The Synergetic Effect of Light Spectra and Selenium Supplementation on Eruca sativa Mill. Growth and Physiological and Metabolic Responses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Experimental Design
2.2.1. Illumination
2.2.2. Selenium
2.2.3. Final Treatments
2.3. Plant Measurements
2.3.1. Leaf Gas Exchange and Chlorophyll a Fluorescence
2.3.2. Biochemical Assays
2.3.3. Growth and Selenium Quantification
2.3.4. Statistical Analysis
3. Results
4. Discussion
4.1. Light Spectrum Variations Elicit Differential Responses in Arugula Plants
4.2. Selenium Adjusts Arugula Plant Responses to the Light Conditions in Which They Are Grown
4.3. Selenium Accumulation in Arugula Plants Increased with Increasing Se Doses Applied
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shafiq, I.; Hussain, S.; Ali Raza, M.; Iqbal, N.; Asghar, M.A.; Ali, R.A.Z.A.; Fan, Y.F.; Mumtaz, M.; Shoaib, M.; Ansar, M.; et al. Crop photosynthetic response to light quality and light intensity. J. Integr. Agric. 2021, 20, 4–23. [Google Scholar] [CrossRef]
- Brito, C.; Ferreira, H.; Dinis, L.-T.; Trindade, H.; Marques, D.; Correia, C.M.; Moutinho-Pereira, J. Different LED light intensity and quality change perennial ryegrass (Lolium perenne L.) physiological and growth responses and water and energy consumption. Front. Plant Sci. 2023, 14, 1160100. [Google Scholar] [CrossRef] [PubMed]
- Olle, M.; Viršile, A. The effects of light-emitting diode lighting on greenhouse plant growth and quality. Food Sci. 2013, 22, 223–234. [Google Scholar] [CrossRef]
- Singh, D.; Basu, C.; Meinhardt-Wollweber, M.; Bernhard Roth, B. LEDs for energy efficient greenhouse lighting. renewable and sustainable energy reviews. Renew. Sustain. Energy Rev. 2015, 49, 139–147. [Google Scholar] [CrossRef]
- Lazzarin, M.; Meissenburg, D.; Meijer, D.; van Leperen, W.; Marcelis, L.F.M.; Kappers, I.F.; van der Krol, A.r.; van Loon, J.J.A.; Dicke, M. LEDs make it resilient: Effects on plant growth and defense. Trends Plant Sci. 2021, 26, 496–508. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E. Plant Physiology, 4th ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2006. [Google Scholar]
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1971, 9, 191–216. [Google Scholar] [CrossRef]
- Ajdanian, L.; Babaei, M.; Aroiee, H. The growth and development of cress (Lepidium sativum) affected by blue and red light. Heliyon 2019, 5, e02109. [Google Scholar] [CrossRef] [PubMed]
- Camejo, D.; Frutos, A.; Mestre, T.C.; Piñero, M.C.; Rivero, R.M.; Martínez, V. Artificial light impacts the physical and nutritional quality of lettuce plants. Hortic. Environ. Biotechnol. 2020, 61, 69–82. [Google Scholar] [CrossRef]
- Li, Y.; Xin, G.; Liu, C.; Shi, Q.; Yang, F.; Wei, M. Effects of red and blue light on leaf anatomy, CO2 assimilation and the photosynthetic electron transport capacity of sweet pepper (Capsicum annuum L.) seedlings. BMC Plant Biol. 2020, 20, 318. [Google Scholar] [CrossRef]
- Li, J.; Li, G.; Wang, H.; Wang Deng, X. Phytochrome signaling mechanisms. Arab. Book 2011, 9, e0148. [Google Scholar] [CrossRef]
- Wang, Q.; Lin, C. Mechanisms of Cryptochrome-Mediated Photoresponses in Plants. Annu. Rev. Plant Biol. 2020, 71, 103–129. [Google Scholar] [CrossRef] [PubMed]
- Natasha Shahid, M.; Niazi, N.K.; Khalid, S.; Murtaza, B.; Bibi, I.; Rashid, M.I. A critical review of selenium biogeochemical behavior in soil-plant system with an inference to human health. Environ. Pollut. 2018, 234, 915–934. [Google Scholar] [CrossRef] [PubMed]
- Schiavon, M.; Nardi, S.; dalla Vecchia, F.; Ertani, A. Selenium biofortification in the 21st century: Status and challenges for healthy human nutrition. Plant Soil 2020, 453, 245–270. [Google Scholar] [CrossRef] [PubMed]
