Potassium and Magnesium in American Ginseng Roots as Key Factors in Monitoring Soil Quality, Yield, and Quality: Screening, Prediction, and Validation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.1.1. Sampling Sites
2.1.2. Validation Trial Design
2.2. Sample Processing
2.3. Determination of Active Constituents of American Ginseng
2.4. Plant Nutrient Elements and Soil Physicochemical Analysis
2.5. American Ginseng Quality Assessment Methods
2.6. Soil Quality Assessment Methods
2.6.1. Determination of the Minimum Dataset (MDS)
2.6.2. Quantification of Soil Quality
2.7. Calculating Prediction Accuracy
2.8. Data Analysis and Statistics
3. Results
3.1. Screening of Key Factors
3.1.1. Nutrient Content of American Ginseng Roots
3.1.2. Active Ingredient Content and American Ginseng Quality Assessment
Active Ingredient Content of American Ginseng Roots
American Ginseng Quality Assessment
3.1.3. Soil Quality Assessment
MDS Indicators
Calculation of SQI
Interaction of Soil Quality with Nutrient Elements, Yield and Quality of American Ginseng
3.2. Creation of Predictive Models
3.3. Evaluation of Predictive Models
Effects of Exogenous Potassium and Magnesium on Predictive Indicators
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, Z.; Sun, H.; Shao, C.; Lei, H.; Qian, J.; Ruan, Y.; Zhang, Y. Calcium Affects Growth and Physiological Indices of Panax quinquefolium L. HortScience 2022, 57, 112–117. [Google Scholar] [CrossRef]
- Yang, L.; Hou, A.; Zhang, J.; Wang, S.; Man, W.; Yu, H.; Zheng, S.; Wang, X.; Liu, S.; Jiang, H. Panacis Quinquefolii Radix: A Review of the Botany, Phytochemistry, Quality Control, Pharmacology, Toxicology and Industrial Applications Research Progress. Front. Pharmacol. 2020, 11, 602092. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, R.; Bryant, D.L.; Farone, A.L. Panax quinquefolius (North American Ginseng) Polysaccharides as Immunomodulators: Current Research Status and Future Directions. Molecules 2020, 25, 5854. [Google Scholar] [CrossRef]
- Shan, M.; Bai, Y.; Fang, X.; Lan, X.; Zhang, Y.; Cao, Y.; Zhu, D.; Luo, H. American Ginseng for the Treatment of Alzheimer’s Disease: A Review. Molecules 2023, 28, 5716. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.N.; Akter, R.; Karim, M.R.; Iqbal, S.; Kang, S.C.; Yang, D.C. Bioconversion, Pharmacokinetics, and Therapeutic Mechanisms of Ginsenoside Compound K and Its Analogues for Treating Metabolic Diseases. Curr. Issues Mol. Biol. 2024, 46, 2320–2342. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Li, J.; Gao, L.; Tian, Y. Comprehensive Evaluation of Effects of Various Carbon-Rich Amendments on Overall Soil Quality and Crop Productivity in Degraded Soils. Geoderma 2023, 436, 116529. [Google Scholar] [CrossRef]
- Biswas, S.; Hazra, G.C.; Purakayastha, T.J.; Saha, N.; Mitran, T.; Singha Roy, S.; Basak, N.; Mandal, B. Establishment of Critical Limits of Indicators and Indices of Soil Quality in Rice-Rice Cropping Systems under Different Soil Orders. Geoderma 2017, 292, 34–48. [Google Scholar] [CrossRef]
