In Situ Digestibility and In Vitro Ruminal Fermentation of Foliage from Native Trees of the Chaco Region: Effects of Tree Species and Tannins
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling
2.2. Chemical Analysis
2.3. In Situ Digestibility Assay
2.4. In Vitro Gas Production Assay
2.5. In Vitro N Degradability Assay
2.6. Statistical Analysis
3. Results
3.1. In Situ Digestibility
3.2. In Vitro Gas Production Parameters
3.3. In Vitro N Degradation Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mottet, A.; Teillard, F.; Boettcher, P.; De’Besi, G.; Besbes, B. Domestic herbivores and food security: Current contribution, trends and challenges for a sustainable development. Animal 2018, 12 (Suppl. S2), s188–s198. [Google Scholar] [CrossRef] [PubMed]
- Thompson, L.; Rowntree, J.; Windisch, W.; Waters, S.M.; Shalloo, L.; Manzano, P. Ecosystem management using livestock: Embracing diversity and respecting ecological principles. Anim. Front. 2023, 13, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Fernández, P.; Baumann, M.; Baldi, G.; Banegas, N.R.; Bravo, S.; Gasparri, N.I.; Lucherini, M.; Marinaro Fuentes, M.S.; Nanni, A.S.; Nasca, J.A.; et al. Grasslands and open savannas of the Dry Chaco. In Encyclopedia of the World’s Biomes; Goldstein, M.I., DellaSala, D.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 562–576. [Google Scholar]
- Milán, M.J.; González, E. Beef–cattle ranching in the Paraguayan Chaco: Typological approach to a livestock frontier. Environ. Dev. Sustain. 2023, 25, 5185–5210. [Google Scholar] [CrossRef]
- Fernández, P.D.; Baumann, M.; Blanco, L.; Murray, F.; Nasca, J.; Piipponen, J.; Tasquer, M.; Kuemmerle, T. Improving the estimation of grazing pressure in tropical rangelands. Environ. Res. Lett. 2025, 20, 034036. [Google Scholar] [CrossRef]
- Nasca, J.A.; Feldkamp, C.R.; Arroquy, J.I.; Colombatto, D. Efficiency and stability in subtropical beef cattle grazing systems in the northwest of Argentina. Agric. Syst. 2015, 133, 85–96. [Google Scholar] [CrossRef]
- Belete, S.; Tolera, A.; Betsha, S.; Dickhöfer, U. Feeding values of indigenous browse species and forage legumes for the feeding of ruminants in Ethiopia: A meta-analysis. Agriculture 2024, 14, 1475. [Google Scholar] [CrossRef]
- Castro-Montoya, M.; Dickhoefer, U. The nutritional value of tropical legume forages fed to ruminants as affected by their growth habit and fed form: A systematic review. Anim. Feed Sci. Technol. 2020, 264, 114476. [Google Scholar] [CrossRef]
- Patra, A.K.; Saxena, J. Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric. 2011, 91, 24–37. [Google Scholar] [CrossRef]
- Makkar, H.P.S. Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds. Small Rumin. Res. 2003, 49, 241–256. [Google Scholar] [CrossRef]
- Waghorn, G. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Anim. Feed Sci. Technol. 2008, 147, 116–139. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Muir, J.P.; Naumann, H.D.; Norris, A.B.; Ramírez-Restrepo, C.A.; Mertens-Talcott, S.U. Nutritional aspects of ecologically relevant phytochemicals in ruminant production. Front. Vet. Sci. 2021, 8, 628445. [Google Scholar] [CrossRef]
- DINAC. Anuario Climatológico 2022; Dirección Nacional Aeronáutica Civil: Asunción, Paraguay, 2023.
- AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed.; AOAC: Arlington, VA, USA, 1997. [Google Scholar]
- Mertens, D.R. Gravimetric determination of amylase-treated neutral detergent fibre in feeds with refluxing beakers or crucibles: A collaborative study. J. AOAC Int. 2002, 85, 1217–1240. [Google Scholar] [CrossRef]
- Senger, C.C.D.; Kozloski, G.V.; Sanchez, L.M.B.; Mesquita, F.R.; Alves, T.P.; Castagnino, D.S. Evaluation of autoclave procedures for fibre analysis in forage and concentrate feedstuffs. Anim. Feed Sci. Technol. 2008, 146, 169–174. [Google Scholar] [CrossRef]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds. Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Thiex, N.J.; Anderson, S.; Gildemeister, B. Crude fat, hexanes extraction, in feed, cereal grain, and forage (Randall/Soxtec/submersion method): Collaborative study. J. AOAC Int. 2003, 86, 899–908. [Google Scholar] [CrossRef]
- Hall, M.B. Calculation of Non-Neutral Detergent Fiber Carbohydrate Content of Feeds That Contain Non-Protein Nitrogen; Fact Sheet DS97; University of Florida: Gainesville, FL, USA, 2001. [Google Scholar]
- Makkar, H.P.S. Quantification of Tannins in Tree and Shrub Foliage: A Laboratory Manual; FAO/IAEA: Vienna, Austria, 2000.
- NRC. Nutrient Requirements of Dairy Cattle, 6th ed.; National Academy Press: Washington, DC, USA, 1989.
- Makkar, H.P.S. In vitro gas methods for evaluation of feeds containing phytochemicals. Anim. Feed Sci. Technol. 2005, 123, 291–302. [Google Scholar] [CrossRef]
- Mould, F.L.; Morgan, R.; Kliem, K.E.; Krystallidou, E. A review and simplification of the in vitro incubation medium. Anim. Feed Sci. Technol. 2005, 123–124, 155–172. [Google Scholar] [CrossRef]
- Demarco, C.F.; Paredes, F.M.G.; Pozo, C.A.; Mibach, M.; Kozloski, G.V.; de Oliveira, L.; Schmitt, E.; Rabassa, V.R.; Pino, F.A.B.D.; Corrêa, M.N.; et al. In vitro fermentation of diets containing sweet potato flour as a substitute for corn in diets for ruminants. Ciênc. Rural 2020, 50, e20181055. [Google Scholar] [CrossRef]
- Schofield, P.; Pitt, R.E.; Pell, A.N. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 1994, 72, 2980–2991. [Google Scholar] [CrossRef]
- Weatherburn, M.W. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- Broderick, G.A. Determination of protein degradation rates using a rumen in vitro system containing inhibitors of microbial nitrogen metabolism. Br. J. Nutr. 1987, 58, 463–475. [Google Scholar] [CrossRef] [PubMed]
- Ørskov, E.R.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G.; Boval, M.; Noblet, J.; Renaudeau, D.; Lessire, M.; Lebas, F. Alfalfa (Medicago sativa). Feedipedia. 2016. Available online: https://www.feedipedia.org/node/275 (accessed on 31 August 2025).
- Fox, D.G.; Tylutki, T.P.; Tedeschi, L.O.; Van Amburgh, M.E.; Chase, L.E.; Pell, A.N.; Overton, T.R.; Russell, J.B. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 2004, 112, 29–78. [Google Scholar] [CrossRef]
- Heuzé, V.; Tran, G. Leucaena (Leucaena leucocephala). Feedipedia, a Programme by INRAE, CIRAD, AFZ and FAO. 2015. Available online: https://www.feedipedia.org/node/282 (accessed on 31 August 2025).
- Heuzé, V.; Tran, G. Rice Straw. Feedipedia, a Programme by INRAE, CIRAD, AFZ and FAO. 2015. Available online: https://www.feedipedia.org/node/557 (accessed on 31 August 2025).
