Valorization of Macroalgae through Fermentation for Aquafeed Production: A Review
Abstract
:1. Introduction
2. Alternative Sources to Fishmeal and Fish Oil
2.1. Fisheries By-Product
2.2. Animal By-Product
2.3. Plant Based Product
2.4. Food Waste
2.5. Insect Based Product
2.6. Microbial Based Product
2.7. Macroalgae as Alternative Source
3. Research Gaps
4. Nutritional Studies of Fermented Macroalgae in Aquaculture
4.1. Protein Content
4.2. Carbohydrate Content
4.3. Lipid Content
4.4. Ash Content
4.5. Other Compounds
5. In Vivo Testing of Fermented Macroalgae in Aquaculture
6. Limitations from Current Studies and Challenges
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Troell, M.; Naylor, R.L.; Metian, M.; Beveridge, M.; Tyedmers, P.H.; Folke, C.; Arrow, K.J.; Barrett, S.; Crépin, A.S.; Ehrlich, P.R.; et al. Does Aquaculture Add Resilience to the Global Food System? Proc. Natl. Acad. Sci. USA 2014, 111, 13257–13263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tacon, A.G.J. Trends in Global Aquaculture and Aquafeed Production: 2000–2017. Rev. Fish. Sci. Aquac. 2019, 28, 1–14. [Google Scholar] [CrossRef]
- Tacon, A.G.J.; Hasan, M.R.; Metian, M. Demand and Supply of Feed Ingredients for Farmed Fish and Crustaceans: Trends and Prospects; Food and Agriculture Organization of the United Nations: Rome, Italy, 2011; Volume 564. [Google Scholar]
- Hua, K.; Cobcroft, J.M.; Cole, A.; Condon, K.; Jerry, D.R.; Mangott, A.; Praeger, C.; Vucko, M.J.; Zeng, C.; Zenger, K.; et al. Review The Future of Aquatic Protein: Implications for Protein Sources in Aquaculture Diets. One Earth 2019, 1, 316–329. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization of the United Nations. The State of World Fisheries and Aquaculture 2018: Meeting the Sustainable Development Goals; Food & Agriculture Organization: Rome, Italy, 2018. [Google Scholar]
- Olsen, R.L.; Hasan, M.R. A Limited Supply of Fishmeal: Impact on Future Increases in Global Aquaculture Production. Trends Food Sci. Technol. 2012, 27, 120–128. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations. FAO Yearbook. Fishery and Aquaculture Statistics 2018; Food & Agriculture Organization: Rome, Italy, 2020. [Google Scholar]
- Froehlich, H.E.; Jacobsen, N.S.; Essington, T.E.; Clavelle, T.; Halpern, B.S. Avoiding the Ecological Limits of Forage Fish for Fed Aquaculture. Nat. Sustain. 2018, 1, 298–303. [Google Scholar] [CrossRef]
- Mo, W.Y.; Man, Y.B.; Wong, M.H. Use of Food Waste, Fish Waste and Food Processing Waste for China’s Aquaculture Industry: Needs and Challenge. Sci. Total Environ. 2018, 613–614, 635–643. [Google Scholar] [CrossRef]
- Gasco, L.; Acuti, G.; Bani, P.; Dalle Zotte, A.; Danieli, P.P.; De Angelis, A.; Fortina, R.; Marino, R.; Parisi, G.; Piccolo, G.; et al. Insect and Fish By-Products as Sustainable Alternatives to Conventional Animal Proteins in Animal Nutrition. Ital. J. Anim. Sci. 2020, 19, 360–372. [Google Scholar] [CrossRef] [Green Version]
