Co-Application of Nitric Oxide and Melatonin Alleviated Chromium-Induced Oxidative Stress and Improved Edible Flower Quality of Calendula officinalis L.
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Treatments
2.2. Plant Dry Weight
2.3. Leaf Gas Exchange (LGE) and Fv/Fm
2.4. Oxidative Stress Markers and Antioxidant Enzyme Activities in Leaves
2.5. Analysis of Key Elements in Leaves
2.6. Flower Total Carbohydrate (TC)
2.7. Total Reducing Sugars (TRSs) in Flowers
2.8. Total Protein in Petals
2.9. Petal Ascorbic Acid (AsA)
2.10. Petal Total Ash Content (TAC)
2.11. Petal Total Phenolics (TPC), Flavonoids (TFC), and Total Carotenoids
2.12. Antioxidant Capacity Assays of Petals
2.13. Essential Oil Contents (EOCs) in Petals
2.14. Statistical Analysis
3. Results
3.1. Plant Dry Biomass
3.2. Leaf Gas Exchange and Fv/Fm
3.3. Leaf Oxidative Stress Biomarkers
3.4. Leaf Antioxidant Enzyme Activities
3.5. Leaf N, P, K, and Cr Contents
3.6. Flower Nutritional Composition
3.7. Flower Traits
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Oliveira, I.; Chrysargyris, A.; Finimundy, T.C.; Carocho, M.; Santos-Buelga, C.; Calhelha, R.C.; Heleno, S.A. Magnesium and manganese induced changes on chemical, nutritional, antioxidant and antimicrobial properties of the pansy and viola edible flowers. Food Chem. 2024, 438, 137976. [Google Scholar] [CrossRef] [PubMed]
- Pensamiento-Niño, C.A.; Castañeda-Ovando, A.; Añorve-Morga, J.; Hernández-Fuentes, A.D.; Aguilar-Arteaga, K.; Ojeda-Ramírez, D. Edible flowers and their relationship with human health: Biological activities. Food Rev. Int. 2024, 40, 620–639. [Google Scholar] [CrossRef]
- Sarode, D.K.; Pagariya, M.C.; Jadhav, P.R.; Patil, S.A.; Devarumath, R.M.; Shingote, P.R.; Kawar, P.G. Edible flowers: Biotechnological interventions for improving bioactives of food and health significance. J. Food Compos. Anal. 2024, 134, 106506. [Google Scholar] [CrossRef]
- Kajla, M.; Yadav, V.K.; Khokhar, J.; Singh, S.; Chhokar, R.S.; Meena, R.P.; Sharma, R.K. Increase in wheat production through management of abiotic stresses: A review. J. Appl. Nat. Sci. 2015, 7, 1070–1080. [Google Scholar] [CrossRef]
- Gratão, P.L.; Alves, L.R.; Lima, L.W. Heavy Metal Toxicity and Plant Productivity. In Plant-Metal Interactions: Role of Metal Scavengers; Srivastava, S., Srivastava, A.K., Suprasanna, P., Eds.; Springer Nature: Cham, Switzerland, 2019; pp. 49–60. [Google Scholar]
- Singh, S.; Dubey, N.K.; Tripathi, D.K.; Gupta, R.; Singh, V.P. Nitric oxide and hydrogen peroxide mediated regulation of chromium (VI) toxicity in wheat seedlings involves alterations in antioxidants and high affinity sulfate transporter. Plant Sci. 2023, 332, 111697. [Google Scholar] [CrossRef]
- Qin, C.; Lian, H.; Alqahtani, F.M.; Ahanger, M.A. Chromium mediated damaging effects on growth, nitrogen metabolism and chlorophyll synthesis in tomato can be alleviated by foliar application of melatonin and jasmonic acid priming. Sci. Hort. 2024, 323, 112494. [Google Scholar] [CrossRef]
- Khan, M.N.; Alamri, S.; Al-Amri, A.A.; Alsubaie, Q.D.; Al-Munqedi, B.; Ali, H.M.; Siddiqui, M.H. Effect of nitric oxide on seed germination and seedling development of tomato under chromium toxicity. J. Plant Growth Regul. 2021, 40, 2358–2370. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.P.; Tripathi, R.D.; Tong, Y.W. Chromium toxicity and tolerance mechanisms in plants through cross-talk of secondary messengers: An overview of pathways and mechanisms. Environ. Pollut. 2023, 320, 121049. [Google Scholar] [CrossRef]
