Assessment of Sequential Yeast Inoculation for Blackcurrant Wine Fermentation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fermentation Procedures
2.2. Test Sample Collection
2.3. Sample Analysis
2.4. Anthocyanins and Phenolics Assays on Blackcurrant Musts
2.5. Chromatic Properties
2.6. Antioxidant Capacity of Blackcurrant Wines
2.7. Monomeric Phenolic Analysis by HPLC-DAD
2.8. Statistical Analysis
3. Results and Discussion
3.1. Pre-Fermentation Content
3.2. Fermentation Soluble Solid Content (SSC) Dynamic Changes
3.3. Color Dynamic Changes
3.4. Final Wine Composition
3.5. Antioxidant Capacity of Final Wines
3.6. Monomeric Phenolics of Final Wines
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tarko, T.; Duda-Chodak, A.; Soszka, A. Changes in Phenolic Compounds and Antioxidant Activity of Fruit Musts and Fruit Wines during Simulated Digestion. Molecules 2020, 25, 5574. [Google Scholar] [CrossRef] [PubMed]
- Xue, B.; Hui, X.; Chen, X.; Luo, S.; Dilrukshi, H.N.N.; Wu, G.; Chen, C. Application, Emerging Health Benefits, and Dosage Effects of Blackcurrant Food Formats. J. Funct. Foods 2022, 95, 105147. [Google Scholar] [CrossRef]
- Coetzee, D.C. The Beauty of “Blackcurrant” Aroma. Sauvignon Blanc South Africa. Available online: https://sauvignonblanc.com/the-beauty-of-blackcurrant-aroma/ (accessed on 10 November 2023).
- Arrigoni, O.; De Tullio, M.C. Ascorbic Acid: Much More than Just an Antioxidant. Biochim. Biophys. Acta (BBA) Gen. Subj. 2002, 1569, 1–9. [Google Scholar] [CrossRef]
- Yadav, A.; Kumar, N.; Upadhyay, A.; Pratibha; Anurag, R.K. Edible Packaging from Fruit Processing Waste: A Comprehensive Review. Food Rev. Int. 2023, 39, 2075–2106. [Google Scholar] [CrossRef]
- Zhu, Y.; Su, Q.; Jiao, J.; Kelanne, N.; Kortesniemi, M.; Xu, X.; Zhu, B.; Laaksonen, O. Exploring the Sensory Properties and Preferences of Fruit Wines Based on an Online Survey and Partial Projective Mapping. Foods 2023, 12, 1844. [Google Scholar] [CrossRef] [PubMed]
- Ljevar, A.; Ćurko, N.; Tomašević, M.; Radošević, K.; Gaurina Srček, V.; Kovačević Ganić, K. Phenolic Composition, Antioxidant Capacity and in Vitro Cytotoxicity Assessment of Fruit Wines. Food Technol. Biotechnol. 2016, 54, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Rupasinghe, H.P.V.; Clegg, S. Total Antioxidant Capacity, Total Phenolic Content, Mineral Elements, and Histamine Concentrations in Wines of Different Fruit Sources. J. Food Compos. Anal. 2007, 20, 133–137. [Google Scholar] [CrossRef]
- Djordjević, B.; Rakonjac, V.; Fotirić Akšić, M.; Šavikin, K.; Vulić, T. Pomological and Biochemical Characterization of European Currant Berry (Ribes sp.) Cultivars. Sci. Hortic. 2014, 165, 156–162. [Google Scholar] [CrossRef]
- Makarov, S.S.; Makarov, S.Y.; Panasyuk, A.L. Influence of various technological factors on the composition of anthocyanins in black currant wine production. Food Process. Tech. Technol. 2018, 48, 72–80. [Google Scholar] [CrossRef]
- Fairchild, M.D. The Colors of Wine. Int. J. Wine Res. 2018, 10, 13–31. [Google Scholar] [CrossRef]
- Kelanne, N. Effects of Wine Yeast to Chemical Composition of Black Currant Wine—Anthocyanins and Alcohols. Master’s Thesis, Technology University of Turku, Turku, Finland, 2016. [Google Scholar]
- Kelanne, N.M.; Siegmund, B.; Metz, T.; Yang, B.; Laaksonen, O. Comparison of Volatile Compounds and Sensory Profiles of Alcoholic Black Currant (Ribes nigrum) Beverages Produced with Saccharomyces, Torulaspora, and Metschnikowia Yeasts. Food Chem. 2022, 370, 131049. [Google Scholar] [CrossRef] [PubMed]
- Czyzowska, A.; Pogorzelski, E. Changes to Polyphenols in the Process of Production of Must and Wines from Blackcurrants and Cherries. Part I. Total Polyphenols and Phenolic Acids. Eur. Food Res. Technol. 2002, 214, 148–154. [Google Scholar] [CrossRef]