- Luthada-Raswiswi, R.; Mukaratirwa, S.; O’brien, G. Animal Protein Sources as a Substitute for Fishmeal in Aquaculture Diets: A Systematic Review and Meta-Analysis. Appl. Sci. 2021, 11, 3854. [Google Scholar] [CrossRef]
- Jȩdrejek, D.; Levic, J.; Wallace, J.; Oleszek, W. Animal By-Products for Feed: Characteristics, European Regulatory Framework, and Potential Impacts on Human and Animal Health and the Environment. J. Anim. Feed Sci. 2016, 25, 189–202. [Google Scholar] [CrossRef]
- Ansari, F.A.; Guldhe, A.; Gupta, S.K.; Rawat, I.; Bux, F. Improving the Feasibility of Aquaculture Feed by Using Microalgae. Environ. Sci. Pollut. Res. 2021, 28, 43234–43257. [Google Scholar] [CrossRef]
- Dawood, M.A.O.; Koshio, S. Application of Fermentation Strategy in Aquafeed for Sustainable Aquaculture. Rev. Aquac. 2020, 12, 987–1002. [Google Scholar] [CrossRef]
- Malcorps, W.; Kok, B.; Van Land, M.; Fritz, M.; Van Doren, D.; Servin, K.; Van Der Heijden, P.; Palmer, R.; Auchterlonie, N.A.; Rietkerk, M.; et al. The Sustainability Conundrum of Fishmeal Substitution by Plant Ingredients in Shrimp Feeds. Sustainability 2019, 11, 1212. [Google Scholar] [CrossRef] [Green Version]
- Naylor, R.L.; Hardy, R.W.; Buschmann, A.H.; Bush, S.R.; Cao, L.; Klinger, D.H.; Little, D.C.; Lubchenco, J.; Shumway, S.E.; Troell, M. A 20-Year Retrospective Review of Global Aquaculture. Nature 2021, 591, 551–563. [Google Scholar] [CrossRef]
- Sadh, P.K.; Duhan, S.; Duhan, J.S. Agro-Industrial Wastes and Their Utilization Using Solid State Fermentation: A Review. Bioresour. Bioprocess. 2018, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Spalvins, K.; Ivanovs, K.; Blumberga, D. Single Cell Protein Production from Waste Biomass: Review of Various Agricultural by-Products. Agron. Res. 2018, 16, 1493–1508. [Google Scholar] [CrossRef]
- Ravi, H.K.; Degrou, A.; Costil, J.; Trespeuch, C.; Chemat, F.; Vian, M.A. Larvae Mediated Valorization of Industrial, Agriculture and Food Wastes: Biorefinery Concept through Bioconversion, Processes, Procedures, and Products. Processes 2020, 8, 857. [Google Scholar] [CrossRef]
- Cheng, J.Y.K.; Lo, I.M.C. Investigation of the Available Technologies and Their Feasibility for the Conversion of Food Waste into Fish Feed in Hong Kong. Environ. Sci. Pollut. Res. 2016, 23, 7169–7177. [Google Scholar] [CrossRef]
- Gałęcki, R.; Zielonka, Ł.; Zasȩpa, M.; Gołȩbiowska, J.; Bakuła, T. Potential Utilization of Edible Insects as an Alternative Source of Protein in Animal Diets in Poland. Front. Sustain. Food Syst. 2021, 5, 1–8. [Google Scholar] [CrossRef]
- Freccia, A.; Tubin, J.S.B.; Rombenso, A.N.; Emerenciano, M.G.C. Insects in Aquaculture Nutrition: An Emerging Eco-Friendly Approach or Commercial Reality? In Emerging Technologies, Environment and Research for Sustainable Aquaculture; Lu, Q., Serajuddin, M., Eds.; IntechOpen: London, UK, 2020; pp. 1–14. [Google Scholar]