- de Oliveira, L.M.; Ma, L.Q.; Santos, J.A.; Guilherme, L.R.; Lessl, J.T. Effects of arsenate, chromate, and sulfate on arsenic and chromium uptake and translocation by arsenic hyperaccumulator Pteris vittata L. Environ. Pollut. 2014, 184, 187–192. [Google Scholar] [CrossRef]
- Iyer, M.; Anand, U.; Thiruvenkataswamy, S.; Babu, H.W.S.; Narayanasamy, A.; Prajapati, V.K.; Vellingiri, B. A review of chromium (Cr) epigenetic toxicity and health hazards. Sci. Total Environ. 2023, 882, 163483. [Google Scholar] [CrossRef]
- Parwez, R.; Aqeel, U.; Aftab, T.; Khan, M.M.A.; Naeem, M. Melatonin supplementation combats nickel-induced phytotoxicity in Trigonella foenum-graecum L. plants through metal accumulation reduction, upregulation of NO generation, antioxidant defence machinery and secondary metabolites. Plant Physiol. Biochem. 2023, 202, 107981. [Google Scholar] [CrossRef]
- Kumar, D.; Dhankher, O.P.; Tripathi, R.D.; Seth, C.S. Titanium dioxide nanoparticles potentially regulate the mechanism (s) for photosynthetic attributes, genotoxicity, antioxidants defense machinery, and phytochelatins synthesis in relation to hexavalent chromium toxicity in Helianthus annuus L. J. Hazard. Mater. 2023, 454, 131418. [Google Scholar] [CrossRef] [PubMed]
- Basit, F.; Abbas, S.; Sheteiwy, M.S.; Bhat, J.A.; Alsahli, A.A.; Ahmad, P. Deciphering the alleviation potential of nitric oxide, for low temperature and chromium stress via maintaining photosynthetic capacity, antioxidant defence, and redox homeostasis in rice (Oryza sativa). Plant Physiol. Biochem. 2024, 214, 108957. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cao, J.; Fan, X.; Jiang, W. Applications of nitric oxide and melatonin in improving postharvest fruit quality and the separate and crosstalk biochemical mechanisms. Trends Food Sci. Technol. 2020, 99, 531–541. [Google Scholar] [CrossRef]
- Kumari, R.; Kapoor, P.; Mir, B.A.; Singh, M.; Parrey, Z.A.; Rakhra, G.; Rakhra, G. Unlocking the versatility of Nitric Oxide in plants and insights into its molecular interplays under biotic and abiotic stress. Nitric Oxide 2024, 150, 1–17. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin and its relationship to plant hormones. Ann. Bot. 2018, 121, 195–207. [Google Scholar] [CrossRef]
- Kour, J.; Bhardwaj, T.; Chouhan, R.; Singh, A.D.; Gandhi, S.G.; Bhardwaj, R.; Ahmad, P. Phytomelatonin maintained chromium toxicity induced oxidative burst in Brassica juncea L. through improving antioxidant system and gene expression. Environ. Pollut. 2024, 356, 124256. [Google Scholar] [CrossRef]
- Sun, S.; Liu, A.; Li, Z.; Guo, T.; Chen, S.; Ahammed, G.J. Anthocyanin synthesis is critical for melatonin-induced chromium stress tolerance in tomato. J. Hazard. Mater. 2023, 453, 131456. [Google Scholar] [CrossRef]
- Ninama, V.; Shah, H.; Kapadia, C.; Italiya, A.; Datta, R.; Singh, S.; Singh, A. Assessment of phytochemicals, nutritional compositions and metabolite profiling using GCMS–from annual edible flowers. Sci. Hortic. 2024, 323, 112551. [Google Scholar] [CrossRef]
- Peron, G.; Franceschi, C.; Da Dalt, C.; Ferrarese, I.; Sut, S.; Dall’Acqua, S. Biostimulation of Calendula officinalis with a soy protein hydrolysate induces flower and plant biomass and flower count by reversibly altering the floral metabolome. Ind. Crops Prod. 2024, 214, 118508. [Google Scholar] [CrossRef]
- Tavallali, V.; Rahmati, S.; Bahmanzadegan, A.; Lasibi, M.J.M. Phenolic profile and evaluation of antimicrobial and anticancer activities of Calendula officinalis L. using exogenous polyamines application. Ind. Crops Prod. 2024, 214, 118571. [Google Scholar] [CrossRef]