- Zhou, Y.; Ma, H.; Xie, Y.; Jia, X.; Su, T.; Li, J.; Shen, Y. Assessment of Soil Quality Indexes for Different Land Use Types in Typical Steppe in the Loess Hilly Area, China. Ecol. Indic. 2020, 118, 106743. [Google Scholar] [CrossRef]
- Juhos, K.; Szabó, S.; Ladányi, M. Explore the Influence of Soil Quality on Crop Yield Using Statistically-Derived Pedological Indicators. Ecol. Indic. 2016, 63, 366–373. [Google Scholar] [CrossRef]
- Yu, P.; Liu, S.; Zhang, L.; Li, Q.; Zhou, D. Selecting the Minimum Data Set and Quantitative Soil Quality Indexing of Alkaline Soils under Different Land Uses in Northeastern China. Sci. Total Environ. 2018, 616–617, 564–571. [Google Scholar] [CrossRef]
- Hamidi Nehrani, S.; Askari, M.S.; Saadat, S.; Delavar, M.A.; Taheri, M.; Holden, N.M. Quantification of Soil Quality under Semi-Arid Agriculture in the Northwest of Iran. Ecol. Indic. 2020, 108, 105770. [Google Scholar] [CrossRef]
- Sun, H.; Jin, Q.; Wang, Q.; Shao, C.; Zhang, L.; Guan, Y.; Tian, H.; Li, M.; Zhang, Y. Effects of Soil Quality on Effective Ingredients of Astragalus Mongholicus from the Main Cultivation Regions in China. Ecol. Indic. 2020, 114, 106296. [Google Scholar] [CrossRef]
- Andrews, S.S.; Karlen, D.L.; Cambardella, C.A. The Soil Management Assessment Framework: A Quantitative Soil Quality Evaluation Method. Soil Sci. Soc. Am. J. 2004, 68, 1945–1962. [Google Scholar] [CrossRef]
- Li, K.; Wang, C. Multiple Soil Quality Assessment Methods for Evaluating Effects of Organic Fertilization in Wheat-Maize Rotation System. Eur. J. Agron. 2023, 150, 126929. [Google Scholar] [CrossRef]
- Liu, N.; Shao, C.; Sun, H.; Liu, Z.; Guan, Y.; Wu, L.; Zhang, L.; Pan, X.; Zhang, Z.; Zhang, Y.; et al. Arbuscular Mycorrhizal Fungi Biofertilizer Improves American Ginseng (Panax quinquefolius L.) Growth under the Continuous Cropping Regime. Geoderma 2020, 363, 114155. [Google Scholar] [CrossRef]
- Falcone Ferreyra, M.L.; Rius, S.P.; Casati, P. Flavonoids: Biosynthesis, Biological Functions, and Biotechnological Applications. Front. Plant Sci. 2012, 3, 34352. [Google Scholar] [CrossRef] [PubMed]
- Kliebenstein, D.J.; Osbourn, A. Making New Molecules—Evolution of Pathways for Novel Metabolites in Plants. Curr. Opin. Plant Biol. 2012, 15, 415–423. [Google Scholar] [CrossRef] [PubMed]
- Francis, B.; Aravindakumar, C.T.; Brewer, P.B.; Simon, S. Plant Nutrient Stress Adaptation: A Prospect for Fertilizer Limited Agriculture. Environ. Exp. Bot. 2023, 213, 105431. [Google Scholar] [CrossRef]
- Ahmed, N.; Zhang, B.; Chachar, Z.; Li, J.; Xiao, G.; Wang, Q.; Hayat, F.; Deng, L.; Narejo, M.-N.; Bozdar, B.; et al. Micronutrients and Their Effects on Horticultural Crop Quality, Productivity and Sustainability. Sci. Hortic. 2024, 323, 112512. [Google Scholar] [CrossRef]
- Rani, M.; Kaushik, P.; Bhayana, S.; Kapoor, S. Impact of Organic Farming on Soil Health and Nutritional Quality of Crops. J. Saudi Soc. Agric. Sci. 2023, 22, 560–569. [Google Scholar] [CrossRef]
- Ng, C.W.W.; So, P.S.; Coo, J.L.; Lau, S.Y.; Wong, J.T.F. Interactions between Nutrient Types and Soil Hydrological Properties on Yield and Quality of Pinellia Ternata, a Medicinal Plant. Ind. Crops Prod. 2023, 195, 116423. [Google Scholar] [CrossRef]
