Influence of Temperature on Vibrational Frequency of Graphene Sheet Used as Nano-Scale Sensing
Abstract
:1. Introduction
2. Theoretical Approach
2.1. Governing Equation Based on Nonlocal Elasticity
2.2. Dynamic Analysis for Single-Layer Graphene Sheet (SLGSs)
2.3. Dynamic Analysis for Double-Layer Graphene Sheet (DLGSs)
3. Results and Discussion
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Chen, H.J.; Zhu, K.D. Graphene-based nanoresonator with applications in optical transistor and mass sensing. Sensors 2014, 14, 16740–16753. [Google Scholar] [CrossRef] [PubMed]
- Fazelzadeh, S.A.; Ghavanloo, E. Nanoscale mass sensing based on vibration of single-layered graphene sheet in thermal environments. Acta Mech. Sin. 2014, 30, 84–91. [Google Scholar] [CrossRef]
- Ekinci, K.L.; Huang, X.M.H.; Roukes, M.L. Ultrasensitive nanoelectromechanical mass detection. Appl. Phys. Lett. 2004, 84, 4469–4471. [Google Scholar] [CrossRef]
- Hill, E.W.; Vijayaragahvan, A.; Novoselov, K. Graphene sensors. IEEE Sens. J. 2011, 11, 3161–3170. [Google Scholar] [CrossRef]
- Varghese, S.S.; Varghese, S.H.; Swaminathan, S.; Singh, K.K.; Mittal, V. Two-dimensional materials for sensing: Graphene and beyond. Electronics 2015, 4, 651–687. [Google Scholar] [CrossRef]
- Babaei, H.; Shahidi, A.R. Vibration of quadrilateral embedded multilayered graphene sheets based on nonlocal continuum models using the Galerkin method. Acta Mech. Sin. 2011, 27, 967–976. [Google Scholar] [CrossRef]
- Xiong, W.; Liu, J.Z.; Zhang, Z.L.; Zheng, Q.S. Control of surface wettability via strain engineering. Acta Mech. Sin. 2013, 29, 543–549. [Google Scholar] [CrossRef]
- Endo, M.; Hayashi, T.; Kim, Y.A.; Terrones, M.; Dresselhaus, M.S. Applications of carbon nanotubes in the twenty-first century. Philos. Trans. R. Soc. Lond. A 2004, 362, 2223–2238. [Google Scholar] [CrossRef] [PubMed]
- Baughman, R.H.; Zakhidov, A.A.; de Heer, W.A. Carbon nanotubes. The route toward applications. Science 2002, 297, 787–792. [Google Scholar] [CrossRef] [PubMed]
- De Volder, M.F.L.; Tawfick, S.H.; Baughman, R.H.; Hart, A.J. Carbon Nanotubes: Present and future commercial applications. Science 2013, 339, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Strozzi, M.; Smirnov, V.V.; Manevitch, L.I.; Milani, M.; Pellicano, F. Nonlinear vibrations and energy exchange of single-walled carbon nanotubes. Circumferential flexural modes. J. Sound Vib. 2016, 381, 156–178. [Google Scholar] [CrossRef]
- Mahar, B.; Laslau, C.; Yip, R.; Sun, Y. Development of carbon nanotube-based sensors: A Review. IEEE Sens. J. 2007, 7, 266–284. [Google Scholar] [CrossRef]
- Ouakad, H.M.; Younis, M.I. Nonlinear dynamics of electrically actuated carbon nanotube resonators. J. Comput. Nonlinear Dyn. 2010, 5, 011009. [Google Scholar] [CrossRef]
- Li, C.; Thostenson, E.T.; Chou, T.W. Sensors and actuators based on carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2008, 68, 1227–1249. [Google Scholar] [CrossRef]
- Kitipornchai, S.; He, X.Q.; Liew, K.M. Continuum model for the vibration of multilayered graphene sheets. Phys Rev. B 2005, 72. [Google Scholar] [CrossRef]
- Shi, J.X.; Ni, Q.Q.; Lei, X.W.; Natsuki, T. Nonlocal vibration of embedded double-layer graphene nanoribbons in in-phase and anti-phase modes. Physica E 2012, 44, 1136–1141. [Google Scholar] [CrossRef]
- Chaste, J.; Eichler, A.; Moser, J.; Ceballos, G.; Rurali, R.; Bachtold, A. A Nanomechanical Mass Sensor with Yoctogram Resolution. Nat. Nanotechnol. 2012, 7, 301–304. [Google Scholar] [CrossRef] [PubMed]
- Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A. Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene. Nat. Nanotechnol. 2011, 6, 339–342. [Google Scholar] [CrossRef] [PubMed]
- Pang, W.; Yan, L.; Zhang, H.; Yu, H.Y.; Kim, E.S.; Tang, W.C. Femtogram mass sensing platform based on lateral extensional mode piezoelectric resonator. Appl. Phys. Lett. 2006, 88. [Google Scholar] [CrossRef]
- Natsuki, T. Theoretical analysis of vibration frequency of graphene sheet used as nanomechanical mass sensor. Electronics 2015, 4, 723–738. [Google Scholar] [CrossRef]
