Anaerobic Co-Digestion of Agricultural Residues Produced in Southern and Northern Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Anaerobic Digestion Feedstock and Inoculum
2.2. Experimental Configuration
2.3. Measurement of Biogas Production
2.4. Start-Up of the CSTR Reactors
2.5. Tested Runs
2.6. Analytical Methods
3. Results and Discussion
3.1. Northern Greece
3.1.1. Solids’ Decomposition
3.1.2. Carbohydrates Consumption
3.1.3. COD Removal
3.1.4. VFAs/Ethanol Concentration and pH
3.1.5. Biogas and Methane Production
3.2. Southern Greece
3.2.1. Solids’ Decomposition
3.2.2. Carbohydrates Consumption
3.2.3. Soluble Phenolic Compounds
3.2.4. COD Removal, VFAs/Ethanol Concentration, and pH
3.2.5. Biogas and Methane Production
3.3. Proposed Systems Operation and Further Investigation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Qazi, A.; Hussain, F.; Rahim, N.A.B.D.; Hardaker, G.; Alghazzawi, D.; Shaban, K.; Haruna, K. Towards Sustainable Energy: A Systematic Review of Renewable Energy Sources, Technologies, and Public Opinions. IEEE Access 2019, 7, 63837–63851. [Google Scholar] [CrossRef]
- Alatzas, S.; Moustakas, K.; Malamis, D.; Vakalis, S. Biomass Potential from Agricultural Waste for Energetic Utilization in Greece. Energies 2019, 12, 1095. [Google Scholar] [CrossRef] [Green Version]
- Aravani, V.P.; Tsigkou, K.; Papadakis, V.G.; Kornaros, M. Biochemical Μethane Potential of Most Promising Agricultural Residues in Northern and Southern Greece. Chemosphere 2022, 296, 133985. [Google Scholar] [CrossRef] [PubMed]
- Moustakas, K.; Parmaxidou, P.; Vakalis, S. Anaerobic Digestion for Energy Production from Agricultural Biomass Waste in Greece: Capacity Assessment for the Region of Thessaly. Energy 2020, 191, 116556. [Google Scholar] [CrossRef]
- Liu, Y.; He, Y.; Wang, Z.; Xia, J.; Wan, K.; Whiddon, R.; Cen, K. Characteristics of Alkali Species Release from a Burning Coal/Biomass Blend. Appl. Energy 2018, 215, 523–531. [Google Scholar] [CrossRef] [Green Version]
- European Environmental Agency. Share of Energy Consumption from Renewable Sources in Europe; European Environmental Agency: Copenhagen, Denmark, 2021. [Google Scholar]
- Hosseini, S.E. An Outlook on the Global Development of Renewable and Sustainable Energy at the Time of COVID-19. Energy Res. Soc. Sci. 2020, 68, 101633. [Google Scholar] [CrossRef] [PubMed]
- European Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009, 5, 2009. [Google Scholar]
- EU Agenda. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. Off. J. Eur. Union 2018, 5, 82–209. [Google Scholar]
- European Commission. EU Proposal for a DIRECTIVE OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL Amending Directive (EU) 2018/2001 of the European Parliament and of the Council, Regulation (EU) 2018/1999 of the European Parliament and of the Council and Directive 98/70/EC of the European Parliament and of the Council as Regards the Promotion of Energy from Renewable Sources, and Repealing Council Directive (EU) 2015/652 2021. European Commission: Brussels, Belgium, 2021. [Google Scholar]
