.0 e | 232.0 a | 70.3 d | 121.0 c | 195.3 b | 127.5 c | *** | 32.5 b | 154.6 a | 127.5 a | *** |
Octadecanoic acid | 694.8 | - | - | - | - | - | - | - | - | 694.8 | - | - | - |
Isobututyl alcohol | 751.4 ab | 746.0 ab | 549.9 c | 720.5 b | 787.3 ab | 527.1 c | 836.7 a | 501.1 c | *** | 682.4 ab | 717.9 a | 501.1 b | * |
1-butanol | 44.1 b | 64.3 a | 65.2 a | 34.1 c | 45.6 b | 39.7 bc | 24.9 d | 34.1 c | *** | 57.9 a | 36.1 b | 34.1 b | *** |
Isoamyl alcohol | 9196.2 bc | 9123.9 bc | 8609.7 c | 8597.5 c | 11,532.2 a | 8311.3 c | 10,315.9 ab | 9194.8 bc | *** | 8976.6 | 9689.2 | 9194.8 | ns |
3-methyl-1-pentanol | 35.6 cd | 39.2 bc | 38.4 bc | 37.2 bc | 55.3 a | 35.0 cd | 32.0 d | 41.3 b | *** | 37.7 | 39.9 | 41.3 | ns |
2.3 butanediol | 36.3 b | 36.7 b | 54.8 a | 34.4 b | 49.5 a | 22.5 c | 27.5 bc | 57.1 a | *** | 42.6 ab | 33.5 b | 57.1 a | ** |
Methionol | 146.3 b | 220.2 a | 207.6 a | 54.6 d | 95.3 c | 97.6 c | 118.7 bc | 109.1 c | *** | 191.4 a | 91.5 b | 109.1 b | *** |
Benzyl alcohol | 442.1 a | 135.2 cd | 255.6 b | 162.0 c | 99.6 de | 121.3 de | 86.9 e | 441.9 a | *** | 277.6 b | 117.4 c | 441.9 a | *** |
Phenylethyl alcohol | 16,574.1 e | 22,201.0 bc | 18,275.2 de | 20,225.1 cd | 21,847.3 bc | 20,651.2 bcd | 23,238.3 b | 26,428.4 a | *** | 19,016.8 c | 21,490.5 b | 26,428.4 a | *** |
1-hexanol | 838.0 a | 505.0 cd | 675.0 b | 477.8 d | 789.8 a | 409.9 e | 224.8 f | 571.5 c | *** | 672.7 | 475.6 | 571.5 | ns |
Trans-3-hexen-1-ol | 16.7 bc | 12.1 e | 15.4 cd | 19.2 a | 17.6 b | 15.1 d | 6.2 f | 13.2 e | *** | 14.7 | 14.5 | 13.2 | ns |
Cis-3-hexen-1-ol | 15.5 c | 9.0 d | 13.6 c | 40.2 a | 8.8 d | 24.9 b | 4.3 e | 23.7 b | *** | 12.7 | 19.5 | 23.7 | ns |
Trans-2-hexen-1-ol | 5.5 a | - | 2.4 b | - | - | - | - | 4.2 a | *** | 3.9 | - | 4.2 | ns |
Furfural | 160.7 a | 110.3 b | 74.9 c | 10.4 e | 26.7 d | 29.7 d | 11.7 e | 13.7 e | *** | 115.3 a | 19.6 b | 13.7 b | *** |
Benzaldehyde | 3.9 cd | 35.3 a | 2.3 f | 3.4 de | 4.8 b | 4.0 c | 2.9 ef | 5.1 b | *** | 13.8 | 3.7 | 5.1 | ns |
Ethyl butyrate | 121.1 a | 83.4 d | 111.9 ab | 117.1 a | 121.1 a | 91.7 cd | 100.9 bc | 71.8 e | *** | 105.5 a | 107.7 a | 71.8 b | ** |
Ethyl 2-methylbutyrate | 20.0 d | 30.1 b | 35.4 a | 10.1 f | 18.8 d | 13.2 e | 7.8 g | 22.8 c | *** | 28.5 a | 12.5 b | 22.8 a | *** |
Ethyl-3-methylbutyrate | 42.5 c | 50.8 b | 62.2 a | 21.5 e | 46.4 bc | 28.0 d | 19.0 e | 31.8 d | *** | 51.9 a | 28.7 b | 31.8 b | *** |
Ethyl hexanoate | 307.9 a | 145.9 e | 293.8 a | 291.4 a | 274.6 ab | 182.1 de | 208.5 cd | 241.1 bc | *** | 249.2 | 239.2 | 241.1 | ns |
Hexyl acetate | - | - | - | 4.6 | 1.8 | 3.6 | - | - | ns | - | 3.3 | - | - |
Ethyl lactate | 4442.7 a | 2306.6 b | 2418.7 b | 1737.2 c | 1527.3 cd | 1532.0 cd | 1352.1 d | 1769.3 c | *** | 3056.0 a | 1537.2 b | 1769.3 b | *** |
Ethyl octanoate | 153.4 ab | 98.2 bc | 144.7 abc | 202.7 a | 82.3 c | 102.8 bc | 135.4 abc | 192.4 a | *** | 132.1 | 130.8 | 192.4 | ns |