- Abd El-Hack, M.E.; Shafi, M.E.; Alghamdi, W.Y.; Abdelnour, S.A.; Shehata, A.M.; Noreldin, A.E.; Ashour, E.A.; Swelum, A.A.; Al-sagan, A.A.; Alkhateeb, M.; et al. Black Soldier Fly (Hermetia illucens) Meal as a Promising Feed Ingredient for Poultry: A Comprehensive Review. Agriculture 2020, 10, 339. [Google Scholar] [CrossRef]
- Čičková, H.; Newton, G.L.; Lacy, R.C.; Kozánek, M. The Use of Fly Larvae for Organic Waste Treatment. Waste Manag. 2015, 35, 68–80. [Google Scholar] [CrossRef]
- Galassi, G.; Jucker, C.; Parma, P.; Lupi, D.; Crovetto, G.M.; Savoldelli, S.; Colombini, S. Impact of Agro-Industrial Byproducts on Bioconversion, Chemical Composition, in Vitro Digestibility, and Microbiota of the Black Soldier Fly (Diptera: Stratiomyidae) Larvae. J. Insect Sci. 2021, 21, 1–10. [Google Scholar] [CrossRef]
- Liu, Z.; Minor, M.; Morel, P.C.H.; Najar-Rodriguez, A.J. Bioconversion of Three Organic Wastes by Black Soldier Fly (Diptera: Stratiomyidae) Larvae. Environ. Entomol. 2018, 47, 1609–1617. [Google Scholar] [CrossRef]
- Biancarosa, I.; Sele, V.; Belghit, I.; Ørnsrud, R.; Lock, E.J.; Amlund, H. Replacing Fish Meal with Insect Meal in the Diet of Atlantic Salmon (Salmo salar) Does Not Impact the Amount of Contaminants in the Feed and It Lowers Accumulation of Arsenic in the Fillet. Food Addit. Contam.—Part A Chem. Anal. Control. Expo. Risk Assess. 2019, 36, 1191–1205. [Google Scholar] [CrossRef] [Green Version]
- Palma, L.; Fernandez-Bayo, J.; Niemeier, D.; Pitesky, M.; VanderGheynst, J.S. Managing High Fiber Food Waste for the Cultivation of Black Soldier Fly Larvae. NPJ Sci. Food 2019, 3, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.H.; Ryu, J.; Lee, J.; Ko, K.; Lee, J.Y.; Park, K.Y.; Chung, H. Use of Black Soldier Fly Larvae for Food Waste Treatment and Energy Production in Asian Countries: A Review. Processes 2021, 9, 161. [Google Scholar] [CrossRef]
- Kinasih, I.; Putra, R.E.; Permana, A.D.; Gusmara, F.F.; Nurhadi, M.Y.; Anitasari, R.A. Growth Performance of Black Soldier Fly Larvae (Hermetia illucens) Fed on Some Plant Based Organic Wastes. HAYATI J. Biosci. 2018, 25, 79–84. [Google Scholar] [CrossRef]
- Gold, M.; Tomberlin, J.K.; Diener, S.; Zurbrügg, C.; Mathys, A. Decomposition of Biowaste Macronutrients, Microbes, and Chemicals in Black Soldier Fly Larval Treatment: A Review. Waste Manag. 2018, 82, 302–318. [Google Scholar] [CrossRef]
- Arru, B.; Furesi, R.; Gasco, L.; Madau, F.A.; Pulina, P. The Introduction of Insect Meal into Fish Diet: The First Economic Analysis on European Sea Bass Farming. Sustainability 2019, 11, 1697. [Google Scholar] [CrossRef] [Green Version]
- Parodi, A.; De Boer, I.J.M.; Gerrits, W.J.J.; Van Loon, J.J.A.; Heetkamp, M.J.W.; Van Schelt, J.; Bolhuis, J.E.; Van Zanten, H.H.E. Bioconversion Efficiencies, Greenhouse Gas and Ammonia Emissions during Black Soldier Fly Rearing—A Mass Balance Approach. J. Clean. Prod. 2020, 271, 122488. [Google Scholar] [CrossRef]