- Maragkaki, A.E.; Kotrotsios, T.; Samaras, P.; Manou, A.; Lasaridi, K.; Manios, T. Quantitative and Qualitative Analysis of Biomass from Agro-Industrial Processes in the Central Macedonia Region, Greece. Waste Biomass Valorization 2016, 7, 383–395. [Google Scholar] [CrossRef]
- Lopresto, C.G.; Paletta, R.; Filippelli, P.; Galluccio, L.; de la Rosa, C.; Amaro, E.; Jáuregui-Haza, U.; de Frias, J.A. Sargassum Invasion in the Caribbean: An Opportunity for Coastal Communities to Produce Bioenergy Based on Biorefinery—An Overview. Waste Biomass Valorization 2022, 2769–2793. [Google Scholar]
- Rabii, A.; Aldin, S.; Dahman, Y.; Elbeshbishy, E. A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration. Energies 2019, 12, 1106. [Google Scholar]
- Lohani, S.P.; Havukainen, J. Anaerobic Digestion: Factors Affecting Anaerobic Digestion Process. In Waste Bioremediation; Springer: Singapore, 2018; pp. 343–359. [Google Scholar]
- Liu, N.; Jiang, J. Valorisation of Food Waste Using Salt to Alleviate Inhibition by Animal Fats and Vegetable Oils during Anaerobic Digestion. Biomass Bioenergy 2020, 143, 105826. [Google Scholar]
- Tsigkou, K.; Tsafrakidou, P.; Kopsahelis, A.; Zagklis, D.; Zafiri, C.; Kornaros, M. Used Disposable Nappies and Expired Food Products Valorisation through One-& Two-Stage Anaerobic Co-Digestion. Renew Energy 2020, 147, 610–619. [Google Scholar]
- Dareioti, M.A.; Kornaros, M. Effect of Hydraulic Retention Time (HRT) on the Anaerobic Co-Digestion of Agro-Industrial Wastes in a Two-Stage CSTR System. Bioresour Technol 2014, 167, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Mao, C.; Feng, Y.; Wang, X.; Ren, G. Review on Research Achievements of Biogas from Anaerobic Digestion. Renewable and sustainable energy reviews 2015, 45, 540–555. [Google Scholar]
- Bi, S.; Hong, X.; Yang, H.; Yu, X.; Fang, S.; Bai, Y.; Liu, J.; Gao, Y.; Yan, L.; Wang, W. Effect of Hydraulic Retention Time on Anaerobic Co-Digestion of Cattle Manure and Food Waste. Renew Energy 2020, 150, 213–220. [Google Scholar]
- Han, Y.; Green, H.; Tao, W. Reversibility of Propionic Acid Inhibition to Anaerobic Digestion: Inhibition Kinetics and Microbial Mechanism. Chemosphere 2020, 255, 126840. [Google Scholar] [CrossRef] [PubMed]
- Cortesi, A.; Gallo, V.; Solinas, D.; Vitanza, R. Assessing the Synergistic Effects of Co-Digestion of Maize Silage and Red Chicory Waste. Chem Biochem Eng Q 2018, 32, 383–390. [Google Scholar] [CrossRef]
- Tsigkou, K.; Zagklis, D.; Parasoglou, M.; Zafiri, C.; Kornaros, M. Proposed Protocol for Rate-Limiting Step Determination during Anaerobic Digestion of Complex Substrates. Bioresour Technol 2022, 361, 127660. [Google Scholar] [CrossRef]
- Lukitawesa; Patinvoh, R.J.; Millati, R.; Sarvari-Horvath, I.; Taherzadeh, M.J. Factors Influencing Volatile Fatty Acids Production from Food Wastes via Anaerobic Digestion. Bioengineered 2020, 11, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Tsigkou, K.; Sakarika, M.; Kornaros, M. Inoculum Origin and Waste Solid Content Influence the Biochemical Methane Potential of Olive Mill Wastewater under Mesophilic and Thermophilic Conditions. Biochem Eng. J. 2019, 151, 107301. [Google Scholar] [CrossRef]
