Cyclic Somatic Embryogenesis in Indonesian Elite Theobroma cacao L. Clones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Primary Somatic Embryogenesis
2.3. Cyclic Somatic Embryogenesis
2.4. Histological Examination
2.5. Experimental Design and Evaluations
2.5.1. Procedures for Primary Somatic Embryogenesis
2.5.2. Cyclic Somatic Embryogenesis
3. Results
3.1. Primary Somatic Embryogenesis
3.1.1. Effect of Type and Concentration of Auxins
3.1.2. Effect of the Culture System
3.2. Cyclic Somatic Embryogenesis
4. Discussion
4.1. Primary Somatic Embryogenesis
4.1.1. Effect of Types and Concentrations of Auxins
4.1.2. Effect of the Culture System
4.2. Cyclic Somatic Embryogenesis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruf, F. Indonesia Cocoa Sector Assessment How to Help Indonesian Cocoa Farmers to Re-Invest in Cocoa; UMR Innovation; CIRAD: Paris, France, 2014. [Google Scholar] [CrossRef]
- McMahon, P.; bin Purung, H.; Lambert, S.; Mulia, S.; Nurlaila; Susilo, A.W.; Sulistyowati, E.; Sukamto, S.; Israel, M.; Saftar, A.; et al. Testing local cocoa selections in three provinces in Sulawesi: (i) Productivity and resistance to cocoa pod borer and Phytophthora pod rot (black pod). Crop. Prot. 2015, 70, 28–39. [Google Scholar] [CrossRef]
- ICCO in Production Quarterly Bulletin of Cocoa Statistics, Volume XLIX No 1, Cocoa Year 2022/2023. Available online: https://www.icco.org/wp-content/uploads/Production_QBCS-XLIX-No.-1.pdf (accessed on 2 September 2023).
- Panlibuton, H.; Meyer, M. Value Chain Assessment: Indonesia Cocoa. Accelerated Microenterprise Advancement Project (AMAP) Report, USAID. 2004. Available online: https://ei-ado.aciar.gov.au/sites/default/files/Panlibuton-Meyer(2004)ValueChainAssessmentIndoCocoa_USAID_AMAP.pdf (accessed on 2 September 2023).
- Statistical of National Leading Estate Crops Commodity 2020–2022. Directorate General of Estates. Ministry of Agriculture, In-Donesia. Available online: https://ditjenbun.pertanian.go.id/template/uploads/2022/08/STATISTIK-UNGGULAN-2020-2022.pdf (accessed on 2 September 2023).
- Bustami, M.; Werbrouck, S. Somatic embryogenesis in Elite Indonesian cacao Theobroma cacao L. In Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants; Jain, S.M., Gupta, P., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 73–81. [Google Scholar] [CrossRef]
- Muslimin; Wijayanti, W.; Anshary, A.; Basri, Z.; Cruz, A.F.; Suwastika, I.N.; Shiina, T. Sulawesi cacao (Theobroma cacao, L.) performances under two different agricultural systems in east coast of Central Sulawesi. IOP Conf. Ser. Earth Environ. Sci. 2018, 144, 012066. [Google Scholar] [CrossRef]
- Suwastika, I.N.; Muslimin, R.; Aisyah, N.; Rahmansyah, M.; Ishizaki, Y.; Basri, Z.; Shiina, T. Genotyping Based on SSR Marker on Local Cacao (Theobroma cacao L.) from Central Sulawesi. Procedia Environ. Sci. 2015, 28, 88–91. [Google Scholar] [CrossRef]
- Maximova, S.N.; Young, A.; Pishak, S.; Guiltinan, M.J. Field performance of Theobroma cacao L. plants propagated via somatic embryogenesis. Vitr. Cell. Dev. Biol. Plant 2008, 44, 487–493. [Google Scholar] [CrossRef]
- Masseret, B.; Gianforcaro, M.; Bouquet, J.F.; Brulard, E.; Florin, B. Somatic embryogenesis applied to the creation of a cacao collection. Malays. Cocoa J. 2009, 5, 1–10. [Google Scholar]