- Varshney, A.; Dahiya, P.; Mohan, S. Antioxidant activity of pot marigold (Calendula officinalis L.) in response to metal (loid) induced oxidative stress from fly ash amended soil. J. Plant Growth Regul. 2023, 42, 5928–5944. [Google Scholar] [CrossRef]
- Hodges, D.M.; DeLong, J.M.; Forney, C.F.; Prange, R.K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 1999, 207, 604–611. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Wild, R.; Ooi, L.; Srikanth, V.; Münch, G. A quick, convenient and economical method for the reliable determination of methylglyoxal in millimolar concentrations: The N-acetyl-L-cysteine assay. Anal. Bioanal. Chem. 2012, 403, 2577–2581. [Google Scholar] [CrossRef]
- Elstner, E.F.; Heupel, A. Inhibition of nitrite formation from hydroxylammoniumchloride: A simple assay for superoxide dismutase. Anal. Biochem. 1976, 70, 616–620. [Google Scholar] [CrossRef]
- Aebi, H. Catalase in vitro. Meth. Enzymol. 1948, 105, 121–126. [Google Scholar]
- Dhindsa, R.S.; Plumb-Dhindsa, P.; Thorpe, T.A. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J. Exp. Bot. 1981, 32, 93–101. [Google Scholar] [CrossRef]
- Foyer, C.H.; Halliwell, B. The presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 1976, 133, 21–25. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis, 1st ed.; Prentice Hall of India Pvt. Ltd.: New Delhi, India, 1967; pp. 144–197. [Google Scholar]
- Kitson, R.; Mellon, M. Colorimetric determination of phosphorus as molybdivanado phosphonic acid. Ind. Eng. Chem. Res. 1944, 16, 379–383. [Google Scholar]
- Ludwig, T.G.; Goldberg, H.J.V. The anthrone method for the determination of carbohydrates in foods and in oral rinsing. J. Dent. Res. 1956, 35, 90–94. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin phenol reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Harris, L.J.; Ray, S.N. Determination of plasma Ascorbic acid by2, 6-dichorphenol indophenols titration. Lancet 1935, 1, 462. [Google Scholar] [CrossRef]
- Sigel, H. Metals in Biological Systems; Marcel Dekker: New York, NY, USA, 1978. [Google Scholar]
- Pfeffer, H.; Dannel, F.; Römheld, V. Are there connection between phenol metabolism, ascorbate metabolism and membrane integrity in leaves of boron-deficient sunflower plants? Physiol. Plant. 1998, 104, 479–485. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Yang, C.-M.; Chang, K.-W.; Yin, M.-H.; Huang, H.-M. Method and determination chlorophyll and derivate. Taiwania 1998, 43, 116–122. [Google Scholar]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
- Tepe, B.; Sokmen, M.; Akpulat, H.A.; Sokmen, A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem. 2006, 95, 200–204. [Google Scholar] [CrossRef]
- Kapoor, R.; Giri, B.; Mukerji, K.G. Improved growth and essential oil yield and quality in Foeniculum vulgare mill on mycorrhizal inoculation supplemented with Pfertilizer. J. Bioresour. Technol. 2004, 93, 307–311. [Google Scholar] [CrossRef]
- Alwutayd, K.M.; Alghanem, S.M.S.; Alwutayd, R.; Alghamdi, S.A.; Alabdallah, N.M.; Al-Qthanin, R.N.; Abeed, A.H. Mitigating chromium toxicity in rice (Oryza sativa L.) via ABA and 6-BAP: Unveiling synergistic benefits on morphophysiological traits and ASA-GSH cycle. Sci. Total Environ. 2024, 908, 168208. [Google Scholar] [CrossRef] [PubMed]
- Samal, I.; Bhoi, T.K.; Mahanta, D.K.; Komal, J.; Majhi, P.K.; Murmu, S.; Pradhan, A.K.; Chaurasia, H. Melatonin mediated abiotic stress mitigation in plants: A comprehensive study from biochemical to omics cascades. S. Afr. J. Bot. 2024, 170, 331–347. [Google Scholar] [CrossRef]