- Guo, H.; Jiang, C.; Zhang, Z.; Lu, W.; Wang, H. Material Flow Analysis and Life Cycle Assessment of Food Waste Bioconversion by Black Soldier Fly Larvae (Hermetia illucens L.). Sci. Total Environ. 2021, 750, 141656. [Google Scholar] [CrossRef] [PubMed]
- Salomone, R.; Saija, G.; Mondello, G.; Giannetto, A.; Fasulo, S.; Savastano, D. Environmental Impact of Food Waste Bioconversion by Insects: Application of Life Cycle Assessment to Process Using Hermetia illucens. J. Clean. Prod. 2017, 140, 890–905. [Google Scholar] [CrossRef]
- Maiolo, S.; Cristiano, S.; Gonella, F.; Pastres, R. Ecological Sustainability of Aquafeed: An Emergy Assessment of Novel or Underexploited Ingredients. J. Clean. Prod. 2021, 294, 126266. [Google Scholar] [CrossRef]
- Matassa, S.; Boon, N.; Pikaar, I.; Verstraete, W. Microbial Protein: Future Sustainable Food Supply Route with Low Environmental Footprint. Microb. Biotechnol. 2016, 9, 568–575. [Google Scholar] [CrossRef]
- Ritala, A.; Häkkinen, S.T.; Toivari, M.; Wiebe, M.G. Single Cell Protein-State-of-the-Art, Industrial Landscape and Patents 2001-2016. Front. Microbiol. 2017, 8, 1–18. [Google Scholar] [CrossRef]
- Jones, S.W.; Karpol, A.; Friedman, S.; Maru, B.T.; Tracy, B.P. Recent Advances in Single Cell Protein Use as a Feed Ingredient in Aquaculture. Curr. Opin. Biotechnol. 2020, 61, 189–197. [Google Scholar] [CrossRef]
- Bharti, V.; Pandey, P.K.; Koushlesh, S.K. Single Cell Proteins: A Novel Approach in Aquaculture Systems. World Aquac. 2014, 45, 62–63. [Google Scholar]
- Glencross, B.D.; Huyben, D.; Schrama, J.W. The Application of Single-Cell Ingredients in Aquaculture Feeds—A Review. Fishes 2020, 5, 22. [Google Scholar] [CrossRef]
- Guedes, A.C.; Sousa-Pinto, I.; Malcata, F.X. Application of Microalgae Protein to Aquafeed. In Handbook of Marine Microalgae: Biotechnology Advances; Kim, S.-K., Ed.; Academic Press: Cambridge, MA, USA, 2015; pp. 93–125. [Google Scholar] [CrossRef]
- Agboola, J.O.; Øverland, M.; Skrede, A.; Hansen, J.Ø. Yeast as Major Protein-Rich Ingredient in Aquafeeds: A Review of the Implications for Aquaculture Production. Rev. Aquac. 2021, 13, 949–970. [Google Scholar] [CrossRef]
- Tibbetts, S.M. The Potential for ‘Next-Generation’, Microalgae-Based Feed Ingredients for Salmonid Aquaculture in Context of the Blue Revolution. In Microalgal Biotechnology; Jacob-Lopes, E., Zepka, L.Q., Queiroz, M.I., Eds.; IntechOpen: London, UK, 2018; pp. 151–175. [Google Scholar]
- Yarnold, J.; Karan, H.; Oey, M.; Hankamer, B. Microalgal Aquafeeds as Part of a Circular Bioeconomy. Trends Plant Sci. 2019, 24, 959–970. [Google Scholar] [CrossRef] [Green Version]
- Kannah, R.Y.; Velu, C.; Rajesh Banu, J.; Heimann, K.; Karthikeyan, O.P. Food Waste Valorization by Microalgae. In Waste to Wealth. Energy, Environment, and Sustainability; Singhania, R.R., Agarwal, R.A., Kumar, R.P., Sukumaran, R.K., Eds.; Springer: Singapore, 2018; pp. 319–342. [Google Scholar] [CrossRef]