- Frutos, P.; Hervás, G.; Giráldez, F.J.; Mantecón, A.R. Tannins and ruminant nutrition. Span. J. Agric. Res. 2004, 2, 191–202. [Google Scholar] [CrossRef]
- Jayanegara, A.; Palupi, E. Condensed tannin effects on nitrogen digestion in ruminants: A meta-analysis from in vitro and in vivo studies. Media Peternak. 2010, 33, 176–184. [Google Scholar] [CrossRef]
- Rufino-Moya, P.J.; Blanco, M.; Bertolín, J.R.; Joy, M. Methane production of fresh sainfoin, with or without PEG, and fresh alfalfa at different stages of maturity is similar but the fermentation end products vary. Animals 2019, 9, 197. [Google Scholar] [CrossRef]
- Bhatta, R.; Saravanan, M.; Baruah, L.; Sampath, K.T. Nutrient content, in vitro ruminal fermentation characteristics and methane reduction potential of tropical tannin-containing leaves. J. Sci. Food Agric. 2012, 92, 2929–2935. [Google Scholar] [CrossRef]
- Barbera, P.; Bendersky, D.; Calvi, M.; Cetrá, B.M.; Flores, A.J.; Hug, M.G.; Pellerano, L.L.; Pizzio, R.M.; Rosatti, G.; Sampedro, D.H.; et al. Cría Vacuna en el NEA; Ediciones INTA: Buenos Aires, Argentina, 2018. [Google Scholar]

| Item | Prosopis affinis | Prosopis nigra | Acacia polyphylla | Phyllostylon rhamnoides | Tabebuia nodosa |
|---|---|---|---|---|---|
| Dry matter (DM, % as feed) | 41.9 | 48.1 | 52.5 | 31.6 | 41.4 |
| Chemical composition (% DM) | |||||
| Organic matter | 91.2 | 90.7 | 94.4 | 79.4 | 90.4 |
| Crude protein | 18.8 | 17.4 | 21.0 | 27.7 | 18.8 |
| Neutral detergent fiber | 55.1 | 55.9 | 56.9 | 48.4 | 56.6 |
| Acid detergent fiber | 35.3 | 32.4 | 34.6 | 21.1 | 34.1 |
| Acid detergent lignin | 17.6 | 19.3 | 20.5 | 5.3 | 8.3 |
| Ether extract | 2.36 | 2.43 | 2.64 | 2.97 | 3.39 |
| Ash | 8.8 | 9.3 | 5.6 | 20.6 | 9.6 |
| Non-fiber carbohydrates | 16.2 | 16.2 | 15.4 | 2.7 | 13.4 |
| Total tannins | 0.85 | 4.58 | 7.48 | 0.41 | 0.99 |
| N fractions (% total N) | |||||
| Soluble N | 30.3 | 19.6 | 37.6 | 29.3 | 35.7 |
| Neutral detergent insoluble N | 39.5 | 40.0 | 46.4 | 54.9 | 46.9 |
| Acid detergent insoluble N | 11.4 | 28.5 | 27.8 | 15.6 | 20.2 |
| Item | Prosopis affinis | Prosopis nigra | Acacia polyphylla | Phyllostylon rhamnoides | Tabebuia nodosa | SEM 1 | p-Value |
|---|---|---|---|---|---|---|---|
| OMD (%) | 51.3 b | 38.8 c | 37.9 c | 72.7 a | 48.7 bc | 3.95 | <0.01 |
| DOM (g/kg DM) | 468 b | 352 c | 358 c | 577 a | 440 bc | 33.4 | <0.01 |
| ME (Mcal/kg DM) | 1.69 b | 1.27 c | 1.30 c | 2.09 a | 1.59 bc | 0.121 | <0.01 |
| Item | Prosopis affinis | Prosopis nigra | Acacia polyphylla | Phyllostylon rhamnoides | Tabebuia nodosa | SEM 1 | p-Value | ||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PEG 2 | − | + | − | + | − | + | − | + | − | + | Sp | PEG | |
| Total GP (mL/g OM) | 88.8 a | 85.9 a | 63.0 bc | 65.9 b | 47.5 c | 61.0 bc | 89.0 a | 96.8 a | 89.7 a | 98.5 a | 5.89 | <0.01 | 0.123 |