- Vasu, D.; Singh, S.K.; Ray, S.K.; Duraisami, V.P.; Tiwary, P.; Chandran, P.; Nimkar, A.M.; Anantwar, S.G. Soil Quality Index (SQI) as a Tool to Evaluate Crop Productivity in Semi-Arid Deccan Plateau, India. Geoderma 2016, 282, 70–79. [Google Scholar] [CrossRef]
- Zuber, S.M.; Behnke, G.D.; Nafziger, E.D.; Villamil, M.B. Multivariate Assessment of Soil Quality Indicators for Crop Rotation and Tillage in Illinois. Soil Tillage Res. 2017, 174, 147–155. [Google Scholar] [CrossRef]
- Lei, H.; Zhang, H.; Zhang, Z.; Sun, H.; Li, M.; Shao, C.; Liang, H.; Wu, H.; Zhang, Y. Physiological and Transcriptomic Analyses of Roots from Panax Ginseng C. A. Meyer under Drought Stress. Ind. Crops Prod. 2023, 191, 115858. [Google Scholar] [CrossRef]
- Rezaei, S.A.; Gilkes, R.J.; Andrews, S.S. A Minimum Data Set for Assessing Soil Quality in Rangelands. Geoderma 2006, 136, 229–234. [Google Scholar] [CrossRef]
- Karlen, D.L.; Ditzler, C.A.; Andrews, S.S. Soil Quality: Why and How? Geoderma 2003, 114, 145–156. [Google Scholar] [CrossRef]
- Zhang, Z.; Ai, N.; Liu, G.; Liu, C.; Qiang, F. Soil Quality Evaluation of Various Microtopography Types at Different Restoration Modes in the Loess Area of Northern Shaanxi. CATENA 2021, 207, 105633. [Google Scholar] [CrossRef]
- Ražić, S.S.; Đogo, S.M.; Slavković, L.J. Multivariate Characterization of Herbal Drugs and Rhizosphere Soil Samples According to Their Metallic Content. Microchem. J. 2006, 84, 93–101. [Google Scholar] [CrossRef]
- Shuai, M.; Yang, Y.; Bai, F.; Cao, L.; Hou, R.; Peng, C.; Cai, H. Geographical Origin of American Ginseng (Panax quinquefolius L.) Based on Chemical Composition Combined with Chemometric. J. Chromatogr. A 2022, 1676, 463284. [Google Scholar] [CrossRef]
- Goodwin, P.H.; Proctor, E. Review: Molecular Techniques to Assess Genetic Variation within and between Panax Ginseng and Panax quinquefolius. Fitoterapia 2019, 138, 104343. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Zhong, Y.; Shi, D.; Li, J.; Lou, Y.; Li, Y.; Li, J. Quantifying the Impact of Tillage Measures on the Cultivated-Layer Soil Quality in the Red Soil Hilly Region: Establishing the Thresholds of the Minimum Data Set. Ecol. Indic. 2021, 130, 108013. [Google Scholar] [CrossRef]
- Govaerts, B.; Sayre, K.D.; Deckers, J. A Minimum Data Set for Soil Quality Assessment of Wheat and Maize Cropping in the Highlands of Mexico. Soil Tillage Res. 2006, 87, 163–174. [Google Scholar] [CrossRef]
- Tenic, E.; Ghogare, R.; Dhingra, A. Biochar—A Panacea for Agriculture or Just Carbon? Horticulturae 2020, 6, 37. [Google Scholar] [CrossRef]
- Abakumov, E.; Petrov, A.; Polyakov, V.; Nizamutdinov, T. Soil Organic Matter in Urban Areas of the Russian Arctic: A Review. Atmosphere 2023, 14, 997. [Google Scholar] [CrossRef]
- Samaei, F.; Emami, H.; Lakzian, A. Assessing Soil Quality of Pasture and Agriculture Land Uses in Shandiz County, Northwestern Iran. Ecol. Indic. 2022, 139, 108974. [Google Scholar] [CrossRef]
- Li, P.; Zhang, T.; Wang, X.; Yu, D. Development of Biological Soil Quality Indicator System for Subtropical China. Soil Tillage Res. 2013, 126, 112–118. [Google Scholar] [CrossRef]