- Zafeiriou, I.; Gasparatos, D.; Ioannou, D.; Massas, I. Selenium uptake by lettuce plants and se distribution in soil chemical phases affected by the application rate and the presence of a seaweed extract-based biostimulant. Soil Syst. 2022, 6, 56. [Google Scholar] [CrossRef]
- Yang, H.; Yang, X.; Ning, Z.; Kwon, S.Y.; Li, M.-L.; Tack, F.M.G.; Kwon, E.E.; Rinklebe, J.; Yin, R. The beneficial and hazardous effects of selenium on the health of the soil-plant-human system: An overview. J. Hazard. Mater. 2022, 422, 126876. [Google Scholar] [CrossRef] [PubMed]
- IM-Institute of Medicine. Dietary Reference Intakes: Vitamin C, Vitamin E, Selenium, and Carotenoids; National Academy Press: Washington, DC, USA, 2000. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, S. An overview of selenium uptake, metabolism, and toxicity in plants. Front. Plant Sci. 2017, 7, 2074. [Google Scholar] [CrossRef] [PubMed]
- Elkelish, A.A.; Soliman, M.H.; Alhaithloul, H.A.; El-Esawi, M.A. Selenium protects wheat seedlings against salt stress-mediated oxidative damage by up-regulating antioxidants and osmolytes metabolism. Plant Physiol. Biochem. 2019, 137, 144–153. [Google Scholar] [CrossRef] [PubMed]
- Józwiak, W.; Politycka, B. Effect of selenium on alleviating oxidative stress caused by a water deficit in cucumber roots. Plants 2019, 8, 217. [Google Scholar] [CrossRef] [PubMed]
- Ghanbari, F.; Bag-Nazari, M.; Azizi, A. Exogenous application of selenium and nano-selenium alleviates salt stress and improves secondary metabolites in lemon verbena under salinity stress. Sci. Rep. 2023, 13, 5352. [Google Scholar] [CrossRef]
- Alyemeni, M.N.; Ahanger, M.A.; Wijaya, L.; Alam, P.; Bhardwaj, R.; Ahmad, P. Selenium mitigates cadmium-induced oxidative stress in tomato (Solanum lycopersicum L.) plants by modulating chlorophyll fluorescence, osmolyte accumulation, and antioxidant system. Protoplasma 2018, 255, 459–469. [Google Scholar] [CrossRef]
- Alves, L.R.; Rossatto, D.R.; Rossi, M.L.; Martinelli, A.P.; Gratão, P.L. Selenium improves photosynthesis and induces ultrastructural changes but does not alleviate cadmium-stress damages in tomato plants. Protoplasma 2020, 257, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Raza, A.; Hawrylak-Nowak, B.; Matraszek-Gawron, R.; Mahmud, J.A.; Nahar, K.; Fujita, M. Selenium in plants: Boon or bane? Environ. Exp. Bot. 2020, 178, 104170. [Google Scholar] [CrossRef]
- Santiago, F.E.M.; Silva, M.L.S.; Cardoso, A.A.S.; Duan, Y.; Guilherme, L.R.G.; Liu, J.; Li, L. Biochemical basis of differential selenium tolerance in arugula (Eruca sativa Mill.) and lettuce (Lactuca sativa L.). Plant Physiol. Biochem. 2020, 157, 328–338. [Google Scholar] [CrossRef] [PubMed]
- Ragályi, P.; Takács, T.; Füzy, A.; Uzinger, N.; Dobosy, P.; Záray, G.; Szűcs-Vásárhelyi, N.; Rékási, M. Effect of Se-enriched irrigation water on the biomass production and elemental composition of green bean, cabbage, potato and tomato. Plants 2021, 10, 2086. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Sanchez, A.; Gil-Izquierdo, A.; Gil, M.I.; Ferreres, F.A. Comparative study of flavonoid compounds, vitamin C, and antioxidant properties of baby leaf Brassicaceae species. J. Agric. Food Chem. 2008, 56, 2330–2340. [Google Scholar] [CrossRef]
- Manchali, S.; Murthy, K.N.C.; Patil, B.S. Crucial facts about health benefits of popular cruciferous vegetables. J. Funct. Foods 2012, 4, 94–106. [Google Scholar] [CrossRef]
- USDA—United States Department of Agriculture. Agriculture Research Service. 2023. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/169387/nutrients (accessed on 12 September 2023).