| S (%/h) | 2.07 d | 2.10 cd | 2.24 cd | 2.25 cd | 2.18 cd | 2.13 cd | 3.11 a | 2.98 a | 2.77 ab | 2.50 bc | 0.141 | <0.01 | 0.351 |
| Methane (g/kg OM) | 9.86 | 15.55 | 9.36 | 12.75 | 4.79 | 5.66 | 13.82 | 12.08 | 9.99 | 11.59 | 4.254 | 0.277 | 0.381 |
| Item | Prosopis affinis | Prosopis nigra | Acacia polyphylla | Phyllostylon rhamnoides | Tabebuia nodosa | SEM 1 | p-Value | |||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| PEG 2 | − | + | − | + | − | + | − | + | − | + | Sp | PEG | Sp × PEG | |
| kd (%/h) | 1.90 c | 2.49 bc | 1.34 c | 3.55 b | 2.17 bc | 5.34 a | 0.89 c | 1.25 c | 2.09 bc | 2.24 bc | 0.557 | <0.01 | <0.01 | 0.052 |
| END (%) | ||||||||||||||
| 2 | 58.6 ab | 62.2 a | 39.7 d | 52.2 bc | 53.5 b | 62.3 a | 46.0 cd | 50.2 bc | 58.2 ab | 58.9 ab | 2.46 | <0.01 | <0.01 | 0.167 |
| 4 | 49.1 bc | 52.4 ab | 32.3 e | 43.6 cd | 48.6 bc | 56.9 a | 39.2 d | 42.3 d | 50.8 ab | 51.5 ab | 2.08 | <0.01 | <0.01 | 0.110 |
| 6 | 44.3 b | 47.2 b | 28.8 d | 38.6 c | 46.1 b | 53.5 a | 36.4 c | 38.8 c | 47.1 b | 47.7 b | 1.77 | <0.01 | <0.01 | 0.092 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Corrales Marmol, M.P.; Kozloski, G.V.; Criscioni, P.; Argüello, A.R.; Hamerski, M.E.P.; Giacomini, S.J.; Bonnet, C.M.; Miszczuk, O.R.; Filip, I.D.; Pozo, C.A. In Situ Digestibility and In Vitro Ruminal Fermentation of Foliage from Native Trees of the Chaco Region: Effects of Tree Species and Tannins. Fermentation 2025, 11, 662. https://doi.org/10.3390/fermentation11120662
Corrales Marmol MP, Kozloski GV, Criscioni P, Argüello AR, Hamerski MEP, Giacomini SJ, Bonnet CM, Miszczuk OR, Filip ID, Pozo CA. In Situ Digestibility and In Vitro Ruminal Fermentation of Foliage from Native Trees of the Chaco Region: Effects of Tree Species and Tannins. Fermentation. 2025; 11(12):662. https://doi.org/10.3390/fermentation11120662
Chicago/Turabian StyleCorrales Marmol, María Paz, Gilberto Vilmar Kozloski, Patricia Criscioni, Alejandro René Argüello, Maria Eduarda Pieniz Hamerski, Sandro José Giacomini, Celeste Maricel Bonnet, Orlando Rafael Miszczuk, Iván Daniel Filip, and Claudio Antonio Pozo. 2025. "In Situ Digestibility and In Vitro Ruminal Fermentation of Foliage from Native Trees of the Chaco Region: Effects of Tree Species and Tannins" Fermentation 11, no. 12: 662. https://doi.org/10.3390/fermentation11120662
APA StyleCorrales Marmol, M. P., Kozloski, G. V., Criscioni, P., Argüello, A. R., Hamerski, M. E. P., Giacomini, S. J., Bonnet, C. M., Miszczuk, O. R., Filip, I. D., & Pozo, C. A. (2025). In Situ Digestibility and In Vitro Ruminal Fermentation of Foliage from Native Trees of the Chaco Region: Effects of Tree Species and Tannins. Fermentation, 11(12), 662. https://doi.org/10.3390/fermentation11120662