- Klamczynska, B.; Mooney, W.D. Heterotrophic Microalgae: A Scalable and Sustainable Protein Source. In Sustainable Protein Sources; Nadathur, S.R., Wanasundara, J.P.D., Scanlin, L., Eds.; Academic Press: Cambridge, MA, USA, 2017; pp. 327–339. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Escalante, F.M.E.; De-Bashan, L.E.; Bashan, Y. Heterotrophic Cultures of Microalgae: Metabolism and Potential Products. Water Res. 2011, 45, 11–36. [Google Scholar] [CrossRef]
- Saxena, P.; Kumar, M.; Harish. Autotrophic Cultivation of Microalgae for the Production of Polyunsaturated Fatty Acid. In Nutraceutical Fatty Acids from Oleaginous Microalgae: A Human Health Perspective; Patel, A.K., Matsakas, L., Eds.; Scrivener Publishing LLC: Beverly, MA, USA, 2020; pp. 165–185. [Google Scholar] [CrossRef]
- Barclay, W.; Apt, K.; Dong, X.D. Commercial Production of Microalgae via Fermentation. In Handbook of Microalgal Culture: Applied Phycology and Biotechnology: Second Edition; Richmond, A., Hu, Q., Eds.; Wiley-Blackwell: Chichester, West Sussex, UK, 2013; pp. 134–145. [Google Scholar] [CrossRef]
- Perez-Garcia, O.; Bashan, Y. Microalgal Heterotrophic and Mixotrophic Culturing for Bio-Refining: From Metabolic Routes to Techno-Economics. In Algal Biorefineries: Volume 2: Products and Refinery Design; Prokop, A., Bajpai, R.K., Zappi, M.E., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 61–131. [Google Scholar] [CrossRef]
- Ende, S.S.W.; Noke, A. Heterotrophic Microalgae Production on Food Waste and By-Products. J. Appl. Phycol. 2019, 31, 1565–1571. [Google Scholar] [CrossRef]
- Pleissner, D.; Lin, C.S.K. Valorisation of Food Waste in Biotechnological Processes. Sustain. Chem. Process. 2013, 1, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Smetana, S.; Sandmann, M.; Rohn, S.; Pleissner, D.; Heinz, V. Autotrophic and Heterotrophic Microalgae and Cyanobacteria Cultivation for Food and Feed: Life Cycle Assessment. Bioresour. Technol. 2017, 245, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Bartek, L.; Strid, I.; Henryson, K.; Junne, S.; Rasi, S.; Eriksson, M. Life Cycle Assessment of Fish Oil Substitute Produced by Microalgae Using Food Waste. Sustain. Prod. Consum. 2021, 27, 2002–2021. [Google Scholar] [CrossRef]
- Sillman, J.; Nygren, L.; Kahiluoto, H.; Ruuskanen, V.; Tamminen, A.; Bajamundi, C.; Nappa, M.; Wuokko, M.; Lindh, T.; Vainikka, P.; et al. Bacterial Protein for Food and Feed Generated via Renewable Energy and Direct Air Capture of CO2: Can It Reduce Land and Water Use? Glob. Food Sec. 2019, 22, 25–32. [Google Scholar] [CrossRef]
- Sillman, J.; Uusitalo, V.; Ruuskanen, V.; Ojala, L.; Kahiluoto, H.; Soukka, R.; Ahola, J. A Life Cycle Environmental Sustainability Analysis of Microbial Protein Production via Power-to-Food Approaches. Int. J. Life Cycle Assess. 2020, 25, 2190–2203. [Google Scholar] [CrossRef]
- Algae. Available online: https://www.encyclopedia.com/science/encyclopedias-almanacs-transcripts-and-maps/algae-0 (accessed on 9 February 2021).
