Multi-Omics Analysis of Stress Responses for Industrial Yeast During Beer Post-Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Determination of Glutathione (GSH) in Beer
2.2. Determination of β-Glucan in Beer
2.3. Determination of Phenolic Acids in Beer
2.4. Determination of Volatile Compounds in Beer
2.5. Determination of Non-Volatile Compounds in Beer
2.6. Experimental Materials
2.7. Reagents and Instruments
2.8. Cell Collection
2.9. Genomic Analysis
2.10. Transcriptomic Analysis
2.11. Proteomic Analysis
3. Results and Discussion
3.1. Variation in Functional Compounds in Beer Brewing Stage
3.1.1. Changes in Known Functional Compounds
3.1.2. Changes in Potential Functional Compounds
3.2. Transcriptomic Analysis
3.2.1. Sample Grouping and RNA Sequencing Analysis
3.2.2. Reference Gene Sequence Alignment Analysis
3.2.3. Sample Correlation Analysis
3.2.4. Quantitative Analysis of Differential Genes
3.2.5. Gene Ontology Analysis
3.2.6. KEGG Analysis
3.3. Proteomic Analysis
3.3.1. Quantitative Analysis of Differential Proteins
3.3.2. Gene Ontology and KEGG Analysis
3.4. Screening and Analysis of Significant Differential Proteins and Genes
3.4.1. Analysis of Stress Response-Related Significant Differential Genes
3.4.2. Screening of Differentially Expressed Proteins
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salanța, L.C.; Coldea, T.E.; Ignat, M.V.; Pop, C.R.; Tofană, M.; Mudura, E.; Borșa, A.; Pasqualone, A.; Zhao, H. Non-alcoholic and craft beer production and challenges. Processes 2020, 8, 1382. [Google Scholar] [CrossRef]
- Lei, H.J. Study of the Effects of Nitrogen Composition in High Gravity Wort on the Assimilation of Amino Acids by Lager Yeast and Fermentation Control; South China University of Technology: Guangzhou, China, 2014. [Google Scholar]
- Morin, N.; Cescut, J.; Beopoulos, A.; Lelandais, G.; Le Berre, V.; Uribelarrea, J.-L.; Molina-Jouve, C.; Nicaud, J.-M. Transcriptomic analyses during the transition from biomass production to lipid accumulation in the oleaginous yeast Yarrowia lipolytica. PLoS ONE 2011, 6, e27966. [Google Scholar] [CrossRef] [PubMed]
- Bendjilali, N.; Macleon, S.; Kalra, G.; Willis, S.D.; Hossian, A.K.M.N.; Avery, E.; Wojtowicz, O.; Hickman, M.J. Time-course analysis of gene expression during the Saccharomyces cerevisiae hypoxic response. G3 Genes Genomes Genet. 2017, 7, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Han, X.; Yuan, L.; Yin, X.; Jiang, X.; Wei, Y.; Liu, Q. Time-course transcriptome analysis reveals distinct transcriptional regulatory networks in resistant and susceptible grapevine genotypes in response to white Rot. Int. J. Mol. Sci. 2024, 25, 11536. [Google Scholar] [CrossRef]
- Hirasawa, T.; Furusawa, C.; Shimizu, H. Saccharomyces cerevisiae and DNA microarray analyses: What did we learn from it for a better understanding and exploitation of yeast biotechnology? Appl. Microbiol. Biot. 2010, 87, 391–400. [Google Scholar] [CrossRef]