- Issali, A.E.; Traoré, A.; Ngoran, J.A.K.; Koffi, E.K. Relationship between some Phenological Parameters and Somatic embryogenesis in Theobroma cacao L. J. Crop Sci. Biotechnol. 2008, 11, 23–30. [Google Scholar]
- Garcia, C.; Corrêa, F.; Findley, S.; Almeida, A.-A.; Costa, M.; Motamayor, J.C.; Schnell, R.; Marelli, J.-P. Optimization of somatic embryogenesis procedure for commercial clones of Theobroma cacao L. Afr. J. Biotechnol. 2016, 15, 1936–1951. [Google Scholar] [CrossRef]
- Guillou, C.; Fillodeau, A.; Brulard, E.; Breton, D.; Maraschin, S.D.F.; Verdier, D.; Simon, M.; Ducos, J.-P. Indirect somatic embryogenesis of Theobroma cacao L. in liquid medium and improvement of embryo-to-plantlet conversion rate. Vitr. Cell. Dev. Biol. Plant 2018, 54, 377–391. [Google Scholar] [CrossRef]
- Esan, E.B. Micropropagation of Cocoa (Theobroma cacao L.). In Biotechnology in Agriculture and Forestry; High-Tech and Micropropagation II; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1992; Volume 18, pp. 96–122. [Google Scholar] [CrossRef]
- Pence, V.C.; Hasegawa, P.M.; Janick, J. Initiation and Development of Asexual Embryos of Theobroma cacao L. in vitro. Z. Für Pflanzenphysiol. 1980, 98, 1–14. [Google Scholar] [CrossRef]
- Lopez Baez, O.; Bollon, H.; Eskes, A.; Pétiard, V. SEgenèse somatique de cacaoyer Theobroma cacao L. à partir de pièces florales. Comptes Rendus de l’Académie des Sciences. Série 3 Sci. La Vie 1993, 316, 579–584. [Google Scholar]
- Alemanno, L.; Berthouly, M.; Michaux-Ferrière, N. Histology of somatic embryogenesis from floral tissues cocoa. Plant Cell Tissue Organ Cult. 1996, 46, 187–194. [Google Scholar] [CrossRef]
- Li, Z.; Traore, A.; Maximova, S.; Guiltinan, M.J. Somatic embryogenesis and plant regeneration from floral explants of cacao (Theobroma cacao L.) using thidiazuron. Vitr. Cell. Dev. Biol. Plant 1998, 34, 293–299. [Google Scholar] [CrossRef]
- Traore, A.; Guiltinan, M.J. Effects of Carbon Source and Explant Type on Somatic Embryogenesis of Four Cacao Genotypes. HortScience 2006, 41, 753–758. [Google Scholar] [CrossRef]
- Minyaka, E.; Niemenak, N.; Fotso; Sangare, A.; Omokolo, D.N. Effect of MgSO4 and K2SO4 on somatic embryo differentiation in Theobroma cacao L. Plant Cell Tissue Organ Cult. 2008, 94, 149–160. [Google Scholar] [CrossRef]
- Tapi, A.; Tahi, M.G.; Adiko, A.; Mahamadou, S.; Mboup, C.M. Field Performance of Cocoa Somaclones Derived from Somatic embryogenesis. J. Plant Sci. Agri. Res. 2020, 4, 34. [Google Scholar]
- Quainoo, A.K.; Dwomo, B.I. The Effect of TDZ and 2, 4-D Concentrations on the Induction of Somatic SE and embryogenesis in Different Cocoa Genotypes. J. Plant Stud. 2012, 1, 72. [Google Scholar] [CrossRef]
- Guiltinan, M.J.; Maximova, S. Integrated System for Vegetative Propagation of Cacao; Protocol Book. Version 2.1. 17 November 2010; American Cacao Research Institute, United States Department of Agriculture, Pennsylvania State University: State College, PA, USA, 2010. [Google Scholar]
- Maximova, S.N.; Alemanno, L.; Young, A.; Ferriere, N.; Traore, A.; Guiltinan, M.J. Efficiency, genotypic variability, and cellular origin of primary and secondary somatic embryogenesis of Theobroma cacao L. Vitr. Cell. Dev. Biol. Plant 2002, 38, 252–259. [Google Scholar] [CrossRef]
