Use of a Biostimulant Based on Seaweed Extract as a Sustainable Input to Enhance the Quality of Solanaceous Seedlings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Local and Experimental Conditions
2.2. Treatments and Experimental Design
2.3. Seaweed Extract Application
2.4. Seedling Management
2.5. Evaluated Parameters
2.6. Statistical Analysis
3. Results
3.1. Foliar Parameters
3.2. Stem Parameters
3.3. Root Parameters
3.4. Chlorophyll Content
3.5. Pearson’s Linear Correlation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bantis, F.; Koukounaras, A.; Siomos, A.; Menexes, G.; Dangitsis, C.; Kintzonidis, D. Assessing Quantitative Criteria for Characterization of Quality Categories for Grafted Watermelon Seedlings. Horticulturae 2019, 5, 16. [Google Scholar] [CrossRef]
- Qin, K.; Leskovar, D.I. Humic Substances Improve Vegetable Seedling Quality and Post-Transplant Yield Performance under Stress Conditions. Agriculture 2020, 10, 254. [Google Scholar] [CrossRef]
- Hsieh, C.Y.; Fang, S.L.; Wu, Y.F.; Chu, Y.C.; Kuo, B.J. Using Sigmoid Growth Curves to Establish Growth Models of Tomato and Eggplant Stems Suitable for Grafting in Subtropical Countries. Horticulturae 2021, 7, 537. [Google Scholar] [CrossRef]
- Ramesh, R.; D’Souza, M.; Asolkar, T.; Achari, G.; Gupta, M.J. Rootstocks for the Management of Bacterial Wilt in Eggplant (Solanum melongena L.) and Tomato (Solanum lycopersicum L.) in the Coastal Regions of India. Adv. Agric. 2022, 2022, e8594080. [Google Scholar] [CrossRef]
- Moncada, A.; Vetrano, F.; Esposito, A.; Miceli, A. Fertigation Management and Growth-Promoting Treatments Affect Tomato Transplant Production and Plant Growth after Transplant. Agronomy 2020, 10, 1504. [Google Scholar] [CrossRef]
- Puccinelli, M.; Malorgio, F.; Pintimalli, L.; Rosellini, I.; Pezzarossa, B. Biofortification of Lettuce and Basil Seedlings to Produce Selenium Enriched Leafy Vegetables. Horticulturae 2022, 8, 801. [Google Scholar] [CrossRef]
- Vetrano, F.; Miceli, C.; Angileri, V.; Frangipane, B.; Moncada, A.; Miceli, A. Effect of Bacterial Inoculum and Fertigation Management on Nursery and Field Production of Lettuce Plants. Agronomy 2020, 10, 1477. [Google Scholar] [CrossRef]
- Miceli, A.; Moncada, A.; Vetrano, F. Use of Microbial Biostimulants to Increase the Salinity Tolerance of Vegetable Transplants. Agronomy 2021, 11, 1143. [Google Scholar] [CrossRef]
- Mundim, G.S.M.; Maciel, G.M.; Mendes, G.O. Aspergillus niger as a Biological Input for Improving Vegetable Seedling Production. Microorganisms 2022, 10, 674. [Google Scholar] [CrossRef]
- Carmody, N.; Goñi, O.; Langowski, L.; O’Connell, S. Ascophyllum nodosum Extract Biostimulant Processing and Its Impact on Enhancing Heat Stress Tolerance During Tomato Fruit Set. Front. Plant Sci. 2020, 11, 807. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants 2021, 10, 531. [Google Scholar] [CrossRef]
- Boukhari, M.E.M.E.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef]