- Siddiqui, M.H.; Al-Whaibi, M.H.; Basalah, M.O. Role of nitric oxide in tolerance of plants to abiotic stress. Protoplasma 2011, 248, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Lorente, S.E.; Pardo-Hernández, M.; Martí-Guillén, J.M.; López-Delacalle, M.; Rivero, R.M. Interaction between Melatonin and NO: Action mechanisms, main targets, and putative roles of the emerging molecule NOmela. Int. J. Mol. Sci. 2022, 23, 6646. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, A.; Emamverdian, A.; Pishkar, L.; Chashmi, K.A.; Salavati, J.; Zargar, M.; Chen, M. Melatonin-mediated nitric oxide signaling enhances adaptation of tomato plants to aluminum stress. S. Afr. J. Bot. 2023, 162, 443–450. [Google Scholar] [CrossRef]
- Rizwan, M.; Nawaz, A.; Irshad, S.; Manoharadas, S. Exogenously applied melatonin enhanced chromium tolerance in pepper by up-regulating the photosynthetic apparatus and antioxidant machinery. Sci. Hortic. 2024, 323, 112468. [Google Scholar] [CrossRef]
- Sharma, V.; Garg, N. Nitric oxide and AMF-mediated regulation of soil enzymes activities, cysteine-H2S system and thiol metabolites in mitigating chromium (Cr (VI)) toxicity in pigeonpea genotypes. BioMetals 2024, 37, 185–209. [Google Scholar] [CrossRef]
- Raja, V.; Qadir, S.U.; Kumar, N.; Alsahli, A.A.; Rinklebe, J.; Ahmad, P. Melatonin and strigolactone mitigate chromium toxicity through modulation of ascorbate-glutathione pathway and gene expression in tomato. Plant Physiol. Biochem. 2023, 201, 107872. [Google Scholar] [CrossRef]
- Nabaei, M.; Amooaghaie, R.; Ghorbanpour, M.; Ahadi, A. Crosstalk between melatonin and nitric oxide restrains Cadmium-induced oxidative stress and enhances vinblastine biosynthesis in Catharanthus roseus (L) G Don. Plant Cell Rep. 2024, 43, 139. [Google Scholar] [CrossRef]
- Barzin, G.; Safari, F.; Bishehkolaei, R. Beneficial role of methyl jasmonate on morphological, physiological and phytochemical responses of Calendula officinalis L. under chromium toxicity. Physiol. Mol. Biol. Plants 2022, 28, 1453–1466. [Google Scholar] [CrossRef]
- Kandhol, N.; Srivastava, A.; Rai, P.; Sharma, S.; Pandey, S.; Singh, V.P.; Tripathi, D.K. Cytokinin and indole-3-acetic acid crosstalk is indispensable for silicon mediated chromium stress tolerance in roots of wheat seedlings. J. Hazard. Mater. 2024, 468, 133134. [Google Scholar] [CrossRef] [PubMed]
- Altaf, M.A.; Sharma, N.; Srivastava, D.; Mandal, S.; Adavi, S.; Jena, R.; Bairwa, R.K.; Gopalakrishnan, A.V.; Kumar, A.; Dey, A.; et al. Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants. Planta 2023, 257, 115. [Google Scholar] [CrossRef] [PubMed]
- Imran, M.; Khan, A.L.; Mun, B.-G.; Bilal, S.; Shaffique, S.; Kwon, E.-H.; Kang, S.-M.; Yun, B.-W.; Lee, I.-J. Melatonin and nitric oxide: Dual players inhibiting hazardous metal toxicity in soybean plants via molecular and antioxidant signaling cascades. Chemosphere 2022, 308, 136575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, A.; Hao, Y.; Su, W.; Sun, G.; Song, S.; Liu, H.; Chen, R. Nitric oxide is essential for melatonin to enhance nitrate tolerance of cucumber seedlings. Molecules 2022, 27, 5806. [Google Scholar] [CrossRef] [PubMed]
- Pires, T.C.; Barros, L.; Santos-Buelga, C.; Ferreira, I.C. Edible flowers: Emerging components in the diet. Trends Food Sci. Technol. 2019, 93, 244–258. [Google Scholar] [CrossRef]
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int. 2020, 129, 10886. [Google Scholar] [CrossRef]
- Esmaeili, S.; Sharifi, M.; Ghanati, F.; Soltani, B.M.; Samari, E.; Sagharyan, M. Exogenous melatonin induces phenolic compounds production in Linum album cells by altering nitric oxide and salicylic acid. Sci. Rep. 2023, 13, 8. [Google Scholar] [CrossRef]