- Uchida, M.; Miyoshi, T. Algal Fermentation—The Seed of a New Fermentation Industry of Foods and Related Products. JARQ 2013, 47, 53–63. [Google Scholar] [CrossRef] [Green Version]
- Ilias, N.N.; Jamal, P.; Jaswir, I.; Sulaiman, S.; Zainudin, Z.; Azmi, A.S. Potentiality of Selected Seaweed for the Production of Nutritious Fish Feed Using Solid State Fermentation. J. Eng. Sci. Technol. 2015, 10, 30–40. [Google Scholar]
- Dewi, Y.L.; Yuniza, A.; Sayuti, K.; Nuraini; Mahata, M.E. Fermentation of Sargassum binderi Seaweed for Lowering Alginate Content of Feed in Laying Hens. J. World’s Poult. Res. 2019, 9, 147–153. [Google Scholar] [CrossRef]
- Ardiansyah, D.; Hartinah, I.W. Improvement of the Nutritive Quality of Sargassum Powder through Aspergillus niger, Saccharomyces cerevisiae, and Lactobacillus Spp. Fermentations. AACL Bioflux 2018, 11, 753–764. [Google Scholar]
- Felix, N.; Brindo, R.A. Substituting Fish Meal with Fermented Seaweed, Kappaphycus alvarezii in Diets of Juvenile Freshwater Prawn Macrobrachium rosenbergii. Int. J. Fish. Aquat. Stud. 2014, 1, 261–265. [Google Scholar]
- Hardjani, D.K.; Suantika, G.; Aditiawati, P. Nutritional Profile of Red Seaweed Kappaphycus alvarezii after Fermentation Using Saccharomyces cerevisiae as a Feed Supplement for White Shrimp Litopenaeus vannamei Nutritional Profile of Fermented Red Seaweed. J. Pure Appl. Microbiol. 2017, 11, 1637–1645. [Google Scholar] [CrossRef]
- Aslamyah, S.; Karim, M.Y. Fermentation of Seaweed Flour with Various Fermenters to Improve the Quality of Fish Feed Ingredients. J. Akuakultur Indones. 2017, 16, 8–14. [Google Scholar] [CrossRef] [Green Version]
- Sedanza, M.G.C.; Posadas, N.G.; Serrano, A.E.; Nuñal, S.N.; Pedroso, F.L.; Yoshikawa, T. Development of Aquafeed Ingredient by Solid State Fermentation of the Crinklegrass, Rhizoclonium riparium on a Laboratory Scale. AACL Bioflux 2016, 9, 733–740. [Google Scholar]
- Fernandes, H.; Salgado, J.M.; Martins, N.; Peres, H.; Oliva-Teles, A.; Belo, I. Sequential Bioprocessing of Ulva rigida to Produce Lignocellulolytic Enzymes and to Improve Its Nutritional Value as Aquaculture Feed. Bioresour. Technol. 2019, 281, 277–285. [Google Scholar] [CrossRef] [Green Version]
- Brindo, R.A.; Felix, N. Effects of Raw and Fermented Seaweed, Padina tetrastomatica on the Growth and Food Conversion of Giant Freshwater Prawn Macrobrachium rosenbergii. Int. J. Fish. Aquat. Stud. 2014, 1, 108–113. [Google Scholar]
- Choi, Y.; Lee, E.C.; Na, Y.; Lee, S.R. Effects of Dietary Supplementation with Fermented and Non-Fermented Brown Algae by-Products on Laying Performance, Egg Quality, and Blood Profile in Laying Hens. Asian-Australasian J. Anim. Sci. 2018, 31, 1654–1659. [Google Scholar] [CrossRef] [Green Version]
- Suraiya, S.; Lee, J.M.; Cho, H.J.; Jang, W.J.; Kim, D.G.; Kim, Y.O.; Kong, I.S. Monascus spp. Fermented Brown Seaweeds Extracts Enhance Bio-Functional Activities. Food Biosci. 2018, 21, 90–99. [Google Scholar] [CrossRef]
- Bruhn, A.; Brynning, G.; Johansen, A.; Lindegaard, M.S.; Sveigaard, H.H.; Aarup, B.; Fonager, L.; Andersen, L.L.; Rasmussen, M.B.; Larsen, M.M.; et al. Fermentation of Sugar Kelp (Saccharina latissima)—Effects on Sensory Properties, and Content of Minerals and Metals. J. Appl. Phycol. 2019, 31, 3175–3187. [Google Scholar] [CrossRef] [Green Version]