- Fontanel, A.; Gire-Bobin, S.; Labbé, G.; Favereau, P.; Álvarez, M.; Rutte, S.; Pétiard, V. In vitro multiplication and plant re-generation of Theobroma cacao L. via stable embryogenic calli. In Proceedings of the 10th IAPTC Congress, Plant Biotechnology 2002 and Beyond, Orlando, FL, USA, 23–28 June 2002. [Google Scholar]
- Niemenak, N.; Saare-Surminski, K.; Rohsius, C.; Ndoumou, D.O.; Lieberei, R. Regeneration of somatic embryos in Theobroma cacao L. in temporary immersion bioreactor and analyses of free amino acids in different tissues. Plant Cell Rep. 2008, 27, 667–676. [Google Scholar] [CrossRef]
- Bustami, M.; Werbrouck, S. Comparison of two protocols for somatic embryo induction in a Sulawesi elite Theobroma cacao L. clone. Acta Hortic. 2017, 1155, 71–76. [Google Scholar] [CrossRef]
- Fehér, A. Somatic embryogenesis—Stress-induced remodeling of plant cell fate. Biochim. Biophys. Acta (BBA) Gene Regul. Mech. 2015, 1849, 385–402. [Google Scholar] [CrossRef]
- Merkle, S.A.; Parrott, W.A.; Flinn, B.S. Morphogenic Aspects of Somatic Embryogenesis. In In Vitro Embryogenesis in Plants; Thorpe, T.A., Ed.; Springer: Dordrecht, The Netherlands, 1995; Volume 20, pp. 155–203. ISBN 978-94-010-4217-8. [Google Scholar] [CrossRef]
- Niemenak, N.; Awah, T.M.; Lieberei, R. Establishment of suspension culture in Theobroma cacao and polyamines associated with cacao embryogenesis. Plant Growth Regul. 2012, 67, 1–8. [Google Scholar] [CrossRef]
- Bogdanović, M.D.; Ćuković, K.B.; Subotić, A.R.; Dragićević, M.B.; Simonović, A.D.; Filipović, B.K.; Todorović, S.I. Secondary Somatic Embryogenesis in Centaurium erythraea Rafn. Plants 2021, 10, 199. [Google Scholar] [CrossRef] [PubMed]
- Tulecke, W.; McGranahan, G.H.; Leslie, C.A. Somatic embryogenesis in Walnut (Juglans Species). In Somatic Embryogenesis and Synthetic Seed I. Biotechnology in Agriculture and Forestry; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; Volume 30. [Google Scholar] [CrossRef]
- Te-chato, S.; Hilae, A. High-frequency plant regeneration through secondary somatic embryogenesis in oil palm (Elaeis guineensis Jacq. Var. tenera). J. Agric. Technol. 2007, 3, 345–357. [Google Scholar]
- Lardet, L.; Dessailly, F.; Carron, M.-P.; Montoro, P.; Monteuuis, O. Influences of aging and cloning methods on the capacity for somatic embryogenesis of a mature Hevea brasiliensis genotype. Tree Physiol. 2008, 29, 291–298. [Google Scholar] [CrossRef] [PubMed]
- Driver, J.A.; Kuniyuki, A.H. In Vitro Propagation of Paradox Walnut Rootstock. HortScience 1984, 19, 507–509. [Google Scholar] [CrossRef]
- Etienne, H.; Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 2002, 69, 215–231. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures. Physiol. Plant 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Puchtler, H.; Waldrop, F.S.; Conner, H.M.; Terry, M.S. Carnoy fixation: Practical and theoretical considerations. Histochem. 1968, 16, 361–371. [Google Scholar] [CrossRef]
- Bhojwani, S.S.; Razdan, M.K. Plant tissue culture: Theory and Practice, a Revised Edition. In Studies in Plant Science; Elsevier: Amsterdam, The Netherlands, 1996; Volume 5. [Google Scholar] [CrossRef]