- Salehi, B.; Sharopov, F.; Fokou, P.V.T.; Kobylinska, A.; Jonge, L.D.; Tadio, K.; Sharifi-Rad, J.; Posmyk, M.M.; Martorell, M.; Martins, N.; et al. Melatonin in medicinal and food plants: Occurrence, bioavailability, and health potential for humans. Cells 2019, 8, 681. [Google Scholar] [CrossRef]
Treatment | Net CO2 Assimilation Rate (Pn; µmol CO2 m−2 s−1) | Stomatal Conductance (Gs, mmol H2O m−2 s−1) | Ci (µmol CO2 L−1) | Chlorophyll SPAD Index Value | Fv/Fm |
---|---|---|---|---|---|
Control | 15.1 ± 0.11 ab | 0.49 ± 0.01 a | 211.45 ± 3.32 a | 35.2 ± 1.39 a | 0.460 ± 0.015 a |
Cr | 7.1 ± 0.18 d | 0.21 ± 0.02 c | 110.23 ± 4.87 d | 21.8 ± 1.88 c | 0.267 ± 0.016 d |
Cr + NO | 10.7 ± 0.17 c | 0.32 ± 0.01 b | 146.77 ± 1.32 c | 29.8 ± 3.62 b | 0.355 ± 0.011 c |
Cr + MN | 12.2 ± 0.19 b | 0.35 ± 0.03 b | 186.94 ± 2.98 b | 28.7 ± 2.23 b | 0.401 ± 0.014 b |
Cr + NO + MN | 16.7 ± 0.13 a | 0.47 ± 0.06 a | 209.29 ± 1.38 a | 39.6 ± 2.12 a | 0.455 ± 0.016 a |
Treatment | Leaf N (mg g−1 DW) | Leaf P (mg g−1 DW) | Leaf K (mg g−1 DW) | Leaf Cr (mg g−1 DW) |
---|---|---|---|---|
Control | 13.12 ± 0.21 b | 3.49 ± 0.12 b | 5.78 ± 0.12 a | 0.0 ± 0.0 d |
Cr | 8.16 ± 0.17 e | 1.21 ± 0.24 c | 2.67 ± 0.27 c | 431.33 ± 5.32 a |
Cr + NO | 11.7 ± 0.18 c | 3.32 ± 0.16 b | 4.33 ± 0.22 b | 123.43 ± 3.58 b |
Cr + MN | 10.2 ± 0.12 d | 3.36 ± 0.37 b | 4.45 ± 0.38 b | 111.77 ± 4.89 bc |
Cr + NO + MN | 14.7 ± 0.18 a | 4.49 ± 0.42 a | 5.23 ± 0.18 a | 56.23 ± 5.33 c |
Treatment | Total Carbohydrate (g 100 g−1 FW) | Total Reducing Sugars (mg g−1 FW) | Total Protein (g 100 g−1 FW) | Ascorbic Acid (mg 100g−1 FW) | Ash Content (%) |
---|---|---|---|---|---|
Control | 3.0 a | 56.3 a | 4.9 a | 44.5 e | 17.5 a |
Cr | 1.1 d | 22.0 e | 1.3 d | 48.8 d | 11.3 d |
Cr + NO | 1.7 c | 34.6 c | 2.6 c | 54.3 c | 12.5 c |
Cr + MN | 1.8 c | 31.9 d | 3.2 b | 59.3 b | 12.8 c |
Cr + NO + MN | 2.3 b | 45.7 b | 4.4 a | 65.0 a | 15.2 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zulfiqar, F.; Moosa, A.; Darras, A.; Chen, J.; Şimşek, Ö.; Akgöl, M.; İzgü, T.; Alshaharni, M.O.; Alshaya, D.S.; Alzamel, N.M.; et al. Co-Application of Nitric Oxide and Melatonin Alleviated Chromium-Induced Oxidative Stress and Improved Edible Flower Quality of Calendula officinalis L. Horticulturae 2024, 10, 1310. https://doi.org/10.3390/horticulturae10121310
Zulfiqar F, Moosa A, Darras A, Chen J, Şimşek Ö, Akgöl M, İzgü T, Alshaharni MO, Alshaya DS, Alzamel NM, et al. Co-Application of Nitric Oxide and Melatonin Alleviated Chromium-Induced Oxidative Stress and Improved Edible Flower Quality of Calendula officinalis L. Horticulturae. 2024; 10(12):1310. https://doi.org/10.3390/horticulturae10121310
Chicago/Turabian StyleZulfiqar, Faisal, Anam Moosa, Anastasios Darras, Jianjun Chen, Özhan Şimşek, Mehmet Akgöl, Tolga İzgü, Mohammed O. Alshaharni, Dalal Sulaiman Alshaya, Nurah M. Alzamel, and et al. 2024. "Co-Application of Nitric Oxide and Melatonin Alleviated Chromium-Induced Oxidative Stress and Improved Edible Flower Quality of Calendula officinalis L." Horticulturae 10, no. 12: 1310. https://doi.org/10.3390/horticulturae10121310
APA StyleZulfiqar, F., Moosa, A., Darras, A., Chen, J., Şimşek, Ö., Akgöl, M., İzgü, T., Alshaharni, M. O., Alshaya, D. S., Alzamel, N. M., Alsharari, S. F., Fayad, E., & Mirmazloum, I. (2024). Co-Application of Nitric Oxide and Melatonin Alleviated Chromium-Induced Oxidative Stress and Improved Edible Flower Quality of Calendula officinalis L. Horticulturae, 10(12), 1310. https://doi.org/10.3390/horticulturae10121310