- Zakoura, M.; Kopsahelis, A.; Tsigkou, K.; Ntougias, S.; Ali, S.S.; Kornaros, M. Performance Evaluation of Three Mesophilic Upflow Anaerobic Sludge Blanket Bioreactors Treating Olive Mill Wastewater: Flocculent and Granular Inocula Tests, Organic Loading Rate Effect and Anaerobic Consortia Structure. Fuel 2022, 313, 122951. [Google Scholar] [CrossRef]
- Tsigkou, K.; Kornaros, M. Development of a High-Rate Anaerobic Thermophilic Upflow Packed Bed Reactor for Efficient Bioconversion of Diluted Three-Phase Olive Mill Wastewater into Methane. Fuel 2022, 310, 122263. [Google Scholar] [CrossRef]
- Aravani, V.P.; Sun, H.; Yang, Z.; Liu, G.; Wang, W.; Anagnostopoulos, G.; Syriopoulos, G.; Charisiou, N.D.; Goula, M.A.; Kornaros, M. Agricultural and Livestock Sector’s Residues in Greece & China: Comparative Qualitative and Quantitative Characterization for Assessing Their Potential for Biogas Production. Renew. Sustain. Energy Rev. 2022, 154, 111821. [Google Scholar]
- Aravani, V.P.; Tsigkou, K.; Kornaros, M.; Papadakis, V.G. Laboratory Analyses for Assessing the Potential for Biogas Production of Various Agricultural Residues in Greece. Agron. Res. 2021, 19, 1339–1350. [Google Scholar]
- Dareioti, M.A.; Vavouraki, A.I.; Tsigkou, K.; Kornaros, M. Assessment of Single-vs. Two-Stage Process for the Anaerobic Digestion of Liquid Cow Manure and Cheese Whey. Energies 2021, 14, 5423. [Google Scholar] [CrossRef]
- Nkuna, R.; Roopnarain, A.; Rashama, C.; Adeleke, R. Insights into Organic Loading Rates of Anaerobic Digestion for Biogas Production: A Review. Crit Rev Biotechnol 2022, 42, 487–507. [Google Scholar] [CrossRef]
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 20th ed.American Public Health Association: Washington DC, USA, 2012. [Google Scholar]
- Joseffson, B. Rapid Spectrophotometric Determination of Total Carbohydrates. Methods of seawater analysis; Wiley-VCH: Weinheim, Germany, 1983; pp. 340–342. [Google Scholar]
- Lamuela-Raventós, R.M. Folin-Ciocalteu Method for the Measurement of Total Phenolic Content and Antioxidant Capacity. Measurement of Antioxidant Activity & Capacity: Recent Trends and Applications; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; pp. 107–115. [Google Scholar]
- Tsigkou, K.; Terpou, A.; Treu, L.; Kougias, P.G.; Kornaros, M. Thermophilic Anaerobic Digestion of Olive Mill Wastewater in an Upflow Packed Bed Reactor: Evaluation of 16S RRNA Amplicon Sequencing for Microbial Analysis. J. Environ. Manage 2022, 301, 113853. [Google Scholar] [CrossRef]
- Wang, W.; Lee, D.-J. Valorization of Anaerobic Digestion Digestate: A Prospect Review. Bioresour Technol. 2021, 323, 124626. [Google Scholar]
- Tsigkou, K.; Zagklis, D.; Tsafrakidou, P.; Zafiri, C.; Kornaros, M. Composting of Anaerobic Sludge from the Co-Digestion of Used Disposable Nappies and Expired Food Products. Waste Management 2020, 118, 655–666. [Google Scholar] [CrossRef]