- Dall’Acqua, S.; Ertani, A.; Pilon-Smits, E.; Fabrega-Prats, M.; Schiavon, M. Selenium biofortification differentially affects sulfur metabolism and accumulation of phytochemicals in two Rocket species (Eruca sativa Mill. and Diplotaxis tenuifolia) grown in hydroponics. Plants 2019, 8, 68. [Google Scholar] [CrossRef] [PubMed]
- Ying, Q.; Jones-Baumgardt, C.; Zheng, Y.; Bozzo, G. The Proportion of Blue Light from Light-emitting Diodes Alters Microgreen Phytochemical Profiles in a Species-specific Manner. HortScience 2021, 56, 13–20. [Google Scholar] [CrossRef]
- von Caemmerer, S.; Farquhar, G.D. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. Planta 1981, 153, 376–387. [Google Scholar] [CrossRef]
- Bilger, W.; Schreiber, U. Energy-dependent quenching of dark-level chlorophyll fluorescence in intact leaves. Photosyn. Res. 1986, 10, 303–308. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Arnon, D.I. Copper enzymes in isolated chloroplasts: Polyphenol oxydase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Sesták, Z.; Castky, J.; Jarvis, P.G. Plant Photosynthetic Production. Manual of Methods; Dr. W. Junk Publishers: The Hagge, The Netherlands, 1971; 818p. [Google Scholar]
- Lichtenthaler, H.K. Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar] [CrossRef]
- Shahidi, F.; Naczk, M. Food Phenolics: Sources, Chemistry, Effects, Applications; Technomic Publishing Co. Inc.: Lancaster, PA, USA, 1995; 331p. [Google Scholar]
- Jia, Z.; Tang, M.; Wu, J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Mateos, R.; Espartero, J.L.; Trujilho, M.; Ríos, J.J.; León-Camacho, M.; Alcudia, F. Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J. Agric. Food Chem. 2001, 49, 2185–2192. [Google Scholar] [CrossRef]
- Ozgen, M.; Reese, R.N.; Tulio, A.Z.; Scheerens, J.C.; Miller, A.R. Modified 2, 2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2,2′-diphenyl-1-picrylhydrazyl (DPPH) methods. J. Agric. Food Chem. 2006, 54, 1151–1157. [Google Scholar] [CrossRef]
- Lee, J. Determination of total monomeric anthocyanin pigment content of fruit juices, Beverages, Natural colorants, and wines by the pH differential method: Collaborative study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Emerich, D.W.; Sánchez-Díaz, M. Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol. Plantaru 1992, 84, 55–60. [Google Scholar] [CrossRef]
- Reaner, D.C.; Veillon, C. Elimination of perchloric acid in digestion of biological fluids for fluorometric determination of selenium. Anal. Chem. 1983, 55, 1605–1606. [Google Scholar] [CrossRef]