- Thakur, M.; Kumar, R. Mulching: Boosting Crop Productivity and Improving Soil Environment in Herbal Plants. J. Appl. Res. Med. Aromat. Plants 2021, 20, 100287. [Google Scholar] [CrossRef]
- Guo, C.; Wang, X.; Wang, Q.; Zhao, Z.; Xie, B.; Xu, L.; Zhang, R. Plant Defense Mechanisms against Ozone Stress: Insights from Secondary Metabolism. Environ. Exp. Bot. 2024, 217, 105553. [Google Scholar] [CrossRef]
- Kroymann, J. Natural Diversity and Adaptation in Plant Secondary Metabolism. Curr. Opin. Plant Biol. 2011, 14, 246–251. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jiang, Q.; Zong, J.; Guo, H.; Liu, J.; Chen, J. Effects of Supplemental Potassium on the Growth, Photosynthetic Characteristics, and Ion Content of Zoysia Matrella under Salt Stress. Horticulturae 2023, 10, 31. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.-H. Genetic Approaches for Improvement of the Crop Potassium Acquisition and Utilization Efficiency. Curr. Opin. Plant Biol. 2015, 25, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Shaul, O. Magnesium Transport and Function in Plants: The Tip of the Iceberg. Biometals 2002, 15, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Guo, W.; Nazim, H.; Liang, Z.; Yang, D. Magnesium Deficiency in Plants: An Urgent Problem. Crop J. 2016, 4, 83–91. [Google Scholar] [CrossRef]
- Xie, K.; Cakmak, I.; Wang, S.; Zhang, F.; Guo, S. Synergistic and Antagonistic Interactions between Potassium and Magnesium in Higher Plants. Crop J. 2021, 9, 249–256. [Google Scholar] [CrossRef]
- Cakmak, I.; Hengeler, C.; Marschner, H. Changes in Phloem Export of Sucrose in Leaves in Response to Phosphorus, Potassium and Magnesium Deficiency in Bean Plants. J. Exp. Bot. 1994, 45, 1251–1257. [Google Scholar] [CrossRef]
- Tanoi, K.; Kobayashi, N. Leaf Senescence by Magnesium Deficiency. Plants 2015, 4, 756–772. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Liu, X.; Wang, Q.; Zhang, H.; Li, M.; Song, B.; Zhao, Z. Effects of Potassium Fertilization on Potato Starch Physicochemical Properties. Int. J. Biol. Macromol. 2018, 117, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Oliver, D.J.; Nikolau, B.J.; Wurtele, E.S. Acetyl-CoA—Life at the Metabolic Nexus. Plant Sci. 2009, 176, 597–601. [Google Scholar] [CrossRef]
- Gransee, A.; Führs, H. Magnesium Mobility in Soils as a Challenge for Soil and Plant Analysis, Magnesium Fertilization and Root Uptake under Adverse Growth Conditions. Plant Soil 2013, 368, 5–21. [Google Scholar] [CrossRef]
- Han, X.; Yin, M.; Fang, Q.; Tan, X.; Sun, H.; Cheng, M.; Peng, H.; Huang, L. Nutritional Ingredients and Functional Components of Cultivated and Wild-Simulated Astragali Radix Using Widely Targeted Metabolomics. LWT 2023, 185, 115186. [Google Scholar] [CrossRef]
Soil Factors | Group | Matrix of Principal Component Loadings | Normalised Norm Value | |||
---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | |||
SOM | 1 | 0.986 | −0.086 | −0.022 | −0.07 | 1.000 |
TK | 1 | 0.968 | −0.143 | −0.062 | −0.057 | 0.986 |
AMn | 1 | −0.948 | −0.083 | 0.190 | −0.122 | 0.967 |