- Pakarinen, A.; Kymalainen, M.; Stoddard, F.L.; Viikari, L. Conversion of Carbohydrates in Herbaceous Crops during Anaerobic Digestion. J. Agric. Food Chem. 2012, 60, 7934–7940. [Google Scholar] [PubMed]
- Jo, Y.; Kim, J.; Hwang, K.; Lee, C. A Comparative Study of Single-and Two-Phase Anaerobic Digestion of Food Waste under Uncontrolled PH Conditions. Waste Management 2018, 78, 509–520. [Google Scholar] [CrossRef]
- de Jonge, N.; Moset, V.; Møller, H.B.; Nielsen, J.L. Microbial Population Dynamics in Continuous Anaerobic Digester Systems during Start up, Stable Conditions and Recovery after Starvation. Bioresour Technol. 2017, 232, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Han, G.; Shin, S.G.; Koo, T.; Cho, K.; Kim, W.; Hwang, S. Seasonal Monitoring of Bacteria and Archaea in a Full-Scale Thermophilic Anaerobic Digester Treating Food Waste-Recycling Wastewater: Correlations between Microbial Community Characteristics and Process Variables. Chem. Eng. J. 2016, 300, 291–299. [Google Scholar]
- Veeken, A.; Kalyuzhnyi, S.; Scharff, H.; Hamelers, B. Effect of PH and VFA on Hydrolysis of Organic Solid Waste. J. Environ. Eng. 2000, 126, 1076–1081. [Google Scholar] [CrossRef] [Green Version]
- Franke-Whittle, I.H.; Walter, A.; Ebner, C.; Insam, H. Investigation into the Effect of High Concentrations of Volatile Fatty Acids in Anaerobic Digestion on Methanogenic Communities. Waste Manag. 2014, 34, 2080–2089. [Google Scholar]
- Murto, M.; Björnsson, L.; Mattiasson, B. Impact of Food Industrial Waste on Anaerobic Co-Digestion of Sewage Sludge and Pig Manure. J. Environ. Manage 2004, 70, 101–107. [Google Scholar] [CrossRef]
- Neshat, S.A.; Mohammadi, M.; Najafpour, G.D.; Lahijani, P. Anaerobic Co-Digestion of Animal Manures and Lignocellulosic Residues as a Potent Approach for Sustainable Biogas Production. Renew. Sustain. Energy Rev. 2017, 79, 308–322. [Google Scholar]
- Comino, E.; Rosso, M.; Riggio, V. Investigation of Increasing Organic Loading Rate in the Co-Digestion of Energy Crops and Cow Manure Mix. Bioresour Technol. 2010, 101, 3013–3019. [Google Scholar]
- Koutra, E.; Mastropetros, S.G.; Ali, S.S.; Tsigkou, K.; Kornaros, M. Assessing the Potential of Chlorella Vulgaris for Valorization of Liquid Digestates from Agro-Industrial and Municipal Organic Wastes in a Biorefinery Approach. J. Clean Prod. 2021, 280, 124352. [Google Scholar] [CrossRef]
- Pourbafrani, M.; Talebnia, F.; Niklasson, C.; Taherzadeh, M.J. Protective Effect of Encapsulation in Fermentation of Limonene-Contained Media and Orange Peel Hydrolyzate. Int. J. Mol. Sci. 2007, 8, 777–787. [Google Scholar] [CrossRef] [Green Version]
- Hussain, Z.; Sajjad, W.; Khan, T.; Wahid, F. Production of Bacterial Cellulose from Industrial Wastes: A Review. Cellulose 2019, 26, 2895–2911. [Google Scholar]