- Villa e Vila, V.; Rezende, R.; Marques, P.A.A.; Wenneck, G.S.; Nocchi, R.C.d.F.; Terassi, D.d.S.; Andrean, A.F.B.A.; Matumoto-Pintro, P.T. Seaweed extract of Ascophyllum nodosum applied in tomato crop as a biostimulant for improving growth, yield and soil fertility in subtropical condition. J. Appl. Phycol. 2023, 35, 2531–2541. [Google Scholar] [CrossRef]
- Langowski, L.; Goñi, O.; Ikuyinminu, E.; Feeney, E.; O’Connell, S. Investigation of the direct effect of a precision Ascophyllum nodosum biostimulant on nitrogen use efficiency in wheat seedlings. Plant Physiol. Biochem. 2022, 179, 44–57. [Google Scholar] [CrossRef]
- Villa e Vila, V.; Marques, P.A.A.; Rezende, R.; Wenneck, G.S.; Terassi, D.d.S.; Andrean, A.F.B.A.; Nocchi, R.C.d.F.; Matumoto-Pintro, P.T. Deficit Irrigation with Ascophyllum nodosum Extract Application as a Strategy to Increase Tomato Yield and Quality. Agronomy 2023, 13, 1853. [Google Scholar] [CrossRef]
- Santaniello, A.; Scartazza, A.; Gresta, F.; Loreti, E.; Biasone, A.; Di Tommaso, D.; Piaggesi, A.; Perata, P. Ascophyllum nodosum seaweed extract alleviates drought stress in Arabidopsis by affecting photosynthetic performance and related gene expression. Front. Plant Sci. 2017, 8, 1362. [Google Scholar] [CrossRef] [PubMed]
- Goñi, O.; Quille, P.; O’Connell, S. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol. Biochem. 2018, 126, 63–73. [Google Scholar] [CrossRef] [PubMed]
- Pereira, L.; Morrison, M.; Shukla, P.S.; Critchley, A.T. A concise review of the brown macroalga Ascophyllum nodosum (Linnaeus) Le Jolis. J. Appl. Phycol. 2020, 32, 3561–3584. [Google Scholar] [CrossRef]
- Rajendran, R.; Jagmohan, S.; Jayaraj, P.; Ali, O.; Ramsubhag, A.; Jayaraman, J. Efects of Ascophyllum nodosum extract on sweet pepper plants as an organic biostimulant in grow box home garden conditions. J. Appl. Phycol. 2021, 34, 647–657. [Google Scholar] [CrossRef]
- Bernardes, R.S.; Santos, S.C.; Santos, C.C.; Heid, D.M.; Vieira, M.C.; Torales, E.P. Ascophyllum nodosum seaweed extract and mineral nitrogen in Alibertia edulis seedlings. Rev. Bras. Eng. Agric. Ambient. 2023, 27, 137–180. [Google Scholar] [CrossRef]
- Craigie, J. Seaweed extract stimuli in plant science and agriculture. J. Appl. Phycol. 2011, 23, 371–393. [Google Scholar] [CrossRef]
- Shukla, P.S.; Mantin, E.; Adil, M.; Bajpai, S.; Critchley, A.; Prithiviraj, B. Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front. Plant Sci. 2019, 10, 655. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, D.F. SISVAR: A computer analysis system to fixed effects Split plot type designs. Rev. Bras. Biom. 2019, 37, 529–535. [Google Scholar] [CrossRef]
- Agarwal, P.K.; Dangariya, M.; Agarwal, P. Seaweed extracts: Potential biodegradable, environmentally friendly resources for regulating plant defence. Algal Res. 2021, 58, 102363. [Google Scholar] [CrossRef]
- Cristofano, F.; El-Nakhel, C.; Rouphael, Y. Biostimulant substances for sustainable agriculture: Origin, operating mechanisms and effects on cucurbits, leafy greens, and nightshade vegetables species. Biomolecules 2021, 11, 1103. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Fisiologia Vegetal, 6th ed.; Artmed Editora: Porto Alegre, Brazil, 2017. [Google Scholar]