- Costa-Silva, F.; Maia, M.; Matos, C.C.; Calçada, E.; Barros, A.I.R.N.A.; Nunes, F.M. Selenium content of Portuguese unifloral honeys. J. Food Compos. Anal. 2011, 24, 351–355. [Google Scholar] [CrossRef]
- Flexas, J.; Medrano, H. Drought-inhibition of photosynthesis in C3 plants: Stomatal and non-stomatal limitations revisited. Ann. Bot. 2002, 89, 183–189. [Google Scholar] [CrossRef]
- Baker, N.R. Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annu. Rev. Plant Biol. 2008, 59, 89–113. [Google Scholar] [CrossRef]
- Sharma, A.; Kumar, V.; Shahzad, B.; Ramakrishnan, M.; Singh Sidhu, G.P.; Bali, A.S.; Handa, N.; Kapoor, D.; Yadav, P.; Khanna, K.; et al. Photosynthetic Response of Plants Under Different Abiotic Stresses: A Review. J. Plant Growth Regul. 2020, 39, 509–531. [Google Scholar] [CrossRef]
- Galmés, J.; Abadía, A.; Cifre, J.; Medrano, H.; Flexas, J. Photoprotection processes under water stress and recovery in Mediterranean plants with different growth forms and leaf habits. Physiol. Plant. 2007, 130, 495–510. [Google Scholar] [CrossRef]
- Trifunović-Momčilov, M.; Milošević, S.; Marković, M.; Đurić, M.; Jevremović, S.; Dragićević, I.Č.; Subotić, A.R. Changes in Photosynthetic Pigments Content in Non-Transformed and AtCKX Transgenic Centaury (Centaurium erythraea Rafn) Shoots Grown under Salt Stress In Vitro. Agronomy 2021, 11, 2056. [Google Scholar] [CrossRef]
- Liu, J.; van Iersel, M.W. Photosynthetic physiology of blue, green, and red light: Light intensity effects and underlying mechanisms. Front. Plant Sci. 2021, 12, 619987. [Google Scholar] [CrossRef]
- Brodersen, C.R.; Vogelmann, T.C. Do changes in light direction affect absorption profiles in leaves? Funct. Plant Biol. 2010, 37, 403–412. [Google Scholar] [CrossRef]
- Kadomura-Ishikawa, Y.; Miyawaka, K.; Noji, S.; Takahashi, A. Phototropin 2 is involved in blue light-induced anthocyanin accumulation in Fragaria x ananassa fruits. J. Plant Res. 2013, 126, 847–857. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; An, H.; Zhang, X.; Zhou, B. Integrated transcriptome and metabolome analysis reveals the anthocyanin biosynthesis mechanisms in blueberry (Vaccinium corymbosum L.) leaves under different light qualities. Front. Plant Sci. 2022, 13, 1073332. [Google Scholar] [CrossRef]
- Simkin, A.J.; Kapoor, L.; Doss, C.G.P.; Hofmann, T.A.; Lawson, T.; Ramamoorthy, S. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynth. Res. 2022, 152, 23–42. [Google Scholar] [CrossRef]
- Kumar, K.; Debnath, P.; Singh, S.; Kumar, N. An overview of plant phenolics and their involvement in Abiotic Stress Tolerance. Stresses 2023, 3, 570–585. [Google Scholar] [CrossRef]