- Fathy, S.A.; Mahmoud, A.E.; Rashad, M.M.; Ezz, M.K.; Mohammed, A.T. Improving the Nutritive Value of Olive Pomace by Solid State Fermentation of Kluyveromyces Marxianus with Simultaneous Production of Gallic Acid. Int. J. Recycl. Org. Waste Agric. 2018, 7, 135–141. [Google Scholar]
- Sygouni, V.; Pantziaros, A.G.; Iakovides, I.C.; Sfetsa, E.; Bogdou, P.I.; Christoforou, E.A.; Paraskeva, C.A. Treatment of Two-Phase Olive Mill Wastewater and Recovery of Phenolic Compounds Using Membrane Technology. Membranes 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pantziaros, A.G.; Trachili, X.A.; Zentelis, A.D.; Sygouni, V.; Paraskeva, C.A. A New Olive Oil Production Scheme with Almost Zero Wastes. Biomass Convers Biorefin. 2021, 11, 547–557. [Google Scholar] [CrossRef]
- Huzir, N.M.; Aziz, M.M.A.; Ismail, S.B.; Abdullah, B.; Mahmood, N.A.N.; Umor, N.A.; Muhammad, S.A.F.S. Agro-Industrial Waste to Biobutanol Production: Eco-Friendly Biofuels for next Generation. Renew. Sustain. Energy Rev. 2018, 94, 476–485. [Google Scholar] [CrossRef]
- Zhu, Q.-L.; Wu, B.; Pisutpaisal, N.; Wang, Y.-W.; Ma, K.; Dai, L.-C.; Qin, H.; Tan, F.-R.; Maeda, T.; Xu, Y. Bioenergy from Dairy Manure: Technologies, Challenges and Opportunities. Sci. Total Environ. 2021, 790, 148199. [Google Scholar]
- Milledge, J.J.; Nielsen, B.V.; Harvey, P.J. The Inhibition of Anaerobic Digestion by Model Phenolic Compounds Representative of Those from Sargassum Muticum. J. Appl. Phycol. 2019, 31, 779–786. [Google Scholar]
- Vavouraki, A.I.; Dareioti, M.A.; Kornaros, M. Olive Mill Wastewater (OMW) Polyphenols Adsorption onto Polymeric Resins: Part i—Batch Anaerobic Digestion of OMW. Waste Biomass Valorization 2021, 12, 2271–2281. [Google Scholar]
- Delgenès, J.-P.; Moletta, R.; Navarro, J.M. Effects of Lignocellulose Degradation Products on Ethanol Fermentations of Glucose and Xylose by Saccharomyces Cerevisiae, Zymomonas Mobilis, Pichia Stipitis, and Candida Shehatae. Enzyme Microb. Technol. 1996, 19, 220–225. [Google Scholar] [CrossRef]
- Monlau, F.; Sambusiti, C.; Barakat, A.; Quéméneur, M.; Trably, E.; Steyer, J.-P.; Carrère, H. Do Furanic and Phenolic Compounds of Lignocellulosic and Algae Biomass Hydrolyzate Inhibit Anaerobic Mixed Cultures? A Comprehensive Review. Biotechnol. Adv. 2014, 32, 934–951. [Google Scholar]
- Lim, J.W.; Park, T.; Tong, Y.W.; Yu, Z. The Microbiome Driving Anaerobic Digestion and Microbial Analysis. In Advances in Bioenergy; Elsevier: Amsterdam, The Netherlands, 2020; Volume 5, pp. 1–61. ISBN 2468-0125. [Google Scholar]
- Wan, S.; Sun, L.; Douieb, Y.; Sun, J.; Luo, W. Anaerobic Digestion of Municipal Solid Waste Composed of Food Waste, Wastepaper, and Plastic in a Single-Stage System: Performance and Microbial Community Structure Characterization. Bioresour Technol. 2013, 146, 619–627. [Google Scholar]
- Zhao, J.; Westerholm, M.; Qiao, W.; Yin, D.; Bi, S.; Jiang, M.; Dong, R. Impact of Temperature and Substrate Concentration on Degradation Rates of Acetate, Propionate and Hydrogen and Their Links to Microbial Community Structure. Bioresour Technol. 2018, 256, 44–52. [Google Scholar] [CrossRef] [PubMed]