- Arioli, T.; Mattner, S.; Winberg, P. Applications of seaweed extracts in Australian agriculture: Past, present and future. J. Appl. Phycol. 2015, 27, 2007–2015. [Google Scholar] [CrossRef]
- De Saeger, J.; Van Praet, S.; Vereecke, D.; Park, J.; Jacques, S.; Han, T.; Depuydt, S. Toward the molecular understanding of the action mechanism of Ascophyllum nodosum extracts on plants. J. Appl. Phycol. 2020, 32, 573–597. [Google Scholar] [CrossRef]
- Mattner, S.; Milinkovic, M.; Arioli, T. Increased growth response of strawberry roots to a commercial extract from Durvillaea potatorum and Ascophyllum nodosum. J. Appl. Phycol. 2018, 30, 2943–2951. [Google Scholar] [CrossRef] [PubMed]
- Ali, O.; Ramsubhag, A.; Jayaraman, J. Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS ONE 2019, 14, e0216710. [Google Scholar] [CrossRef]
- Salvi, L.; Brunetti, C.; Cataldo, E.; Niccolai, A.; Centritto, M.; Ferrini, F.; Mattii, G.B. Effects of Ascophyllum nodosum extract on Vitis vinifera: Consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol. Biochem. 2019, 139, 21–32. [Google Scholar] [CrossRef]
- Joshi-Paneri, J.; Chamberland, G.; Donnelly, D. Efects of Chelidonium majus and Ascophyllum nodosum extracts on growth and photosynthesis of soybean. Acta Agrobot. 2020, 73, 7313. [Google Scholar] [CrossRef]
- Hussain, H.I.; Kasinadhuni, N.; Arioli, T. The effect of seaweed extract on tomato plant growth, productivity and soil. J. Appl. Phycol. 2021, 33, 1305–1314. [Google Scholar] [CrossRef]
- Ali, O.; Ramsubhag, A.; Ramnarine, S.D.B.J.; Jayaraman, J. Transcriptomic changes induced by applications of a commercial extract of Ascophyllum nodosum on tomato plants. Sci. Rep. 2022, 12, 8042. [Google Scholar] [CrossRef] [PubMed]
- Ali, N.; Ramkissoon, A.; Ramsubhag, A.; Jayaraj, J. Ascophyllum extract application causes reduction of disease levels in field tomatoes grown in a tropical environment. Crop Prot. 2016, 83, 67–75. [Google Scholar] [CrossRef]
Treatments | Tomato | Eggplant | ||||||
---|---|---|---|---|---|---|---|---|
Leaf Length (cm) | Leaf Fresh Mass (g) | Leaf Dry Mass (g) | Leaf Area (cm²) | Leaf Length (cm) | Leaf Fresh Mass (g) | Leaf Dry Mass (g) | Leaf Area (cm²) | |
Experiment 1 | ||||||||
Control | 2.00 c | 0.16 b | 0.020 c | 3.15 b | 1.62 c | 0.13 c | 0.026 c | 8.09 c |
0.1% soil | 3.22 a | 0.26 a | 0.034 b | 4.56 a | 1.74 c | 0.15 c | 0.027 c | 8.54 bc |
0.2% soil | 3.08 ab | 0.27 a | 0.038 a | 4.79 a | 2.06 bc | 0.20 b | 0.035 bc | 10.65 bc |
0.3% soil | 3.10 ab | 0.28 a | 0.039 a | 5.10 a | 2.38 b | 0.26 a | 0.041 b | 12.00 b |
0.2% foliar | 2.84 b | 0.28 a | 0.039 a | 4.96 a | 3.04 a | 0.29 a | 0.056 a | 15.68 a |
CV (%) | 5.59 | 13.26 | 16.88 | 12.66 | 8.26 | 13.39 | 9.26 | 16.38 |
Experiment 2 | ||||||||
Control | 2.45 b | 0.21 b | 0.032 b | 5.14 d | 2.73 c | 0.27 c | 0.026 b | 7.94 b |
0.1% soil | 2.98 a | 0.29 a | 0.036 b | 6.20 cd | 3.03 b | 0.31 bc | 0.028 b | 8.71 b |
0.2% soil | 3.20 a | 0.33 a | 0.049 a | 7.04 bc | 3.60 a | 0.40 a | 0.045 a | 12.29 a |
0.3% soil | 3.38 a | 0.36 a | 0.049 a | 9.04 a | 3.50 a | 0.38 ab | 0.048 a | 13.74 a |
0.2% foliar | 3.23 a | 0.35 a | 0.046 a | 8.27 ab | 3.60 a | 0.43 a | 0.044 a | 13.62 a |
CV (%) | 6.91 | 10.32 | 7.70 | 9.12 | 9.04 | 10.49 | 11.31 | 9.36 |