- Lanza, M.G.D.B.; dos Reis, A.R. Roles of selenium in mineral plant nutrition: ROS scavenging responses against abiotic stresses. Plant Physiol Biochem. 2021, 164, 27–43. [Google Scholar] [CrossRef]
- Seppänen, M.; Turakainen, M.; Hartikainen, H. Selenium effects on oxidative stress in potato. Plant Sci. 2003, 165, 311–319. [Google Scholar] [CrossRef]
- Dong, J.Z.; Wang, Y.; Wang, S.H.; Yin, L.P.; Xu, G.J.; Zheng, C.; Lei, C.; Zhang, M.Z. Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. J. Sci. Food Agric. 2013, 93, 310–315. [Google Scholar] [CrossRef]
- Aghaie, P.; Forghani, A.H. The effect of selenium concentration on growth and stress markers in two Iranian strains of Dunaliella salina Teodoresco. S. Afr. J. Bot. 2023, 159, 272–279. [Google Scholar] [CrossRef]
- Feng, R.; Wei, C.; Tu, S. The roles of selenium in protecting plants against abiotic stresses. Environ. Exp. Bot. 2013, 87, 58–68. [Google Scholar] [CrossRef]
A | gs | Ci/Ca | A/gs | |
---|---|---|---|---|
Light | ||||
W | 6.58 ± 1.06 a | 155.3 ± 44.2 | 0.775 ± 0.051 b | 45.2 ± 12.1 a |
RB | 4.41 ± 1.23 b | 164.6 ± 41.2 | 0.852 ± 0.036 a | 27.6 ± 7.8 b |
[Se] | ||||
[0] | 5.72 ± 1.87 | 174.4 ± 33.7 | 0.828 ± 0.048 | 33.2 ± 2.8 |
[0.3] | 5.42 ± 1.14 | 138.1 ± 37.1 | 0.794 ± 0.048 | 41.1 ± 3.0 |
[0.6] | 5.43 ± 1.71 | 163.7 ± 50.1 | 0.818 ± 0.075 | 35.3 ± 2.9 |
Light × [Se] | ||||
W [0] | 6.95 ± 1.38 | 189.6 ± 34.8 | 0.807 ± 0.046 | 37.9 ± 10.4 |
W [0.3] | 6.18 ± 0.54 | 128.2 ± 32.4 | 0.757 ± 0.037 | 50.0 ± 9.6 |
W [0.6] | 6.55 ± 1.07 | 143.7 ± 43.6 | 0.760 ± 0.057 | 48.5 ± 13.8 |
RB [0] | 4.48 ± 1.44 | 159.1 ± 27.1 | 0.849 ± 0.043 | 28.4 ± 9.0 |
RB [0.3] | 4.65 ± 1.08 | 148.0 ± 42.5 | 0.832 ± 0.017 | 32.2 ± 4.3 |
RB [0.6] | 4.09 ± 1.31 | 187.7 ± 50.9 | 0.875 ± 0.032 | 22.2 ± 6.6 |
Significance | ||||
Light | *** | ns | *** | *** |
[Se] | ns | ns | ns | ns |
Light × [Se] | ns | ns | ns | ns |
Fv/Fm | ΦPSII | qP | Fv’/Fm’ | ETR | NPQ | |
---|---|---|---|---|---|---|
Light | ||||||
W | 0.803 ± 0.031 a | 0.290 ± 0.042 a | 0.505 ± 0.086 | 0.581 ± 0.077 a | 36.6 ± 5.3 a | 1.74 ± 0.69 b |
RB | 0.738 ± 0.048 b | 0.219 ± 0.069 b | 0.561 ± 0.091 | 0.389 ± 0.105 b | 27.6 ± 8.7 b | 3.13 ± 0.99 a |
[Se] | ||||||
[0] | 0.751 ± 0.053 | 0.225 ± 0.079 | 0.510 ± 0.079 | 0.456 ± 0.190 | 28.4 ± 10.1 | 2.60 ± 1.62 |
[0.3] | 0.776 ± 0.059 | 0.263 ± 0.071 | 0.539 ± 0.113 | 0.492 ± 0.121 | 33.1 ± 9.1 | 2.51 ± 0.97 |
[0.6] | 0.784 ± 0.040 | 0.276 ± 0.040 | 0.551 ± 0.083 | 0.506 ± 0.07 | 34.8 ± 5.1 | 2.20 ± 0.45 |
Light × [Se] | ||||||
W [0] | 0.789 ± 0.044 | 0.294 ± 0.030 a | 0.483 ± 0.087 | 0.620 ± 0.102 a | 37.0 ± 3.8 a | 1.33 ± 0.93 c |