- Calabrò, P.S.; Panzera, M.F. Anaerobic Digestion of Ensiled Orange Peel Waste: Preliminary Batch Results. Therm. Sci. Eng. Prog. 2018, 6, 355–360. [Google Scholar]
- Zema, D.A.; Fòlino, A.; Zappia, G.; Calabrò, P.S.; Tamburino, V.; Zimbone, S.M. Anaerobic Digestion of Orange Peel in a Semi-Continuous Pilot Plant: An Environmentally Sound Way of Citrus Waste Management in Agro-Ecosystems. Sci. Total Environ. 2018, 630, 401–408. [Google Scholar] [CrossRef] [PubMed]
- Wikandari, R.; Nguyen, H.; Millati, R.; Niklasson, C.; Taherzadeh, M.J. Improvement of Biogas Production from Orange Peel Waste by Leaching of Limonene. Biomed Res. Int. 2015, 2015, 494182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouaita, R.; Derbal, K.; Panico, A.; Iasimone, F.; Pontoni, L.; Fabbricino, M.; Pirozzi, F. Methane Production from Anaerobic Co-Digestion of Orange Peel Waste and Organic Fraction of Municipal Solid Waste in Batch and Semi-Continuous Reactors. Biomass Bioenergy 2022, 160, 106421. [Google Scholar] [CrossRef]
- Varol, A.; Ugurlu, A. Comparative Evaluation of Biogas Production from Dairy Manure and Co-digestion with Maize Silage by CSTR and New Anaerobic Hybrid Reactor. Eng. Life Sci. 2017, 17, 402–412. [Google Scholar]
- EL-Nwsany, R.I.; Maarouf, I.; Abd el-Aal, W. Water Management as a Vital Factor for a Sustainable School. Alex. Eng. J. 2019, 58, 303–313. [Google Scholar] [CrossRef]
- Amin, F.R.; Khalid, H.; Zhang, H.; Zhang, R.; Liu, G.; Chen, C. Pretreatment Methods of Lignocellulosic Biomass for Anaerobic Digestion. AMB Express 2017, 7, 72. [Google Scholar]
- Lopresto, C.G.; Verardi, A.; Nicoletti, C.; Mukherjee, D.; Calabro, V.; Chakraborty, S.; Curcio, S. Technological Aspects of Lignocellulose Conversion into Biofuels: Key Challenges and Practical Solutions. In Sustainable Biotechnology-Enzymatic Resources of Renewable Energy; Springer: Cham, Switzerland, 2018; pp. 117–154. [Google Scholar]
- Wagner, A.O.; Schwarzenauer, T.; Illmer, P. Improvement of Methane Generation Capacity by Aerobic Pre-Treatment of Organic Waste with a Cellulolytic Trichoderma Viride Culture. J. Environ. Manage 2013, 129, 357–360. [Google Scholar] [CrossRef]
- Lim, J.W.; Wang, J.-Y. Enhanced Hydrolysis and Methane Yield by Applying Microaeration Pretreatment to the Anaerobic Co-Digestion of Brown Water and Food Waste. Waste Management 2013, 33, 813–819. [Google Scholar] [CrossRef] [PubMed]
- Verardi, A.; Lopresto, C.G.; Blasi, A.; Chakraborty, S.; Calabrò, V. Bioconversion of Lignocellulosic Biomass to Bioethanol and Biobutanol. In Lignocellulosic biomass to liquid biofuels; Elsevier: Amsterdam, The Netherlands, 2020; pp. 67–125. [Google Scholar]
- Yu, Q.; Liu, R.; Li, K.; Ma, R. A Review of Crop Straw Pretreatment Methods for Biogas Production by Anaerobic Digestion in China. Renew. Sustain. Energy Rev. 2019, 107, 51–58. [Google Scholar] [CrossRef]