- Santos, M.O.; Barros, E.V.S.A.; Tinoco, A.C.M.B.; Aragao, F.J.L. Repetitive somatic embryogenesis in cacao and optimization of gene expression by particle bombardment. J. Plant Biotechnol. 2002, 4, 71–76. [Google Scholar]
- Tan, C.; Furtek, D. Development of an in vitro regeneration system for Theobroma cacao from mature tissues. Plant Sci. 2003, 164, 407–412. [Google Scholar] [CrossRef]
- Issali, A.E.; Traore, A.; Koffi, E.K.; N’goran, J.A.K.; Sangare, A. Characterization of callogenic and embryogenic abilities of some genotypes of cocoa (Theobroma cacao L.) under selection in the Cote d’Ivoire. Biotechnology 2008, 7, 51–58. [Google Scholar] [CrossRef]
- da Silva, T.R.; Cidade, L.C.; Alvim, F.C.; Cascardo, J.C.d.M.; Costa, M.G.C. Somatic embryogenesis and plant regeneration in elite clones of Theobroma cacao. Pesqui. Agropecuária Bras. 2008, 43, 1433–1436. [Google Scholar] [CrossRef]
- Boutchouang, R.P.; Tchouatcheu, N.; Niemenak, N. Influence of the position of flowers buds on the tree on somatic embryogenesis of cocoa (Theobroma cacao L.). Int. J. Plant Physiol. Biochem. 2016, 8, 7–16. [Google Scholar]
- Magnaval, C.; Noirot, M.; Verdeil, J.; Blattes, A.; Huet, C.; Grosdemange, F.; Beulé, T.; Buffard-Morel, J. Specific nutritional requirements of coconut calli (Cocos nucifera L.) during somatic embryogenesis induction. J. Plant Physiol. 1997, 150, 719–728. [Google Scholar] [CrossRef]
- Winkelmann, T. Somatic Versus Zygotic embryogenesis: Learning from seeds. Maria Antonietta Germanà and Maurizio Lambardi. In In Vitro embryogenesis in Higher Plants, Methods in Molecular Biology; Springer: New York, NY, USA, 2016; Volume 1359, pp. 25–46. [Google Scholar] [CrossRef]
- Williams, E.G.; Maheswaran, G. Somatic embryogenesis: Factors Influencing Coordinated Behaviour of Cells as an embryogenic Group. Ann. Bot. 1986, 57, 443–462. [Google Scholar] [CrossRef]
- Dong, Y.S.; Fu, C.H.; Su, P.; Xu, X.P.; Yuan, J.; Wang, S.; Zhang, M.; Zhao, C.F.; Yu, L.J. Mechanisms and effective control of physiological browning phenomena in plant cell cultures. Physiol. Plant. 2016, 156, 13–28. [Google Scholar] [CrossRef]
- Horstman, A.; Bemer, M.; Boutilier, K. A transcriptional view on somatic embryogenesis. Regeneration 2017, 4, 201–216. [Google Scholar] [CrossRef]
- Gorbatenko, O.; Hakman, I. Desiccation-Tolerant Somatic Embryos of Norway Spruce (Picea abies) Can Be Produced in Liquid Cultures and Regenerated into Plantlets. Int. J. Plant Sci. 2001, 162, 1211–1218. [Google Scholar] [CrossRef]
- Von Arnold, S.; Sabala, I.; Bozhkov, P.; Dyachok, J.; Filonova, L. Developmental pathways of somatic embryogenesis. Plant Cell Tissue Organ Cult. 2002, 69, 233–249. [Google Scholar] [CrossRef]
- Ducos, J.-P.; Lambot, C.; Pétiard, V. Bioreactors for Coffee Mass Propagation by Somatic embryogenesis. Int. J. Plant Dev. Biol. 2007, 1, 1–12. [Google Scholar]
- Collin, H.A.; Edwards, S. Plant Cell Culture; BIOS Scientific Publisher: Oxford, UK; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Wann, S.R. Somatic Embryogenesis in Woody Species in Horticultural Reviews Volume 10; Janick, J., Ed.; Purdue University, Timber Press: Portland, OR, USA, 1988; pp. 153–177. [Google Scholar]