Treatments | Tomato | Eggplant | ||||||
---|---|---|---|---|---|---|---|---|
Stem Height (cm) | Stem Diameter (mm) | Stem Fresh Mass (g) | Stem Dry Mass (g) | Stem Height (cm) | Stem Diameter (mm) | Stem Fresh Mass (g) | Stem Dry Mass (g) | |
Experiment 1 | ||||||||
Control | 3.56 c | 1.53 c | 0.10 c | 0.006 b | 2.52 d | 1.48 b | 0.11 c | 0.011 a |
0.1% soil | 4.78 b | 1.82 bc | 0.15 b | 0.014 a | 2.9 cd | 1.55 b | 0.12 bc | 0.012 a |
0.2% soil | 4.98 ab | 2.10 ab | 0.15 b | 0.016 a | 3.34 b | 1.57 ab | 0.13 b | 0.012 a |
0.3% soil | 5.30 a | 2.19 a | 0.18 a | 0.019 a | 2.98 bc | 1.53 b | 0.13 b | 0.012 a |
0.2% foliar | 4.76 b | 1.88 b | 0.17 ab | 0.017 a | 3.5 a | 1.71 a | 0.17a | 0.015 a |
CV (%) | 5.56 | 7.95 | 12.91 | 19.01 | 6.51 | 5.12 | 12.03 | 14.63 |
Experiment 2 | ||||||||
Control | 4.13 c | 1.53 b | 0.12 b | 0.013 b | 2.25 c | 1.18 c | 0.12 c | 0.008 b |
0.1% soil | 4.75 b | 1.80 ab | 0.14 b | 0.016 b | 3.30 b | 1.19 bc | 0.14 bc | 0.011 b |
0.2% soil | 5.23 a | 1.96 ab | 0.19 a | 0.023 a | 3.80 a | 1.21 a | 0.22 a | 0.021 a |
0.3% soil | 5.45 a | 1.95 ab | 0.20 a | 0.023 a | 3.69 a | 1.20 a | 0.19 ab | 0.019 a |
0.2% foliar | 5.20 a | 2.20 a | 0.20 a | 0.023 a | 3.70 a | 1.20 a | 0.20 ab | 0.019 a |
CV (%) | 4.77 | 12.02 | 12.00 | 11.98 | 5.40 | 4.69 | 10.39 | 19.99 |
Treatments | Tomato | Eggplant | ||||
---|---|---|---|---|---|---|
Root Fresh Mass (g) | Root Dry Mass (g) | Root Length (cm) | Root Fresh Mass (g) | Root Dry Mass (g) | Root Length (cm) | |
Experiment 1 | ||||||
Control | 0.12 b | 0.007 b | 5.98 b | 0.17 c | 0.018 c | 8.38 a |
0.1% soil | 0.19 a | 0.014 a | 8.42 a | 0.20 bc | 0.023 b | 9.00 a |
0.2% soil | 0.20 a | 0.016 a | 9.22 a | 0.22 bc | 0.023 b | 9.06 a |
0.3% soil | 0.22 a | 0.018 a | 10.10 a | 0.26 b | 0.024 b | 9.00 a |
0.2% foliar | 0.21 a | 0.017 a | 8.88 a | 0.36 a | 0.032 a | 9.50 a |
CV (%) | 12.97 | 18.18 | 12.29 | 8.63 | 13.49 | 7.73 |
Experiment 2 | ||||||
Control | 0.16 b | 0.017 c | 8.63 b | 0.10 b | 0.010 b | 6.10 b |
0.1% soil | 0.24 a | 0.022 b | 9.25 b | 0.17 b | 0.014 b | 8.43 a |
0.2% soil | 0.29 a | 0.028 a | 11.88 a | 0.36 a | 0.027 a | 9.33 a |
0.3% soil | 0.26 a | 0.021 b | 10.75 ab | 0.31 a | 0.024 a | 9.05 a |
0.2% foliar | 0.27 a | 0.024 b | 10.30 ab | 0.31 a | 0.026 a | 8.78 a |
CV (%) | 18.36 | 17.50 | 9.70 | 21.60 | 14.05 | 8.12 |
Leaf Length | Leaf Fresh Mass | Leaf Dry Mass | Leaf Area | Stem Height | Stem Diameter | Stem Fresh Mass | Stem Dry Mass | Root Fresh Mass | Root Dry Mass | Root Length | Chlorophyll | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaf length | 1.00 | - | - | - | - | - | - | - | - | - | - | - |
Leaf fresh mass | 0.76 | 1.00 | - | - | - | - | - | - | - | - | - | - |
Leaf dry mass | 0.76 | 0.74 | 1.00 | - | - | - | - | - | - | - | - | - |
Leaf area | 0.76 | 0.72 | 0.77 | 1.00 | - | - | - | - | - | - | - | - |
Stem height | 0.83 | 0.88 | 0.78 | 0.79 | 1.00 | - | - | - | - | - | - | - |
Stem diameter | 0.66 | 0.67 | 0.87 | 0.62 | 0.77 | 1.00 | - | - | - | - | - | - |
Stem fresh mass | 0.72 | 0.75 | 0.76 | 0.71 | 0.83 | 0.70 | 1.00 | - | - | - | - | - |