- James, T.C.; Campbell, S.; Donnelly, D.; Bond, U. Transcription profile of brewery yeast under fermentation conditions. J. Appl. Microbiol. 2003, 94, 432–448. [Google Scholar] [CrossRef]
- Gibson, B.R.; Lawrence, S.J.; Boulton, C.A.; Box, W.G.; Graham, N.S.; Linforth, R.S.; Smart, K.A. The oxidative stress response of a lager brewing yeast strain during industrial propagation and fermentation. FEMS Yeast Res. 2008, 8, 574–585. [Google Scholar] [CrossRef]
- Olesen, K.; Felding, T.; Gjermansen, C.; Hansen, J. The dynamics of the Saccharomyces carlsbergensis brewing yeast transcriptome during a production-scale lager beer fermentation. FEMS Yeast Res. 2002, 2, 563–573. [Google Scholar]
- Gibson, B.R.; Boulton, C.A.; Box, W.G.; Graham, N.S.; Lawrence, S.J.; Linforth, R.S.T.; Smart, K.A. Carbohydrate utilization and the lager yeast transcriptome during brewery fermentation. Yeast 2008, 25, 549–562. [Google Scholar] [CrossRef]
- Pires, E.J.; Teixeira, J.A.; Brányik, T.; Vicente, A. Yeast: The soul of beer’s aroma—A review of flavour-active esters and higher alcohols produced by the brewing yeast. Appl. Microbiol. Biotechnol. 2014, 98, 1937–1949. [Google Scholar] [CrossRef]
- Caesar, R.; Palmfeldt, J.; Gustafsson, J.S.; Pettersson, E.; Hashemi, S.H.; Blomberg, A. Comparative proteomics of industrial lager yeast reveals differential expression of the cerevisiae and non-cerevisiae parts of their genomes. Proteomics 2007, 7, 4135–4147. [Google Scholar] [CrossRef] [PubMed]
- Brejning, J.; Arneborg, N.; Jespersen, L. Identification of genes and proteins induced during the lag and early exponential phase of lager brewing yeasts. J. Appl. Microbiol. 2005, 98, 261–271. [Google Scholar] [CrossRef] [PubMed]
- Kobi, D.; Zugmeyer, S.; Potier, S.; Jaquet-Gutfreund, L. Two-dimensional protein map of an “ale”-brewing yeast strain: Proteome dynamics during fermentation. FEMS Yeast Res. 2004, 5, 213–230. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, D.; Huang, M.; Sun, B.; Ren, F.; Wu, J.; Meng, N.; Zhang, J. Identification of nonvolatile chemical constituents in Chinese Huangjiu using widely targeted metabolomics. Food Res. Int. 2023, 172, 113226. [Google Scholar] [CrossRef]
- Hou, X.; Chen, L.; Yin, H.; Dong, J.; Yu, J.; He, Y.; Yang, M. Quantification of strains in mixed lager yeast cultures using microsatellite PCR and GeXP. J. Inst. Brew. 2020, 126, 155–160. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Lu, S.; Cui, H.; Zhan, H.; Hayat, K.; Jia, C.; Hussain, S.; Tahir, M.U.; Zhang, X.; Ho, C.-T. Timely addition of glutathione for its interaction with deoxypentosone to inhibit the aqueous maillard reaction and browning of glycylglycine–arabinose system. J. Agric. Food Chem. 2019, 67, 6585–6593. [Google Scholar] [CrossRef]
- Gong, J.; Huang, J.; Xiao, G.; You, Y.; Yuan, H.; Chen, F.; Liu, S.; Mao, J.; Li, B. Determination of γ-aminobutyric acid in Chinese rice wines and its evolution during fermentation. J. Inst. Brew. 2017, 123, 417–422. [Google Scholar] [CrossRef]