- Parrott, W.A. Auxin-stimulated somatic embryogenesis from immature cotyledons of white clover. Plant Cell Rep. 1991, 10, 17–21. [Google Scholar] [CrossRef] [PubMed]
- Quinga, L.A.P.; Fraga, H.P.d.F.; Vieira, L.D.N.; Guerra, M.P. Epigenetics of long-term somatic embryogenesis in Theobroma cacao L.: DNA methylation and recovery of embryogenic potential. Plant Cell Tissue Organ Cult. 2017, 131, 295–305. [Google Scholar] [CrossRef]
- Pinto, G.; Park, Y.-S.; Silva, S.; Neves, L.; Araújo, C.; Santos, C. Factors affecting maintenance, proliferation, and germination of secondary somatic embryos of Eucalyptus globulus Labill. Plant Cell Tissue Organ Cult. 2008, 95, 69–78. [Google Scholar] [CrossRef]
- Little, E.L.; Magbanua, Z.V.; Parrott, W.A. A protocol for repetitive somatic embryogenesis from mature peanut epicotyls. Plant Cell Rep. 2000, 19, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Vasic, D.; Alibert, G.; Skoric, D. Protocols for efficient repetitive and secondary somatic embryogenesis in Helianthus maximiliani (Schrader). Plant Cell Rep. 2001, 20, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Eldin, A.F.Z.; Ibrahim, H.A. Some biochemical changes and activities of antioxidant enzymes in developing date palm somatic and zygotic embryos in vitro. Ann. Agric. Sci. 2015, 60, 121–130. [Google Scholar] [CrossRef]
- Garcia, C.; de Almeida, A.-A.F.; Costa, M.; Britto, D.; Valle, R.; Royaert, S.; Marelli, J.-P. Abnormalities in somatic embryogenesis caused by 2,4-D: An overview. Plant Cell, Tissue Organ Cult. 2019, 137, 193–212. [Google Scholar] [CrossRef]
- Sondahl, M.R.; Sereduk, T.B.; Chen, Z.; Bellato, C.M.; Liu, S.J.; Bragin, C.H. Somatic Embryogenesis and Plant Re-Generation of cacao. US Patent #5.312.801, 17 May 1994. [Google Scholar]
- Garcia, C.; de Almeida, A.-A.F.; Costa, M.; Britto, D.; Correa, F.; Mangabeira, P.; Silva, L.; Silva, J.; Royaert, S.; Marelli, J.-P. Single-base resolution methylomes of somatic embryogenesis in Theobroma cacao L. reveal epigenome modifications associated with somatic embryo abnormalities. Sci. Rep. 2022, 12, 15097. [Google Scholar] [CrossRef]
- Guillou, C.; Fillodeau, A.; Brulard, E.; Verdier, D.; Simon, M.; Landmann, A.; Lausanne, F.; Fontanel, A.; Ducos, J.P.; Buchwalder, A.; et al. Nestlé Cocoa Plan: Cocoa propagation by somatic embryogenesis. In Proceedings of the 3rd International Conference of the IUFRO Unit 2.09.02 on Woody Plant Production Integrating Genetic and Vegetative Propagation Technologies, Vitoria-Gasteiz, Spain, 8–12 September 2014; Park, Y.S., Bonga, J.M., Eds.; pp. 75–80. [Google Scholar]
- Garin, E.; Grenier, E.; March, G.G.-D. Somatic embryogenesis in wild cherry (Prunus avium). Plant Cell Tissue Organ Cult. 1997, 48, 83–91. [Google Scholar] [CrossRef]
- Cailloux, F.; Julien-Guerrier, J.; Linossier, L.; Coudret, A. Long-term somatic embryogenesis and maturation of somatic embryos in Hevea brasiliensis. Plant Sci. 1996, 120, 185–196. [Google Scholar] [CrossRef]
- Atree, S.M.; Fowke, L.C. Micropropagation Through Somatic embryogenesis in Conifers. In Biotechnology in Agriculture and Forestry; High-Tech and Micro-Propagation I; Bajaj, Y.P.S., Ed.; Springer: Berlin/Heidelberg, Germany, 1991; Volume 17, pp. 53–70. [Google Scholar] [CrossRef]