- Landbo, A.-K.; Meyer, A.S. Enzyme-Assisted Extraction of Antioxidative Phenols from Black Currant Juice Press Residues (Ribes nigrum). J. Agric. Food Chem. 2001, 49, 3169–3177. [Google Scholar] [CrossRef] [PubMed]
- González-Royo, E.; Pascual, O.; Kontoudakis, N.; Esteruelas, M.; Esteve-Zarzoso, B.; Mas, A.; Canals, J.M.; Zamora, F. Oenological Consequences of Sequential Inoculation with Non-Saccharomyces Yeasts (Torulaspora delbrueckii or Metschnikowia pulcherrima) and Saccharomyces cerevisiae in Base Wine for Sparkling Wine Production. Eur. Food Res. Technol. 2015, 240, 999–1012. [Google Scholar] [CrossRef]
- Vejarano, R.; Gil-Calderón, A. Commercially Available Non-Saccharomyces Yeasts for Winemaking: Current Market, Advantages over Saccharomyces, Biocompatibility, and Safety. Fermentation 2021, 7, 171. [Google Scholar] [CrossRef]
- McCullough, K.S.; Yang, Y.; Lindsay, M.A.; Culley, N.; Deed, R.C. Sequential Inoculation of Flocculent Torulaspora delbrueckii with Saccharomyces cerevisiae Increases Color Density of Pinot Noir Wines. Yeast 2023, 40, 493–505. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Voon, M.K.W.; Chua, J.-Y.; Huang, D.; Lee, P.-R.; Liu, S.-Q. The Effects of Co- and Sequential Inoculation of Torulaspora Delbrueckii and Pichia Kluyveri on Chemical Compositions of Durian Wine. Appl. Microbiol. Biotechnol. 2017, 101, 7853–7863. [Google Scholar] [CrossRef]
- McCullough, K.S. Co-Flocculation of Saccharomyces Cerevisiae and Non-Saccharomyces Yeast Species to Increase Colour Intensity in Pinot Noir Wines. Master’s Thesis, The University of Auckland, Auckland, New Zealand, 2022. [Google Scholar]
- Renault, P.; Coulon, J.; de Revel, G.; Barbe, J.-C.; Bely, M. Increase of Fruity Aroma during Mixed T. delbrueckii/S. cerevisiae Wine Fermentation Is Linked to Specific Esters Enhancement. Int. J. Food Microbiol. 2015, 207, 40–48. [Google Scholar] [CrossRef]
- Toh, D.W.K.; Chua, J.Y.; Liu, S.Q. Impact of Simultaneous Fermentation with Saccharomyces Cerevisiae and Torulaspora Delbrueckii on Volatile and Non-Volatile Constituents in Beer. LWT 2018, 91, 26–33. [Google Scholar] [CrossRef]
- Vaquero, C.; Loira, I.; Heras, J.M.; Carrau, F.; González, C.; Morata, A. Biocompatibility in Ternary Fermentations with Lachancea Thermotolerans, Other Non-Saccharomyces and Saccharomyces Cerevisiae to Control pH and Improve the Sensory Profile of Wines from Warm Areas. Front. Microbiol. 2021, 12, 656262. [Google Scholar] [CrossRef]
- Puškaš, V.S.; Miljić, U.D.; Djuran, J.J.; Vučurović, V.M. The Aptitude of Commercial Yeast Strains for Lowering the Ethanol Content of Wine. Food Sci. Nutr. 2020, 8, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Xiaohui, J. Red Dragon Fruit (Pitahaya) Wine Fermentation with and without Pectinase Treatment. Master’s Thesis, National University of Singapore, Singapore, 2019. [Google Scholar]
- Lu, Y.; Huang, D.; Lee, P.-R.; Liu, S.-Q. Assessment of Volatile and Non-Volatile Compounds in Durian Wines Fermented with Four Commercial Non-Saccharomyces Yeasts. J. Sci. Food Agric. 2016, 96, 1511–1521. [Google Scholar] [CrossRef]
- Horwitz, W.; Latimer, G.W. Official Methods of Analysis of AOAC International, 19th ed.; AOAC International: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Farr, J.E.; Giusti, M.M. Investigating the Interaction of Ascorbic Acid with Anthocyanins and Pyranoanthocyanins. Molecules 2018, 23, 744. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Function for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.r-project.org/ (accessed on 11 September 2023).