Ethyl β-hydroxybutyrate | 120.2 a | 51.1 cd | 51.7 cd | 45.6 de | 66.6 b | 57.6 c | 72.6 b | 42.6 e | *** | 74.3 | 60.6 | 42.6 | ns |
Isoamyl lactate | 333.3 a | 140.1 bc | 177.7 b | 90.6 d | 100.3 cd | 87.1 d | 78.7 d | 101.2 cd | *** | 217.0 a | 89.2 b | 101.2 b | *** |
Ethyl methyl succinate | 181.4 a | 82.1 b | 77.2 b | 48.6 cd | 24.9 e | 55.0 c | 34.8 de | 27.9 e | *** | 113.6 a | 40.9 b | 27.9 b | *** |
Ethyl decanoate | 6.0 d | 12.0 c | 15.9 b | 11.9 c | 5.9 d | 3.9 d | 7.3 d | 31.5 a | *** | 11.3 b | 7.3 b | 31.5 a | *** |
Methyl vanillate | 44.1 a | 19.0 b | 19.2 b | 17.6 b | 11.6 c | 16.8 b | 11.0 c | 18.0 b | *** | 27.4 a | 14.2 b | 18.0 ab | *** |
Ethyl vanillate | 541.6 a | 359.4 c | 460.2 b | 264.1 de | 285.9 d | 233.0 e | 256.1 de | 559.0 a | *** | 453.8 b | 259.8 c | 559.0 a | *** |
γ-butyrolactone | 561.3 b | 295.1 d | 460.0 bc | 275.2 d | 354.9 cd | 231.4 d | 343.6 cd | 1936.3 a | *** | 438.8 b | 301.3 c | 1936.3 a | *** |
Whiskey lactone (trans) | 17.5 b | 6.2 c | 4.8 c | 18.1 a | - | - | - | - | *** | 9.5 | 18.1 | - | ns |
γ-Nonalactone | 11.3 d | 22.8 b | 16.9 c | 21.7 b | 22.0 b | 11.0 d | 26.6 a | 23.3 b | *** | 17.0 | 20.3 | 23.3 | ns |
Guaiacol | 10.6 a | 10.2 a | 7.9 bc | 7.4 c | 4.9 d | 7.0 c | 6.3 cd | 9.6 ab | *** | 9.6 a | 6.4 b | 9.6 a | *** |
4-Ethylguaiacol | - | 74.9 | - | - | - | - | - | 6.5 | ns | 74.9 | - | 6.5 | ns |
4-Ethylphenol | 8.5 | 221.5 | - | - | - | 3.8 | 5.8 | 19.0 | ns | 115.0 | 4.8 | 19.0 | ns |
2-Methoxy-4-vinylphenol | 37.2 d | 18.4 e | 27.7 de | 116.9 a | 26.1 de | 86.1 b | 37.0 d | 63.0 c | *** | 27.8 b | 66.5 a | 63.0 ab | * |
2.6-Dimethoxyphenol | 52.4 b | 50.0 bc | 41.5 c | 56.1 b | 50.1 bc | 52.2 b | 47.4 bc | 70.2 a | *** | 48.0 b | 51.5 b | 70.2 a | *** |
4-2-Hydroxyethylphenol | 662.1 bc | 642.3 c | 488.7 d | 939.0 a | 575.5 cd | 774.0 b | 918.2 a | 617.9 c | *** | 597.7 b | 801.6 a | 617.9 ab | ** |
3.4.5-Trimethoxyphenol | 49.4 c | 64.4 b | 72.5 a | 43.9 c | 22.3 e | 49.2 c | 27.7 de | 33.1 d | *** | 62.1 a | 35.8 b | 33.1 b | *** |
3-Oxo-α-ionol | 122.9 b | 81.4 d | 93.1 c | 173.3 a | 39.8 f | 65.7 e | 27.5 g | 82.9 d | *** | 99.1 | 76.6 | 82.9 | ns |
Cis-furan linalool oxide | 145.5 | - | - | - | - | - | - | - | - | 145.5 | - | - | - |
Trans-furan linalool oxide | 16.9 | - | - | - | - | - | - | - | - | 16.9 | - | - | - |
4-Terpineol | - | - | - | - | - | 1.5 | - | - | - | - | 1.5 | - | - |
α-terpineol | 11.4 | 9.2 | 8.8 | 5.2 | 2.3 | 5.8 | 10.2 | 5.5 | ns | 9.8 | 5.9 | 5.5 | ns |
Trans-pyan linalol oxide | 3.6 | - | - | - | - | - | - | - | - | 3.6 | - | - | - |
Cis-pyan linalol oxide | - | 5.6 | - | 5.0 | - | - | - | - | ns | 5.6 | 5.0 | - | ns |
Acetoina | 160.0 c | 21.3 e | 87.5 d | 383.8 a | 15.5 e | 207.5 b | 160.1 c | 16.6 e | *** | 89.6 ab | 191.8 a | 16.6 b | * |
Volatile Compound | Altitude | Average Temp | Max Temp | Min Temp | Rainfall |
---|---|---|---|---|---|
Isoamyl acetate | −0.454 | 0.052 | −0.747 | 0.770 | −0.258 |
Phenylethyl acetate | −0.499 | 0.388 | −0.671 | 0.886 | −0.048 |