- Jariteh, M.; Ebrahimzadeh, H.; Niknam, V.; Mirmasoumi, M.; Vahdati, K. Developmental changes of protein, proline and some antioxidant enzymes activities in somatic and zygotic embryos of Persian walnut (Juglans regia L.). Plant Cell Tissue Organ Cult. 2015, 122, 101–115. [Google Scholar] [CrossRef]
- Rengel, Z.; Jelaska, S. The effect of L-proline on somatic embryogenesis in long-term callus culture of Hordeum Vulgare. Acta Bot. Croat. 1986, 45, 71–75. [Google Scholar]
- Bradaï, F.; Pliego-Alfaro, F.; Sánchez-Romero, C. Long-term somatic embryogenesis in olive (Olea europaea L.): Influence on regeneration capability and quality of regenerated plants. Sci. Hortic. 2016, 199, 23–31. [Google Scholar] [CrossRef]
- Landey, R.B.; Cenci, A.; Guyot, R.; Bertrand, B.; Georget, F.; Dechamp, E.; Herrera, J.-C.; Aribi, J.; Lashermes, P.; Etienne, H. Assessment of genetic and epigenetic changes during cell culture ageing and relations with somaclonal variation in Coffea arabica. Plant Cell, Tissue Organ Cult. 2015, 122, 517–531. [Google Scholar] [CrossRef]
- Breton, D.; Harvengt, L.; Trontin, J.-F.; Bouvet, A.; Favre, J.-M. Long-term subculture randomly affects morphology and subsequent maturation of early somatic embryos in maritime pine. Plant Cell Tissue Organ Cult. 2006, 87, 95–108. [Google Scholar] [CrossRef]
- Jain, S.M.; Brar, D.S.; Ahloowalia, B.S. (Eds.) Somaclonal Variation and Induced Mutations in Crop Improvement, vol. 32. In Current Plant Science and Biotechnology in Agriculture; Springer: Dordrecht, The Netherlands, 1998; Volume 32. [Google Scholar] [CrossRef]
- George, E.F.; Hall, M.A.; De Klerk, G.J. (Eds.) Plant Propagation by Tissue Culture, 3rd ed.; Springer: Dordrecht, The Netherlands, 2008; pp. 355–401. [Google Scholar]
- Dunstan, D.I.; Bethune, T.D. Variability in maturation and germination from white spruce somatic embryos, as affected by age and use of solid or liquid culture. Vitr. Cell. Dev. Biol. Plant 1996, 32, 165–170. [Google Scholar] [CrossRef]
- Fang, J.-Y.; Wetten, A.; Adu-Gyamfi, R. Use of secondary somatic embryos promotes genetic fidelity in cryopreservation of cocoa (Theobroma cacao L.). Agric. Food Sci. 2008, 18, 152–159. [Google Scholar] [CrossRef]
Clones | Explant | 2,4-D (mg/L) | Average of Calluses Producing SEs (%) | Number of Calluses Producing SEs | Total Number SEs |
---|---|---|---|---|---|
SUL2 | Petal | 1 | 10 bc ± 8.1 | 3 | Browning |
Staminode | 16.67 ab ± 4.7 | 5 | 13 | ||
Petal | 2 | 13.3 abc ± 4.7 | 4 | 17 direct SE then browning | |
Staminode | 23.3 a ± 4.7 | 6 | 24 |
Medium | 2,4-D Explant mg/L | Number of Calluses Cultured | Average of Calluses Producing SEs (%) | Number of Calluses Producing SEs | Total Number of SEs | Average No. of SEs per Callus | |
---|---|---|---|---|---|---|---|
Staminode | 5 | 30 | 3 | 10 | 5 | ||
Semi-solid | 1 | Petal | 5 | 20 | 2 | 5 | 2.5 |
Staminode | 5 | 30 | 3 | 7 | 3.5 | ||
2 | Petal | 5 | 20 | 2 | 4 | 2 | |
Staminode | 5 | 40 | 4 | 12 | 6 | ||
Liquid | 1 | Petal | 5 | 20 | 2 | 7 | 3.5 |
Staminode | 5 | 40 | 4 | 14 | 7 | ||
2 | Petal | 5 | 30 | 3 | 13 | 6.5 | |
Staminode | 5 | 50 | 5 | 31 | 15.5 |
Explant | Treatment | Percentage of Embryogenic Tissue (%) | Number of Calluses Producing SSEs | Total Number of SSEs | Average Number of SSEs |