- Ritchey, J.G.; Waterhouse, A.L. A Standard Red Wine: Monomeric Phenolic Analysis of Commercial Cabernet Sauvignon Wines. Am. J. Enol. Vitic. 1999, 50, 91–100. [Google Scholar] [CrossRef]
- Gómez-Alonso, S.; García-Romero, E.; Hermosín-Gutiérrez, I. HPLC Analysis of Diverse Grape and Wine Phenolics Using Direct Injection and Multidetection by DAD and Fluorescence. J. Food Compos. Anal. 2007, 20, 618–626. [Google Scholar] [CrossRef]
- Watrelot, A.A.; Badet-Murat, M.-L.; Waterhouse, A.L. Oak Barrel Tannin and Toasting Temperature: Effects on Red Wine Condensed Tannin Chemistry. LWT 2018, 91, 330–338. [Google Scholar] [CrossRef]
- Lenth, R.V. Least-Squares Means: The R Package Lsmeans. J. Stat. Softw. 2016, 69, 1–33. [Google Scholar] [CrossRef]
- Searle, S.R.; Speed, F.M.; Milliken, G.A. Population Marginal Means in the Linear Model: An Alternative to Least Squares Means. Am. Stat. 1980, 34, 216–221. [Google Scholar] [CrossRef]
- Heiberg, N.; Måge, F.; Haffner, K. Chemical Composition of Ten Blackcurrant (Ribes nigrum L.) Cultivars. Acta Agric. Scand. Sect. B Soil. Plant Sci. 1992, 42, 251–254. [Google Scholar] [CrossRef]
- Milivojević, J.; Maksimović, V.; Nikolić, M. Sugar and Organic Acids Profile in the Fruits of Black and Red Currant Cultivars. J. Agric. Sci. 2009, 54, 105–117. [Google Scholar] [CrossRef]
- Kelanne, N.; Yang, B.; Liljenbäck, L.; Laaksonen, O. Phenolic Compound Profiles in Alcoholic Black Currant Beverages Produced by Fermentation with Saccharomyces and Non-Saccharomyces Yeasts. J. Agric. Food Chem. 2020, 68, 10128–10141. [Google Scholar] [CrossRef] [PubMed]
- Gobert, A.; Tourdot-Maréchal, R.; Morge, C.; Sparrow, C.; Liu, Y.; Quintanilla-Casas, B.; Vichi, S.; Alexandre, H. Non-Saccharomyces Yeasts Nitrogen Source Preferences: Impact on Sequential Fermentation and Wine Volatile Compounds Profile. Front. Microbiol. 2017, 8, 2175. [Google Scholar] [CrossRef] [PubMed]
- Yuan, K.; Wu, G.; Li, X.; Zeng, Y.; Wen, X.; Liu, R.; Jiang, X.; Tian, L.; Sun, J.; Bai, W. Anthocyanins Degradation Mediated by β-Glycosidase Contributes to the Color Loss during Alcoholic Fermentation in a Structure-Dependent Manner. Food Res. Int. 2024, 175, 113732. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Sun, X.; Li, F.; Yu, D.; Liu, X.; Huang, W.; Zhan, J. Dynamic Changes in Phenolic Compounds, Colour and Antioxidant Activity of Mulberry Wine during Alcoholic Fermentation. J. Funct. Foods 2015, 18, 254–265. [Google Scholar] [CrossRef]
- Lu, Y.; Chua, J.-Y.; Huang, D.; Lee, P.-R.; Liu, S.-Q. Biotransformation of Chemical Constituents of Durian Wine with Simultaneous Alcoholic Fermentation by Torulaspora Delbrueckii and Malolactic Fermentation by Oenococcus Oeni. Appl. Microbiol. Biotechnol. 2016, 100, 8877–8888. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chua, J.-Y.; Voon, M.K.W.; Huang, D.; Lee, P.-R.; Liu, S.-Q. Effects of Different Inoculation Regimes of Torulaspora Delbrueckii and Oenococcus Oeni on Fermentation Kinetics and Chemical Constituents of Durian Wine. S. Afr. J. Enol. Vitic. 2017, 38, 273–285. [Google Scholar] [CrossRef]