W [0.3] | 0.813 ± 0.030 | 0.302 ± 0.049 a | 0.538 ± 0.101 | 0.567 ± 0.078 ab | 38.0 ± 6.1 a | 1.91 ± 0.60 bc |
W [0.6] | 0.807 ± 0.016 | 0.276 ± 0.051 a | 0.495 ± 0.076 | 0.555 ± 0.039 ab | 34.7 ± 6.4 a | 1.99 ± 0.34 bc |
R:B [0] | 0.713 ± 0.029 | 0.157 ± 0.039 b | 0.537 ± 0.069 | 0.291 ± 0.061 c | 19.8 ± 4.9 b | 3.87 ± 1.00 a |
R:B [0.3] | 0.739 ± 0.060 | 0.224 ± 0.072 ab | 0.541 ± 0.136 | 0.417 ± 0.113 bc | 28.2 ± 9.1 ab | 3.10 ± 0.94 ab |
R:B [0.6] | 0.762 ± 0.046 | 0.276 ± 0.032 a | 0.606 ± 0.044 | 0.457 ± 0.059 b | 34.8 ± 4.1 a | 2.41 ± 0.49 abc |
Significance | ||||||
Light | *** | *** | ns | *** | *** | *** |
[Se] | ns | ns | ns | ns | ns | ns |
Light × [Se] | ns | * | ns | *** | * | * |
Chl(a+b) | Chla/b | Car | Chl(a+b)/Car | |
---|---|---|---|---|
Light | ||||
W | 0.854 ± 0.126 a | 3.60 ± 0.24 | 0.151 ± 0.023 a | 5.74 ± 0.86 a |
RB | 0.629 ± 0.120 b | 3.36 ± 0.61 | 0.124 ± 0.024 b | 5.06 ± 0.42 b |
[Se] | ||||
[0] | 0.617 ± 0.138 b | 3.50 ± 0.38 | 0.113 ± 0.019 b | 5.40 ± 0.56 |
[0.3] | 0.797 ± 0.196 a | 3.31 ± 0.60 | 0.144 ± 0.024 a | 5.55 ± 1.14 |
[0.6] | 0.812 ± 0.089 a | 3.64 ± 0.39 | 0.155 ± 0.018 a | 5.24 ± 0.40 |
Light × [Se] | ||||
W [0] | 0.733 ± 0.060 bc | 3.19 ± 0.10 ab | 0.128 ± 0.012 | 5.75 ± 0.23 ab |
W [0.3] | 0.975 ± 0.088 a | 3.07 ± 0.85 b | 0.160 ± 0.022 | 6.23 ± 1.34 a |
W [0.6] | 0.857 ± 0.095 ab | 3.83 ± 0.49 a | 0.164 ± 0.016 | 5.22 ± 0.57 ab |
R:B [0] | 0.502 ± 0.083 d | 3.81 ± 0.29 ab | 0.100 ± 0.014 | 5.05 ± 0.61 ab |
R:B [0.3] | 0.618 ± 0.031 cd | 3.54 ± 0.17 ab | 0.128 ± 0.015 | 4.87 ± 0.42 b |
R:B [0.6] | 0.767 ± 0.060 b | 3.44 ± 0.08 ab | 0.146 ± 0.014 | 5.26 ± 0.15 ab |
Significance | ||||
Light | *** | ns | *** | ** |
[Se] | *** | ns | *** | ns |
Light × [Se] | ** | * | ns | * |
TPC | Anth | Flavonoids | O-D | TAC | |
---|---|---|---|---|---|
Light | |||||
W | 0.701 ± 0.277 a | 78.6 ± 10.6 a | 0.784 ± 0.148 a | 4.35 ± 1.00 | 5.83 ± 1.10 |
RB | 0.441 ± 0.243 b | 52.5 ± 25.3 b | 0.681 ± 0.085 b | 4.16 ± 0.55 | 5.18 ± 1.00 |
[Se] | |||||
[0] | 0.369 ± 0.226 b | 46.6 ± 23.5 c | 0.671 ± 0.083 | 3.54 ± 0.27 b | 4.84 ± 0.62 b |
[0.3] | 0.503 ± 0.216 b | 67.0 ± 19.7 b | 0.712 ± 0.079 | 4.14 ± 0.47 b | 5.33 ± 1.18 ab |
[0.6] | 0.841 ± 0.197 a | 83.0 ± 88.7 a | 0.817 ± 0.171 | 5.08 ± 0.62 a | 6.34 ± 0.86 a |
Light × [Se] | |||||
W [0] | 0.480 ± 0.299 | 67.4 ± 5.1 ab | 0.728 ± 0.038 | 3.36 ± 0.17 | 4.66 ± 0.81 |
W [0.3] | 0.660 ± 0.190 | 81.0 ± 8.2 a | 0.700 ± 0.120 | 4.26 ± 0.68 | 6.09 ± 0.63 |
W [0.6] | 0.965 ± 0.051 | 87.2 ± 7.1 a | 0.926 ± 0.164 | 5.42 ± 0.58 | 6.74 ± 0.59 |
R:B [0] | 0.258 ± 0.040 | 25.8 ± 7.7 c | 0.613 ± 0.077 | 3.73 ± 0.23 | 5.02 ± 0.47 |