---|---|---|---|---|---|
Cotyledon | 1 mgL−1 proline | 0 c | 0.0 | 0.0 | 0.0 |
fragment | 2 mgL−1 proline | 0 c | 0.0 | 0.0 | 0.0 |
1 mgL−1 2,4,5-T | 53.3 a | 16 | 62 | 3.9 | |
1 mgL−1 2,4,5-T + 1 mgL−1 proline | 46.6 a | 14 | 69 | 4.9 | |
1 mgL−1 2,4,5-T + 2 mgL−1 proline | 43.3 a | 13 | 54 | 4.2 | |
2 mgL−1 2,4,5-T | 0 c | 0 | 0 | 0 | |
2 mgL−1 2,4,5-T + 1 mgL−1 proline | 3.3 c | 1 | 2 | 0 | |
2 mgL−1 2,4,5-T + 2 mgL−1 proline | 3.3 c | 1 | 1 | 0 | |
Hypocotyl | 1 mgL−1 proline | 0 c | 0.0 | 0.0 | 0.0 |
fragment | 2 mgL−1 proline | 0 c | 0.0 | 0.0 | 0.0 |
1 mgL−1 2,4,5-T | 26.6 b | 8 | 29 | 3.6 | |
1 mgL−1 2,4,5-T + 1 mgL−1 proline | 30 b | 9 | 35 | 3.9 | |
1 mgL−1 2,4,5-T + 2 mgL−1 proline | 23.3 b | 7 | 26 | 3.7 | |
2 mgL−1 2,4,5-T | 0 c | 0 | 0 | 0 | |
2 mgL−1 2,4,5-T + 1 mgL−1 proline | 0 c | 1 | 2 | 0 | |
2 mgL−1 2,4,5-T + 2 mgL−1 proline | 0 c | 0 | 0 | 0 |
Explant | Treatment | Total Number SSEs | Percentage Milky SSEs (%) | Percentage Translucent SSEs (%) | Percentage Abnormal SSEs (%) |
---|---|---|---|---|---|
Cotyledon | 1 mgL−1 proline | 0 | 0 | 0 | 0 |
2 mgL−1 proline | 0 | 0 | 0 | 0 | |
1 mgL−1 2,4,5-T | 52 | 30.8 | 40.4 | 28.8 | |
1 mgL−1 2,4,5-T + 1 mgL−1 proline | 66 | 47.0 | 37.9 | 15.2 | |
1 mgL−1 2,4,5-T + 2 mgL−1 proline | 60 | 45.0 | 31.7 | 23.3 | |
2 mgL−1 2,4,5-T | 0 | 0 | 0 | 0.0 | |
2 mgL−1 2,4,5-T + 1 mgL−1 proline | 0 | 0 | 0 | 0.0 | |
2 mgL−1 2,4,5-T + 2 mgL−1 proline | 0 | 0 | 0 | 0.0 | |
Hypocotyl | 1 mgL−1 proline | 0 | 0.0 | 0.0 | 0.0 |
2 mgL−1 proline | 0 | 0.0 | 0.0 | 0.0 | |
1 mgL−1 2,4,5-T | 37 | 21.6 | 48.6 | 29.73 | |
1 mgL−1 2,4,5-T + 1 mgL−1 proline | 43 | 46.5 | 34.9 | 18.60 | |
1 mgL−1 2,4,5-T + 2 mgL−1 proline | 37 | 43.2 | 37.8 | 18.92 | |
2 mgL−1 2,4,5-T | 0 | 0 | 0 | 0 | |
2 mgL−1 2,4,5-T + 1 mgL−1 proline | 0 | 0 | 0 | 0 | |
2 mgL−1 2,4,5-T + 2 mgL−1 proline | 0 | 0 | 0 | 0 |
Cyclic Somatic Embryogenesis | ||||||||
---|---|---|---|---|---|---|---|---|
Primary SE | Secondary SE | Tertiary SE | Quarternary SE | |||||
Petal | Staminode | Cotyledon | Hypocotyl | Cotyledon | Hypocotyl | Cotyledon | Hypocotyl | |
Total number SEs | 13.0 | 52.0 | 202.0 | 31.0 | 169.0 | 53.0 | 148.0 | 62.0 |
Milky Embryo | 30.8 | 25.0 | 67.8 | 51.6 | 50.9 | 56.6 | 49.3 | 45.2 |
Translucent | 46.2 | 40.4 | 21.8 | 29.0 | 31.4 | 34.0 | 31.1 | 30.6 |
Abnormal embryo | 23.1 | 34.6 | 10.4 | 19.4 | 17.8 | 26.4 | 19.6 | 24.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bustami, M.U.; Werbrouck, S.P.O. Cyclic Somatic Embryogenesis in Indonesian Elite Theobroma cacao L. Clones. Horticulturae 2024, 10, 24. https://doi.org/10.3390/horticulturae10010024
Bustami MU, Werbrouck SPO. Cyclic Somatic Embryogenesis in Indonesian Elite Theobroma cacao L. Clones. Horticulturae. 2024; 10(1):24. https://doi.org/10.3390/horticulturae10010024
Chicago/Turabian StyleBustami, Mirni Ulfa, and Stefaan P. O. Werbrouck. 2024. "Cyclic Somatic Embryogenesis in Indonesian Elite Theobroma cacao L. Clones" Horticulturae 10, no. 1: 24. https://doi.org/10.3390/horticulturae10010024
APA StyleBustami, M. U., & Werbrouck, S. P. O. (2024). Cyclic Somatic Embryogenesis in Indonesian Elite Theobroma cacao L. Clones. Horticulturae, 10(1), 24. https://doi.org/10.3390/horticulturae10010024