Diethyl malate | 0.846 | −0.444 | 0.000 | −0.643 | 0.502 |
Octanoic acid | −0.198 | 0.188 | −0.791 | 0.572 | 0.276 |
Octadecanoic acid | 0.818 | −0.444 | −0.084 | −0.567 | 0.539 |
1-butanol | 0.395 | −0.234 | 0.728 | −0.366 | −0.374 |
Methionol | 0.375 | −0.174 | 0.911 | −0.530 | −0.228 |
Benzyl alcohol | 0.436 | 0.278 | 0.019 | −0.437 | 0.896 |
Phenylethyl alcohol | −0.733 | 0.716 | 0.019 | 0.270 | 0.089 |
Trans-2-hexen-1-ol | 0.514 | 0.097 | 0.044 | −0.578 | 0.881 |
Furfural | 0.908 | −0.471 | 0.500 | −0.660 | 0.135 |
Benzaldehyde | 0.202 | 0.079 | 0.719 | −0.079 | −0.455 |
Ethyl butyrate | 0.455 | −0.838 | −0.488 | −0.295 | −0.072 |
Ethyl 2-methylbutyrate | 0.287 | 0.038 | 0.743 | −0.492 | −0.027 |
Hexyl acetate | −0.214 | 0.044 | −0.615 | 0.789 | −0.308 |
Ethyl lactate | 0.938 | −0.425 | 0.184 | −0.649 | 0.450 |
Isoamyl lactate | 0.908 | −0.479 | 0.182 | −0.702 | 0.442 |
Ethyl methyl succinate | 0.944 | −0.484 | 0.224 | −0.536 | 0.297 |
Ethyl decanoate | −0.278 | 0.778 | 0.146 | −0.003 | 0.503 |
Methyl vanillate | 0.891 | −0.310 | 0.058 | −0.502 | 0.539 |
Ethyl vanillate | 0.441 | 0.217 | 0.273 | −0.616 | 0.764 |
γ-butyrolactone | −0.238 | 0.743 | −0.009 | −0.132 | 0.775 |
Whiskey lactone (trans) | 0.792 | −0.367 | −0.272 | −0.084 | 0.178 |
4-Ethylguaiacol | 0.188 | 0.117 | 0.744 | −0.077 | −0.438 |
4-Ethylphenol | 0.210 | 0.098 | 0.747 | −0.091 | −0.430 |
2-Methoxy-4-vinylphenol | −0.222 | 0.394 | −0.628 | 0.824 | 0.089 |
2.6-Dimethoxyphenol | −0.218 | 0.733 | −0.285 | 0.235 | 0.613 |
Cis-furan linalool oxide | 0.845 | −0.458 | −0.087 | −0.585 | 0.556 |
Trans-furan linalool oxide | 0.848 | −0.460 | −0.087 | −0.587 | 0.558 |
Trans-piyan linalool oxide | 0.848 | −0.460 | −0.087 | −0.587 | 0.558 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deis, L.; Martínez, L.; da Costa, B.S.; Vilanova, M. The Influence of Climatic Conditions Associated with Altitude on the Volatile Composition of Cabernet Sauvignon Wines from Argentina, Spain and Portugal. Horticulturae 2024, 10, 870. https://doi.org/10.3390/horticulturae10080870
Deis L, Martínez L, da Costa BS, Vilanova M. The Influence of Climatic Conditions Associated with Altitude on the Volatile Composition of Cabernet Sauvignon Wines from Argentina, Spain and Portugal. Horticulturae. 2024; 10(8):870. https://doi.org/10.3390/horticulturae10080870
Chicago/Turabian StyleDeis, Leonor, Liliana Martínez, Bianca S. da Costa, and Mar Vilanova. 2024. "The Influence of Climatic Conditions Associated with Altitude on the Volatile Composition of Cabernet Sauvignon Wines from Argentina, Spain and Portugal" Horticulturae 10, no. 8: 870. https://doi.org/10.3390/horticulturae10080870
APA StyleDeis, L., Martínez, L., da Costa, B. S., & Vilanova, M. (2024). The Influence of Climatic Conditions Associated with Altitude on the Volatile Composition of Cabernet Sauvignon Wines from Argentina, Spain and Portugal. Horticulturae, 10(8), 870. https://doi.org/10.3390/horticulturae10080870