- Pradhan, S.C.; Kumar, A. Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method. Comput. Mater. Sci. 2010, 50, 239–245. [Google Scholar] [CrossRef]
- Chowdhury, R.; Adhikari, S.; Scarpa, F.; Friswell, M.I. Transverse vibration of single-layer graphene sheets. J. Phys. D Appl. Phys. 2011, 44, 205401. [Google Scholar] [CrossRef]
- Gupta, S.S.; Batra, R.C. Elastic Properties and Frequencies of Free Vibrations of Single-Layer Graphene Sheets. J. Comput. Theor. Nanosci. 2010, 7, 1–14. [Google Scholar] [CrossRef]
- Arash, B.; Wang, Q.; Duan, W.H. Detection of gas atoms via vibration of graphenes. Phys. Lett. A 2011, 375, 2411–2415. [Google Scholar] [CrossRef]
- Jiang, J.W.; Park, H.S.; Rabczuk, T. Enhancing the mass sensitivity of graphene nanoresonators via nonlinear oscillations: The effective strain mechanism. Nanotechnology 2012, 23. [Google Scholar] [CrossRef] [PubMed]
- Sakhaee-Pour, A.; Ahmadiana, M.T.; Vafaib, A. Applications of single-layered graphene sheets as mass sensors and atomistic dust detectors. Solid State Commun. 2008, 145, 168–172. [Google Scholar] [CrossRef]
- Lei, X.W.; Natsuki, T.; Shi, J.X.; Ni, Q.Q. Vibration analysis of circular double-layered graphene sheets. J. Appl. Phys. 2013, 113. [Google Scholar] [CrossRef]
- Dai, M.D.; Kim, C.W.; Eom, K. Nonlinear vibration behavior of graphene resonators and their applications in sensitive mass detection. Nanoscale Res. Lett. 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.B.; Tang, H.L.; Li, D.K.; Tang, G.J. Vibration of single-layered graphene sheet-based nanomechanical sensor via nonlocal kirchhoff plate theory. Comput. Mater. Sci. 2012, 61, 200–205. [Google Scholar] [CrossRef]
- Lee, H.L.; Yang, Y.C.; Chang, W.J. Mass Detection Using a Graphene-Based Nanomechanical Resonator. Jpn. J. Appl. Phys. 2013, 52, 025101. [Google Scholar] [CrossRef]
- Benvenuti, E.; Simone, A. One-dimensional nonlocal and gradient elasticity: Closed-form solution and size effect. Mech. Res. Commun. 2013, 48, 46–51. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R.; Diaco, M.; de Marotti Sciarra, F. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 2016. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R. Comment on the paper “Exact solution of Eringen’s nonlocal integral model for bending of Euler-Bernoulli and Timoshenko beams” by Meral Tuna & Mesut Kirca. Int. J. Eng. Sci. 2016, 109, 240–242. [Google Scholar]
- Decolon, C. Analysis of Composite Structure; HPS: London, UK, 2002; pp. 159–194. [Google Scholar]
- Shi, J.-X.; Natsuki, T.; Lei, X.-W.; Ni, Q.-Q. Equivalent Young’s modulus and thickness of graphene sheets for the continuum mechanical models. Appl. Phys. Lett. 2014, 104. [Google Scholar] [CrossRef]
Authors | Young‘s Modulus | Thickness | Frequency Shift * | Frequency Shift ** | Variation Error |
---|---|---|---|---|---|
E (TPa) | t (nm) | (GHz) | (GHz) | ||
Van Lier et al. | 1.11 | 0.34 | 113.0 | 115.11 | 2.21% |
Zhao et al. | 106.8 | 0.33 | 106.8 | 109.25 | 2.29% |
Natsuki et al. | 1.06 | 0.34 | 110.4 | 112.87 | 2.24% |
Meo et al. | 0.945 | 0.34 | 104.2 | 106.57 | 2.24% |
Duan et al. | 6.88 | 0.052 | 68.44 | 117.14 | 7.11% |
Shi et al. | 2.81 | 0.172 | 113.8 | 123.47 | 8.45% |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Natsuki, T.; Yiwada, A.; Natsuki, J. Influence of Temperature on Vibrational Frequency of Graphene Sheet Used as Nano-Scale Sensing. C 2017, 3, 4. https://doi.org/10.3390/c3010004
Natsuki T, Yiwada A, Natsuki J. Influence of Temperature on Vibrational Frequency of Graphene Sheet Used as Nano-Scale Sensing. C. 2017; 3(1):4. https://doi.org/10.3390/c3010004
Chicago/Turabian StyleNatsuki, Toshiaki, Atsushi Yiwada, and Jun Natsuki. 2017. "Influence of Temperature on Vibrational Frequency of Graphene Sheet Used as Nano-Scale Sensing" C 3, no. 1: 4. https://doi.org/10.3390/c3010004
APA StyleNatsuki, T., Yiwada, A., & Natsuki, J. (2017). Influence of Temperature on Vibrational Frequency of Graphene Sheet Used as Nano-Scale Sensing. C, 3(1), 4. https://doi.org/10.3390/c3010004