- Rafiquzzaman, S.M.; Kong, I.-S.; Kim, J.-M. Enhancement of Antioxidant Activity, Total Phenolic and Flavonoid Content of Saccharina japonica by Submerged Fermentation with Aspergillus oryzae. KSBB J. 2015, 30, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Ng, W.-K.; Koh, C.-B. The Utilization and Mode of Action of Organic Acids in the Feeds of Cultured Aquatic Animals. Rev. Aquac. 2016, 9, 342–368. [Google Scholar] [CrossRef]
- Shobharani, P.; Halami, P.M.; Sachindra, N.M. Potential of Marine Lactic Acid Bacteria to Ferment Sargassum sp. for Enhanced Anticoagulant and Antioxidant Properties. J. Appl. Microbiol. 2012, 114, 96–107. [Google Scholar] [CrossRef]
- Prachyakij, P.; Charernjiratrakul, W.; Kantachote, D. Improvement in the Quality of a Fermented Seaweed Beverage Using an Antiyeast Starter of Lactobacillus plantarum DW3 and Partial Sterilization. World J. Microbiol. Biotechnol. 2008, 24, 1713–1720. [Google Scholar] [CrossRef]
- Felix, S.; Pradeepa, P. Seaweed (Ulva reticulata) Based Fermented Marine Silage Feed Preparation under Controlled Conditions for Penaeus monodon Larval Development. J. Mar. Sci. Res. Dev. 2011, 1, 103. [Google Scholar] [CrossRef]
- Uchida, M.; Numaguchi, K.; Murata, M. Mass Preparation of Marine Silage from Undaria pinnatifida and Its Dietary Effect for Young Pearl Oysters. Fish. Sci. 2004, 70, 456–462. [Google Scholar] [CrossRef]
- Aklakur, M. Natural Antioxidants from Sea: A Potential Industrial Perspective in Aquafeed Formulation. Rev. Aquac. 2018, 10, 385–399. [Google Scholar] [CrossRef]
- Ahmadifar, E.; Yousefi, M.; Karimi, M.; Fadaei Raieni, R.; Dadar, M.; Yilmaz, S.; Dawood, M.A.O.; Abdel-Latif, H.M.R. Benefits of Dietary Polyphenols and Polyphenol-Rich Additives to Aquatic Animal Health: An Overview. Rev. Fish. Sci. Aquac. 2020, 29, 1–34. [Google Scholar] [CrossRef]
- Chakraborty, S.B.; Horn, P.; Hancz, C. Application of Phytochemicals as Growth-Promoters and Endocrine Modulators in Fish Culture. Rev. Aquac. 2013, 5, 1–19. [Google Scholar] [CrossRef]
- Nor, N.M.; Haiyee, Z.A.; Razak, W.R.W.A.; Muhammad, S.K.S. Enhancement and Bioavailability of Phenolic Content in Kappaphycus alvarezii through Solid Substrate Fermentation. Malaysian J. Fundam. Appl. Sci. 2019, 15, 867–871. [Google Scholar]
- Eom, S.H.; Kang, Y.M.; Park, J.H.; Yu, D.U.; Jeong, E.T.; Lee, M.S.; Kim, Y.M. Enhancement of Polyphenol Content and Antioxidant Activity of Brown Alga Eisenia bicyclis Extract by Microbial Fermentation. Fish. Aquat. Sci. 2011, 14, 192–197. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ang, C.-Y.; Yong, A.S.K.; Azad, S.A.; Lim, L.-S.; Zuldin, W.H.; Lal, M.T.M. Valorization of Macroalgae through Fermentation for Aquafeed Production: A Review. Fermentation 2021, 7, 304. https://doi.org/10.3390/fermentation7040304
Ang C-Y, Yong ASK, Azad SA, Lim L-S, Zuldin WH, Lal MTM. Valorization of Macroalgae through Fermentation for Aquafeed Production: A Review. Fermentation. 2021; 7(4):304. https://doi.org/10.3390/fermentation7040304
Chicago/Turabian StyleAng, Chun-Yao, Annita Seok Kian Yong, Sujjat Al Azad, Leong-Seng Lim, Wahidatul Husna Zuldin, and Mohammad Tamrin Mohamad Lal. 2021. "Valorization of Macroalgae through Fermentation for Aquafeed Production: A Review" Fermentation 7, no. 4: 304. https://doi.org/10.3390/fermentation7040304
APA StyleAng, C. -Y., Yong, A. S. K., Azad, S. A., Lim, L. -S., Zuldin, W. H., & Lal, M. T. M. (2021). Valorization of Macroalgae through Fermentation for Aquafeed Production: A Review. Fermentation, 7(4), 304. https://doi.org/10.3390/fermentation7040304