- Mecca, D.; Benito, S.; Beisert, B.; Brezina, S.; Fritsch, S.; Semmler, H.; Rauhut, D. Influence of Nutrient Supplementation on Torulaspora Delbrueckii Wine Fermentation Aroma. Fermentation 2020, 6, 35. [Google Scholar] [CrossRef]
- Goold, H.D.; Kroukamp, H.; Williams, T.C.; Paulsen, I.T.; Varela, C.; Pretorius, I.S. Yeast’s Balancing Act between Ethanol and Glycerol Production in Low-Alcohol Wines. Microb. Biotechnol. 2017, 10, 264–278. [Google Scholar] [CrossRef] [PubMed]
- Dias, D.R.; Duarte, W.F.; Schwan, R.F. Chapter 5—Methods of Evaluation of Fruit Wines. In Science and Technology of Fruit Wine Production; Kosseva, M.R., Joshi, V.K., Panesar, P.S., Eds.; Academic Press: San Diego, CA, USA, 2017; pp. 227–252. ISBN 978-0-12-800850-8. [Google Scholar]
- Miranda, A.; Pereira, V.; Jardim, H.; Malfeito-Ferreira, M.; Marques, J.C. Impact of Non-Saccharomyces Yeast Fermentation in Madeira Wine Chemical Composition. Processes 2023, 11, 482. [Google Scholar] [CrossRef]
- Binati, R.L.; Larini, I.; Salvetti, E.; Torriani, S. Glutathione Production by Non-Saccharomyces Yeasts and Its Impact on Winemaking: A Review. Food Res. Int. 2022, 156, 111333. [Google Scholar] [CrossRef]
- Fernández-Cruz, E.; Álvarez-Fernández, M.A.; Valero, E.; Troncoso, A.M.; García-Parrilla, M.C. Melatonin and Derived L-Tryptophan Metabolites Produced during Alcoholic Fermentation by Different Wine Yeast Strains. Food Chem. 2017, 217, 431–437. [Google Scholar] [CrossRef]
- Gao, J.; Xi, Z.; Zhang, J.; Guo, Z.; Chen, T.; Fang, Y.; Meng, J.; Zhang, A.; Li, Y.; Liu, J. Influence of Fermentation Method on Phenolics, Antioxidant Capacity, and Volatiles in Blackberry Wines. Anal. Lett. 2012, 45, 2603–2622. [Google Scholar] [CrossRef]
- Benito, S. The Impact of Torulaspora Delbrueckii Yeast in Winemaking. Appl. Microbiol. Biotechnol. 2018, 102, 3081–3094. [Google Scholar] [CrossRef] [PubMed]
- Minnaar, P.P.; Ntushelo, N.; Ngqumba, Z.; van Breda, V.; Jolly, N.P. Effect of Torulaspora Delbrueckii Yeast on the Anthocyanin and Flavanol Concentrations of Cabernet Franc and Pinotage Wines. South. Afr. J. Enol. Vitic. 2015, 36, 50–58. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, X.-Y.; Fu, Y.; Zhang, Q.; Wang, X.-H.; Cui, M.-Y.; Ma, Y.-Y.; Gao, X.-L. Effects of Torulaspora Delbrueckii Co-Fermented with Saccharomyces Cerevisiae on Physicochemical and Aromatic Profiles of Blueberry Fermented Beverage. Food Chem. 2023, 409, 135284. [Google Scholar] [CrossRef]