- Jin, Y.-L.; Speers, A.; Paulson, A.T.; Stewart, R.J. Effects of β-glucans and environmental factors on the viscosities of wort and beer. J. Inst. Brew. 2004, 110, 104–116. [Google Scholar] [CrossRef]
- Di Matteo, P.; Bortolami, M.; Di Virgilio, L.; Petrucci, R. Targeted phenolic profile of radler beers by HPLC-ESI-MS/MS: The added value of hesperidin to beer antioxidants. J. Food Sci. Technol. 2022, 59, 4553–4562. [Google Scholar] [CrossRef]
- Garzón, A.G.; Torres, R.L.; Drago, S.R. Changes in phenolics, γ-aminobutyric acid content and antioxidant, antihypertensive and hypoglycaemic properties during ale white sorghum brewing process. Int. J. Food Sci. Technol. 2019, 54, 1901–1908. [Google Scholar] [CrossRef]
- Verstrepen, K.J.; Derdelinckx, G.; Dufour, J.P.; Winderickx, J.; Thevelein, J.M.; Pretorius, I.S.; Delvaux, F.R. Flavor-active esters: Adding fruitiness to beer. J. Biosci. Bioeng. 2003, 96, 110–118. [Google Scholar] [CrossRef]
- Marsili, R.T.; Laskonis, L.C.; Kenaan, C. Evaluation of PDMS-based extraction techniques and GC-TOFMS for the analysis of off-flavor chemicals in beer. J. Am. Soc. Brew. Chem. 2018, 65, 129–137. [Google Scholar] [CrossRef]
- Ditrych, M.; Filipowska, W.; Rouck, G.D.; Jaskula-Goiris, B.; Aerts, G.; Larsen Andersen, M.; Cooman, L.D. Investigating the evolution of free staling aldehydes throughout the wort production process. Brew. Sci. 2019, 72, 10–17. [Google Scholar]
- Kasemets, K.; Kahru, A.; Laht, T.M.; Paalme, T. Study of the toxic effect of short- and medium-chain monocarboxylic acids on the growth of Saccharomyces cerevisiae using the CO2-auxo-accelerostat fermentation system. Int. J. Food Microbiol. 2006, 111, 206–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.C.H.; Jamieson, A.M.; Van Gheluwe, G. The release of fatty acids as a consequence of yeast autolysis. J. Am. Soc. Brew. Chem. 1980, 38, 13–18. [Google Scholar] [CrossRef]
- Takoi, K.; Koie, K.; Itoga, Y.; Katayama, Y.; Shimase, M.; Nakayama, Y.; Watari, J. Biotransformation of hop-derived monoterpene alcohols by lager yeast and their contribution to the flavor of hopped beer. J. Agric. Food Chem. 2010, 58, 5050–5058. [Google Scholar] [CrossRef]
- Rodrigues-Pousada, C.; Devaux, F.; Caetano, S.M.; Pimentel, C.; da Silva, S.; Cordeiro, A.C.; Amaral, C. Yeast AP-1 like transcription factors (Yap) and stress response: A current overview. Microb. Cell 2019, 6, 267–285. [Google Scholar] [CrossRef]
- Zininga, T.; Ramatsui, L.; Shonhai, A. Heat Shock Proteins as Immunomodulants. Molecules 2018, 23, 2846. [Google Scholar] [CrossRef]
- Li, X.-E.; Wang, J.-J.; Phornsanthia, S.; Yin, X.; Li, Q. Strengthening of cell wall structure enhances stress resistance and fermentation performance in Lager yeast. J. Am. Soc. Brew. Chem. 2014, 72, 88–94. [Google Scholar] [CrossRef]