R:B [0.3] | 0.347 ± 0.090 | 53.1 ± 18.0 bc | 0.724 ± 0.041 | 4.01 ± 0.21 | 4.58 ± 1.17 |
R:B [0.6] | 0.717 ± 0.220 | 78.7 ± 9.5 ab | 0.708 ± 0.103 | 4.74 ± 0.54 | 5.93 ± 1.00 |
Significance | |||||
Light | ** | *** | * | ns | ns |
Se | ** | *** | ns | *** | * |
Light × [Se] | ns | * | ns | ns | ns |
TSP | TSS | |
---|---|---|
Light | ||
W | 10.2 ± 0.76 | 7.10 ± 1.60 |
RB | 9.91 ± 1.08 | 7.62 ± 1.14 |
[Se] | ||
[0] | 9.24 ± 0.82 b | 6.23 ± 0.96 b |
[0.3] | 10.2 ± 0.65 a | 7.23 ± 1.10 b |
[0.6] | 10.7 ± 0.69 a | 8.62 ± 1.02 a |
Light × [Se] | ||
W [0] | 9.75 ± 0.70 | 5.48 ± 0.47 |
W [0.3] | 10.2 ± 0.48 | 7.12 ± 1.18 |
W [0.6] | 10.8 ± 0.79 | 8.71 ± 1.06 |
R:B [0] | 8.72 ± 0.60 | 6.98 ± 0.67 |
R:B [0.3] | 10.2 ± 0.47 | 7.33 ± 1.12 |
R:B [0.6] | 10.8 ± 0.79 | 8.54 ± 1.10 |
Significance | ||
Light | ns | ns |
[Se] | ** | ** |
Light × [Se] | ns | ns |
A-Biomass (g Plant−1FW) | Se (mg kg−1DW) | Se (µg 100 g−1FW) | |
---|---|---|---|
Light | |||
W | 5.77 ± 0.28 a | 2.45 ± 1.48 | 27.5 ± 23.6 |
RB | 4.90 ± 0.27 b | 2.80 ± 2.38 | 24.1 ± 15.3 |
[Se] | |||
[0] | 5.31 ± 0.33 | 0.367 ± 0.33 c | 3.31 ± 3.06 c |
[0.3] | 5.70 ± 0.32 | 2.61 ± 0.82 b | 25.0 ± 8.1 b |
[0.6] | 4.98 ± 0.34 | 4.64 ± 1.42 a | 46.6 ± 13.6 a |
Light × [Se] | |||
W [0] | 5.26 ± 0.76 | 0.572 ± 0.429 d | 5.29 ± 3.97 d |
W [0.3] | 6.66 ± 1.30 | 2.419 ± 0.745 c | 22.2 ± 6.84 c |
W [0.6] | 5.39 ± 1.59 | 3.897 ± 0.694 b | 40.1 ± 7.15 ab |
RB [0] | 5.37 ± 0.50 | 0.213 ± 0.061 d | 1.83 ± 0.52 d |
RB [0.3] | 4.74 ± 0.97 | 2.813 ± 0.314 bc | 27.7 ± 8.8 bc |
RB [0.6] | 4.58 ± 1.00 | 5.390 ± 0.567 a | 53.0 ± 15.8 a |
Significance | |||
Light | * | ns | ns |
[Se] | ns | *** | *** |
Light × [Se] | ns | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brito, C.; Andrade, S.; Ferreira, H.; Matos, C.; Martins, S.; Moutinho-Pereira, J. The Synergetic Effect of Light Spectra and Selenium Supplementation on Eruca sativa Mill. Growth and Physiological and Metabolic Responses. Horticulturae 2024, 10, 511. https://doi.org/10.3390/horticulturae10050511
Brito C, Andrade S, Ferreira H, Matos C, Martins S, Moutinho-Pereira J. The Synergetic Effect of Light Spectra and Selenium Supplementation on Eruca sativa Mill. Growth and Physiological and Metabolic Responses. Horticulturae. 2024; 10(5):511. https://doi.org/10.3390/horticulturae10050511
Chicago/Turabian StyleBrito, Cátia, Sónia Andrade, Helena Ferreira, Carlos Matos, Sandra Martins, and José Moutinho-Pereira. 2024. "The Synergetic Effect of Light Spectra and Selenium Supplementation on Eruca sativa Mill. Growth and Physiological and Metabolic Responses" Horticulturae 10, no. 5: 511. https://doi.org/10.3390/horticulturae10050511