- McDougall, G.J.; Gordon, S.; Brennan, R.; Stewart, D. Anthocyanin−Flavanol Condensation Products from Black Currant (Ribes nigrum L.). J. Agric. Food Chem. 2005, 53, 7878–7885. [Google Scholar] [CrossRef] [PubMed]
- Mikkonen, T.P.; Määttä, K.R.; Hukkanen, A.T.; Kokko, H.I.; Törrönen, A.R.; Kärenlampi, S.O.; Karjalainen, R.O. Flavonol Content Varies among Black Currant Cultivars. J. Agric. Food Chem. 2001, 49, 3274–3277. [Google Scholar] [CrossRef] [PubMed]
- Flores, G.; Ruiz del Castillo, M.L. Accumulation of Anthocyanins and Flavonols in Black Currants (Ribes nigrum L.) by Pre-Harvest Methyl Jasmonate Treatments. J. Sci. Food Agric. 2016, 96, 4026–4031. [Google Scholar] [CrossRef]
- Tomašević, M.; Lukić, K.; Ćurko, N.; Jagatić Korenika, A.-M.; Preiner, D.; Tuščić, V.; Jeromel, A.; Kovačević Ganić, K. The Influence of Grape Clone and Yeast Strain on Varietal Thiol Concentrations and Sensory Properties of Graševina Wines. Foods 2023, 12, 985. [Google Scholar] [CrossRef]
- Calderon, N. Fermentation of Coffee Beans with Common Brewing/Winemaking Yeast Strains for Novel Flavor Properties. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2023. [Google Scholar]
Content | |||
---|---|---|---|
Blackcurrant Pre-fermentation Must | D-Glucose (g/L) | D-Fructose (g/L) | D-Sucrose (g/L) |
206.10 ± 5.55 | 4.65 ± 0.81 | ND | |
Malic Acid (g/L) | Citric Acid (g/L) | pH | |
0.13 ± 0.04 | 6.57 ± 0.18 | 3.03 ± 0.02 | |
Anthocyanin (mg/L) | Phenolics (mg GAE/mL) | YAN (mg/L) | |
6.42 ± 0.34 | 3.88 ± 0.19 | 5.71 ± 1.22 |
Treatment | Total Sugars (g/L) | pH | Titratable Acidity (g/L Citric Acids) | Ethanol (%vol) | Glycerol (g/L) |
---|---|---|---|---|---|
Biodiva | 0.93 ± 0.06 a | 3.23 ± 0.01 b | 6.91 ± 0.13 a | 13.14 ± 0.05 b | 7.63 ± 0.06 a |
Flavia | 0.60 ± 0.1 b | 3.27 ± 0.02 a | 6.10 ± 0.15 b | 13.23 ± 0.03 b | 7.53 ± 0.06 a |
EC1118 | 0.47 ± 0.06 b | 3.26 ± 0.01 a | 5.89 ± 0.13 b | 13.39 ± 0.04 a | 7.23 ± 0.15 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Svyantek, A.; Miller, Z.; Watrelot, A.A. Assessment of Sequential Yeast Inoculation for Blackcurrant Wine Fermentation. Fermentation 2024, 10, 184. https://doi.org/10.3390/fermentation10040184
Wang Z, Svyantek A, Miller Z, Watrelot AA. Assessment of Sequential Yeast Inoculation for Blackcurrant Wine Fermentation. Fermentation. 2024; 10(4):184. https://doi.org/10.3390/fermentation10040184
Chicago/Turabian StyleWang, Zhuoyu, Andrej Svyantek, Zachariah Miller, and Aude A. Watrelot. 2024. "Assessment of Sequential Yeast Inoculation for Blackcurrant Wine Fermentation" Fermentation 10, no. 4: 184. https://doi.org/10.3390/fermentation10040184
APA StyleWang, Z., Svyantek, A., Miller, Z., & Watrelot, A. A. (2024). Assessment of Sequential Yeast Inoculation for Blackcurrant Wine Fermentation. Fermentation, 10(4), 184. https://doi.org/10.3390/fermentation10040184