- Wen, B.; Yuan, X.; Li, Q.X.; Liu, J.; Ren, J.; Wang, X.; Cui, Z. Comparison and Evaluation of Concurrent Saccharification and Anaerobic Digestion of Napier Grass after Pretreatment by Three Microbial Consortia. Bioresour Technol. 2015, 175, 102–111. [Google Scholar] [CrossRef] [PubMed]
- Lindmark, J.; Thorin, E.; Fdhila, R.B.; Dahlquist, E. Effects of Mixing on the Result of Anaerobic Digestion. Renew. Sustain. Energy Rev. 2014, 40, 1030–1047. [Google Scholar] [CrossRef]
Northern Greece | |||||||
---|---|---|---|---|---|---|---|
Run | I | II | III | IV | V | VI | VII |
Feed (mL/d) | 37.5 | 37.5 | 37.5 | 37.5 | 37.5 | 50 | 75 |
OLR (g COD/(L·d)) | 2 | 1.5 | 2.5 | 3 | 3.5 | 5 | 7 |
HRT (d) | 20 | 20 | 20 | 20 | 20 | 15 | 10 |
Southern Greece | |||||||
Run | I | II | III | IV | V | VI | - |
Feed (mL/d) | 37.5 | 37.5 | 37.5 | 37.5 | 37.5 | 37.5 | - |
OLR (g COD/(L·d)) | 2 | 1.5 | 2 | 2.5 | 2 | 2.5 | - |
HRT (d) | 20 | - |
Greece | Run | Particulate COD (g/L) | Dissolved COD (g/L) | Total COD Removal (%) | Methane Content (%) | Methane Yield (L CH4/g VSadded) |
---|---|---|---|---|---|---|
North | I | 38.6 ± 7.3 A | 15.8 ± 1.4 B | - | 54.0 ± 4.0 A | 0.30 ± 0.02 C |
II | 19.8 ± 1.3 C | 5.2 ± 0.6 C | 28.0 ± 7.1 B,C | 54.5 ± 1.5 A | 0.53 ± 0.06 A,B | |
III | 28.9 ± 1.8 B | 5.1 ± 0.8 C | 45.2 ± 2.8 A | 52.6 ± 2.1 A | 0.44 ± 0.06 B | |
IV | 34.6 ± 1.8 A, B | 6.0 ± 1.2 C | 43.5 ± 3.9 A | 53.9 ± 0.7 A | 0.50 ± 0.01 A,B | |
V | 38.9 ± 2.3 A | 12.8 ± 1.3 B | 36.3 ± 2.6 A,B | 53.9 ± 0.8 A | 0.51 ± 0.04 A,B | |
VI | 28.5 ± 3.1 B | 22.1 ± 3.3 A | 39.0 ± 2.6 A | 56.7 ± 2.2 A | 0.57 ± 0.02 A | |
VII | 36.8 ± 2.6 A | 25.4 ± 1.8 A | 22.1 ± 3.1 C | 56.7 ± 2.2 B | 0.19 ± 0.07 D | |
F-Value | 16.22 | 96.31 | 20.15 | 6.72 | 40.37 | |
p-Value | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | |
South Fall/winter | I | 44.2 ± 2.9 A | 17.5 ± 1.5 A | - | 47.1 ± 4.2 A | 0.27 ± 0.04 B |
II | 17.9 ± 2.1 C | 5.2 ± 1.0 D | 33.5 ± 7.1 B | 51.1 ± 2.1 A | 0.37 ± 0.03 A | |
III | 18.7 ± 1.5 C | 4.5 ± 1.1 D | 37.7 ± 3.3 B | 51.3 ± 2.1 A | 0.26 ± 0.04 B | |
IV | 19.4 ± 0.4 B,C | 4.7 ± 0.7 D | 47.8 ± 1.6 A | 48.7 ± 2.3 A | 0.20 ± 0.05 B,C | |
V | 20.8 ± 0.8 B,C | 9.1 ± 0.7 C | 23.6 ± 4.6 C | 47.1 ± 3.5 A | 0.21 ± 0.11 B,C | |
VI | 23.2 ± 1.1 B | 13.2 ± 0.4 B | 30.8 ± 2.8 B,C | 46.2 ± 2.4 A | 0.15 ± 0.06 C | |
F-Value | 142.81 | 123.33 | 17.19 | 2.30 | 13.07 | |
p-Value | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aravani, V.P.; Tsigkou, K.; Papadakis, V.G.; Wang, W.; Kornaros, M. Anaerobic Co-Digestion of Agricultural Residues Produced in Southern and Northern Greece. Fermentation 2023, 9, 131. https://doi.org/10.3390/fermentation9020131
Aravani VP, Tsigkou K, Papadakis VG, Wang W, Kornaros M. Anaerobic Co-Digestion of Agricultural Residues Produced in Southern and Northern Greece. Fermentation. 2023; 9(2):131. https://doi.org/10.3390/fermentation9020131
Chicago/Turabian StyleAravani, Vasiliki P., Konstantina Tsigkou, Vagelis G. Papadakis, Wen Wang, and Michael Kornaros. 2023. "Anaerobic Co-Digestion of Agricultural Residues Produced in Southern and Northern Greece" Fermentation 9, no. 2: 131. https://doi.org/10.3390/fermentation9020131