TCa | 1 | 0.934 | −0.026 | 0.235 | −0.024 | 0.953 |
TCu | 1 | 0.926 | 0.336 | −0.066 | 0.083 | 0.973 |
AN | 1 | 0.907 | −0.081 | −0.354 | 0.067 | 0.939 |
TN | 1 | 0.856 | 0.313 | 0.356 | −0.036 | 0.918 |
TFe | 1 | 0.783 | −0.403 | −0.041 | 0.181 | 0.853 |
AP | 1 | 0.666 | 0.333 | 0.469 | −0.213 | 0.766 |
AFe | 1 | 0.551 | 0.545 | −0.368 | −0.375 | 0.737 |
pH | 1 | 0.543 | −0.110 | 0.261 | 0.322 | 0.585 |
TZn | 2 | −0.168 | 0.900 | 0.088 | −0.286 | 0.721 |
ACu | 2 | 0.092 | 0.883 | 0.074 | 0.287 | 0.694 |
AZn | 2 | −0.253 | 0.825 | −0.09 | −0.379 | 0.699 |
TMn | 2 | −0.345 | 0.746 | 0.518 | 0.086 | 0.725 |
AK | 2 | 0.583 | −0.699 | 0.061 | −0.175 | 0.801 |
TP | 2 | 0.477 | 0.692 | −0.459 | 0.220 | 0.762 |
TMg | 3 | −0.208 | −0.442 | 0.794 | 0.022 | 0.579 |
ACa | 3 | −0.485 | −0.411 | −0.696 | −0.142 | 0.691 |
AMg | 4 | −0.385 | 0.420 | −0.195 | 0.659 | 0.571 |
Eigenvalue | 8.960 | 5.169 | 2.434 | 1.208 | ||
Variance explained/% | 44.800 | 25.844 | 12.172 | 6.038 | ||
Cumulative variance explained/% | 44.800 | 70.644 | 82.816 | 88.854 |
Index | DW (g) | TS (mg/g) | Rb1 (mg/g) | Rb2 (mg/g) | Rc (mg/g) | Rd (mg/g) | Rg2 (mg/g) |
---|---|---|---|---|---|---|---|
Means | 6.26 | 77.83 | 18.59 | 0.53 | 2.92 | 2.44 | 0.15 |
SD | 0.15 | 1.92 | 0.29 | 0.03 | 0.17 | 0.05 | 0.01 |
MAX | 6.49 | 80.67 | 19.02 | 0.59 | 3.21 | 2.52 | 0.18 |
MIN | 6.00 | 74.56 | 18.09 | 0.49 | 2.67 | 2.36 | 0.13 |
CV(%) | 2.47 | 2.46 | 1.57 | 5.74 | 5.87 | 2.11 | 8.85 |
Index | DW | TS | Rb1 | Rb2 | Rc | Rd | Rg2 |
---|---|---|---|---|---|---|---|
Means | 88.96 | 92.17 | 83.17 | 89.17 | 84.51 | 89.48 | 72.75 |
SD | 6.37 | 3.50 | 8.84 | 9.13 | 12.13 | 7.60 | 4.60 |
MAX | 99.87 | 97.31 | 99.86 | 99.57 | 99.52 | 97.76 | 80.74 |
MIN | 77.85 | 86.09 | 62.85 | 70.08 | 64.87 | 71.56 | 63.30 |
CV | 7.16 | 3.80 | 10.63 | 10.24 | 14.36 | 8.49 | 6.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, J.; Sun, H.; Shao, C.; Liang, H.; Cao, W.; Lv, B.; Zhang, Y. Potassium and Magnesium in American Ginseng Roots as Key Factors in Monitoring Soil Quality, Yield, and Quality: Screening, Prediction, and Validation. Horticulturae 2024, 10, 344. https://doi.org/10.3390/horticulturae10040344
Qian J, Sun H, Shao C, Liang H, Cao W, Lv B, Zhang Y. Potassium and Magnesium in American Ginseng Roots as Key Factors in Monitoring Soil Quality, Yield, and Quality: Screening, Prediction, and Validation. Horticulturae. 2024; 10(4):344. https://doi.org/10.3390/horticulturae10040344
Chicago/Turabian StyleQian, Jiaqi, Hai Sun, Cai Shao, Hao Liang, Weiyu Cao, Bochen Lv, and Yayu Zhang. 2024. "Potassium and Magnesium in American Ginseng Roots as Key Factors in Monitoring Soil Quality, Yield, and Quality: Screening, Prediction, and Validation" Horticulturae 10, no. 4: 344. https://doi.org/10.3390/horticulturae10040344
APA StyleQian, J., Sun, H., Shao, C., Liang, H., Cao, W., Lv, B., & Zhang, Y. (2024). Potassium and Magnesium in American Ginseng Roots as Key Factors in Monitoring Soil Quality, Yield, and Quality: Screening, Prediction, and Validation. Horticulturae, 10(4), 344. https://doi.org/10.3390/horticulturae10040344