Stem dry mass | 0.68 | 0.76 | 0.87 | 0.66 | 0.81 | 0.86 | 0.83 | 1.00 | - | - | - | - |
Root fresh mass | 0.62 | 0.63 | 0.37 | 0.54 | 0.69 | 0.37 | 0.55 | 0.46 | 1.00 | - | - | - |
Root dry mass | 0.43 | 0.45 | 0.41 | 0.15 | 0.57 | 0.55 | 0.59 | 0.55 | 0.57 | 1.00 | - | - |
Root length | 0.56 | 0.59 | 0.62 | 0.44 | 0.69 | 0.66 | 0.70 | 0.70 | 0.61 | 0.67 | 1.00 | - |
Chlorophyll | 0.63 | 0.77 | 0.55 | 0.64 | 0.75 | 0.41 | 0.60 | 0.62 | 0.62 | 0.34 | 0.41 | 1.00 |
Leaf Length | Leaf Fresh Mass | Leaf Dry Mass | Leaf area | Stem Height | Stem Diameter | Stem Fresh Mass | Stem Dry Mass | Root Fresh Mass | Root Dry Mass | Root Length | Chlorophyll | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leaf length | 1.00 | - | - | - | - | - | - | - | - | - | - | - |
Leaf fresh mass | 0.75 | 1.00 | - | - | - | - | - | - | - | - | - | - |
Leaf dry mass | 0.62 | 0.72 | 1.00 | - | - | - | - | - | - | - | - | - |
Leaf area | 0.80 | 0.76 | 0.85 | 1.00 | - | - | - | - | - | - | - | - |
Stem height | 0.72 | 0.67 | 0.68 | 0.67 | 1.00 | - | - | - | - | - | - | - |
Stem diameter | 0.39 | 0.53 | 0.36 | 0.32 | 0.69 | 1.00 | - | - | - | - | - | - |
Stem fresh mass | 0.79 | 0.73 | 0.72 | 0.74 | 0.76 | 0.47 | 1.00 | - | - | - | - | - |
Stem dry mass | 0.85 | 0.65 | 0.67 | 0.75 | 0.68 | 0.34 | 0.72 | 1.00 | - | - | - | - |
Root fresh mass | 0.69 | 0.75 | 0.83 | 0.75 | 0.75 | 0.47 | 0.82 | 0.76 | 1.00 | - | - | - |
Root dry mass | 0.69 | 0.66 | 0.75 | 0.75 | 0.69 | 0.39 | 0.81 | 0.70 | 0.92 | 1.00 | - | - |
Root length | 0.70 | 0.61 | 0.70 | 0.63 | 0.83 | 0.41 | 0.64 | 0.63 | 0.75 | 0.74 | 1.00 | - |
Chlorophyll | 0.68 | 0.77 | 0.67 | 0.64 | 0.76 | 0.66 | 0.66 | 0.68 | 0.73 | 0.67 | 0.72 | 1.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa e Vila, V.; Piedade, S.M.D.S.; Bouix, C.P.; Rezende, R.; Wenneck, G.S.; Terassi, D.d.S.; Matumoto-Pintro, P.T.; Marques, P.A.A. Use of a Biostimulant Based on Seaweed Extract as a Sustainable Input to Enhance the Quality of Solanaceous Seedlings. Horticulturae 2024, 10, 642. https://doi.org/10.3390/horticulturae10060642
Villa e Vila V, Piedade SMDS, Bouix CP, Rezende R, Wenneck GS, Terassi DdS, Matumoto-Pintro PT, Marques PAA. Use of a Biostimulant Based on Seaweed Extract as a Sustainable Input to Enhance the Quality of Solanaceous Seedlings. Horticulturae. 2024; 10(6):642. https://doi.org/10.3390/horticulturae10060642
Chicago/Turabian StyleVilla e Vila, Vinícius, Sônia Maria De Stefano Piedade, Christian Pascal Bouix, Roberto Rezende, Gustavo Soares Wenneck, Daniele de Souza Terassi, Paula Toshimi Matumoto-Pintro, and Patricia Angélica Alves Marques. 2024. "Use of a Biostimulant Based on Seaweed Extract as a Sustainable Input to Enhance the Quality of Solanaceous Seedlings" Horticulturae 10, no. 6: 642. https://doi.org/10.3390/horticulturae10060642
APA StyleVilla e Vila, V., Piedade, S. M. D. S., Bouix, C. P., Rezende, R., Wenneck, G. S., Terassi, D. d. S., Matumoto-Pintro, P. T., & Marques, P. A. A. (2024). Use of a Biostimulant Based on Seaweed Extract as a Sustainable Input to Enhance the Quality of Solanaceous Seedlings. Horticulturae, 10(6), 642. https://doi.org/10.3390/horticulturae10060642