- Yu, S.; Meng, S.; Xiang, M.; Ma, H. Phosphoenolpyruvate carboxykinase in cell metabolism: Roles and mechanisms beyond gluconeogenesis. Mol. Metab. 2021, 53, 101257. [Google Scholar] [CrossRef]













| Gene | Log2(B4/B3) | Log2(B5/B4) | Log2(B6/B5) | Annotation |
|---|---|---|---|---|
| HSP42 | −1.19 | 0.012 | 3.30 | Hsp |
| HSP60 | 0.11 | 0.24 | 1.05 | |
| HSP12 | −2.36 | −1.05 | 0.20 | |
| HSP77 | −0.01 | 0.21 | 1.95 | |
| HSP82 | 2.49 | −1.49 | 4.25 | |
| HSP78 | −0.35 | 0.74 | 3.09 | |
| HSP31 | −0.79 | 0.62 | 2.31 | |
| HSP26 | −1.83 | −0.36 | 4.96 | |
| HSP30 | 1.44 | 0.59 | 7.74 | |
| HAL1 | 0.27 | 0.21 | 1.36 | Hal |
| HAL4 | 0.53 | 0.55 | 2.22 | |
| YAP5 | 7.65 | 0.95 | 2.96 | Yap, Msn |
| MSN2 | 0.53 | −0.21 | −1.10 | |
| MSN1 | −0.02 | 0.21 | 2.38 | |
| FSK1 | 1.92 | −0.23 | −0.82 | Fsk |
| MNN10 | 0.028 | 0.18 | 1.11 | Mnn |
| MNN5 | 3.23 | 0.34 | −11.11 | |
| MNN11 | 1.23 | 0.87 | −5.63 | |
| SOD1 | −1.02 | −0.19 | 0.70 | Sod |
| GSH1 | −0.02 | 0.55 | 2.17 | Gsh |
| GSH2 | −0.54 | −0.27 | −1.22 | |
| TPS1 | −2.37 | −0.08 | 3.54 | trehalose biosynthesis Tps |
| TPS2 | −2.62 | 0.40 | 2.54 | |
| TSL1 | −2.71 | 0.10 | 0.24 | |
| FBP1 | 0.40 | 0.03 | 1.32 | Fbp |
| FBP26 | 0.75 | 0.42 | 2.26 | |
| PCK1 | 10.51 | 1.0 | 5.10 | Pck |
| HXT5 | 1.44 | 0.12 | 3.32 | Hxt |
| HXT4 | 1.03 | −0.61 | 0.25 | |
| HXT2 | 1.27 | 0.69 | −0.79 | |
| HXT1 | 1.76 | 0.63 | 3.98 | |
| HXT11 | 1.05 | −0.75 | −0.04 | |
| HXT8 | 1.09 | 0.22 | 1.05 | |
| HXT13 | 8.95 | 2.30 | −10.34 | |
| HXT4 | 0.75 | 1.13 | 4.41 | |
| HXT12 | 1.11 | −0.82 | −0.13 | |
| PDC6 | −1.12 | −0.08 | −2.36 | Pdc |
| PDC5 | −0.57 | −1.03 | −0.81 | |
| MAL33 | 0.82 | 0.18 | −3.60 | Mal |
| MAL13 | 0.09 | −0.70 | −1.20 | |
| MAL63 | 1.42 | 0.55 | −2.57 | |
| PFK2 | −1.10 | −0.20 | −0.52 | Pfk |
| PFK1 | −1.08 | −0.39 | −0.20 | |
| IDH2 | −1.30 | −0.59 | 1.84 | Idh |
| IDH1 | −0.82 | −0.41 | 1.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Fan, Y.; Hou, X.; Chang, Z.; Ding, J.; Li, J.; Zhao, X.; He, Y. Multi-Omics Analysis of Stress Responses for Industrial Yeast During Beer Post-Fermentation. Fermentation 2026, 12, 70. https://doi.org/10.3390/fermentation12020070
Fan Y, Hou X, Chang Z, Ding J, Li J, Zhao X, He Y. Multi-Omics Analysis of Stress Responses for Industrial Yeast During Beer Post-Fermentation. Fermentation. 2026; 12(2):70. https://doi.org/10.3390/fermentation12020070
Chicago/Turabian StyleFan, Yilin, Xiaoping Hou, Zongming Chang, Jiahui Ding, Jianghua Li, Xinrui Zhao, and Yang He. 2026. "Multi-Omics Analysis of Stress Responses for Industrial Yeast During Beer Post-Fermentation" Fermentation 12, no. 2: 70. https://doi.org/10.3390/fermentation12020070
APA StyleFan, Y., Hou, X., Chang, Z., Ding, J., Li, J., Zhao, X., & He, Y. (2026). Multi-Omics Analysis of Stress Responses for Industrial Yeast During Beer Post-Fermentation. Fermentation, 12(2), 70. https://doi.org/10.3390/fermentation12020070
