Carbon-Doped Hexagonal Boron Nitride: Analysis as π-Conjugate Molecules Embedded in Two Dimensional Insulator
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Consistency with Previous Results
3.2. “Molecular-Doped” h-BN
3.3. Odd Number C-Doping—“Phenalenyl-Embedded” in BN
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 305, 666. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Li, Z.S.; Zou, Z.G. Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 2010, 26, 3894. [Google Scholar] [CrossRef] [PubMed]
- Xiang, Q.; Yu, J.; Jaroniec, M. Preparation and Enhanced Visible-Light Photocatalytic H2-Production Activity of Graphene/C3N4 Composites. J. Phys. Chem. C 2011, 115, 7355. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: from photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 2012, 51, 68. [Google Scholar] [CrossRef] [PubMed]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R.; Novoselov, K.S.; Geim, A.K. The electronic properties of grapheme. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar] [CrossRef]
- Schedin, F.; Geim, A.K.; Morozov, S.V. Detection of individual gas molecules adsorbed on grapheme. Nat. Mater. 2007, 6, 652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404. [Google Scholar] [CrossRef]
- Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep Ultraviolet Light-Emitting Hexagonal Boron Nitride Synthesized at Atmospheric Pressure. Science 2007, 317, 932. [Google Scholar] [CrossRef] [PubMed]
- Ci, L.; Song, L.; Jin, C.; Jariwala, D.; Wu, D.; Li, Y.; Srivastava, A.; Wang, Z.F.; Storr, K.; Balicas, L.; et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 2010, 9, 430. [Google Scholar] [CrossRef] [PubMed]
- Sanchez-Sanchez, C.; Bruller, S.; Sachdev, H.; Mullen, K.; Kreig, M.; Bettinger, H.F.; Nicolai, A.; Meunier, V.; Talirz, L.; Fasel, R. On-Surface Synthesis of BN-Substituted Heteroaromatic Networks. ACS Nano 2015, 9, 9228. [Google Scholar] [CrossRef] [PubMed]
- Bonifazi, D.; Fasano, F.; Marinelli, M.M.D.; Oubara, H.; Tasseroul, J. Boron–nitrogen doped carbon scaffolding: organic chemistry, self-assembly and materials applications of borazine and its derivatives. Chem. Comm. 2015, 51, 15222. [Google Scholar] [CrossRef] [PubMed]
- Mazzoni, M.S.C.; Nunes, R.W.; Azevedo, S.; Chacham, H. Electronic structure and energetics of BxCyNz layered structures. Phys. Rev. 2006, B73, 073108. [Google Scholar] [CrossRef]
- Yuge, K. Phase stability of boron carbon nitride in a heterographene structure: A first-principles study. Phys. Rev. 2009, B79, 144109. [Google Scholar] [CrossRef]
- Ding, Y.; Wang, Y.; Ni, J. Electronic properties of graphene nanoribbons embedded in boron nitride sheets. Appl. Phys. Lett. 2009, 95, 123105. [Google Scholar] [CrossRef]
- Shinde, P.P.; Kumar, V. Direct band gap opening in graphene by BN doping: Ab initio calculations. Phys. Rev. B 2011, 84, 125401. [Google Scholar] [CrossRef]
- Manna, A.K.; Pati, S.K. Tunable Electronic and Magnetic Properties in BxNyCz Nanohybrids: Effect of Domain Segregation. J. Phys. Chem. C 2011, 115, 10842. [Google Scholar] [CrossRef]
- Peng, Q.; De, S. Tunable band gaps of mono-layer hexagonal BNC heterostructures. Physica 2012, E44, 1662. [Google Scholar] [CrossRef]
- Ni, M.; Wang, Y.; Yang, Q.; Zhu, W.; Tang, Q.; Li, Z. Stability and electronic properties of hexagonal boron nitride monolayer with irregular graphene domains embedded. Mod. Phys. Lett. 2014, B28, 1450144. [Google Scholar] [CrossRef]
- Beheshtian, J.; Soleymanabadi, H.; Peyghan, A.A.; Bagheri, Z. A DFT study on the functionalization of a BN nanosheet with PCX, (PC=phenyl carbamate, X=OCH3, CH3, NH2, NO2 and CN). Appl. Surf. Sci. 2013, 268, 436. [Google Scholar] [CrossRef]
- Kan, M.; Zhou, J.; Wang, Q.; Sun, Q.; Jena, P. Tuning the band gap and magnetic properties of BN sheets impregnated with graphene flakes. Phys. Rev. 2011, B84, 205412. [Google Scholar] [CrossRef]
- Park, H.; Wadehra, A.; Wilkins, J.W.; Castro Neto, A.H. Magnetic states and optical properties of single-layer carbon-doped hexagonal boron nitride. Appl. Phys. Lett. 2012, 100, 253115. [Google Scholar] [CrossRef]
- Xie, Y.; Yu, H.; Zhang, H.X.; Fu, H.G. Tuning the band gaps and work functions via topology and carbon concentration: a first-principles investigation of Cx(BN)y compounds. Phys. Chem. Chem. Phys. 2012, 14, 4391. [Google Scholar] [CrossRef] [PubMed]
- Ramasubramaniam, A.; Naveh, D. Carrier-induced antiferromagnet of graphene islands embedded in hexagonal boron nitride. Phys. Rev. 2011, B84, 075405. [Google Scholar] [CrossRef]
- Menezes, M.G.; Capaz, R.B. Half-metallicity induced by charge injection in hexagonal boron nitride clusters embedded in grapheme. Phys. Rev. 2012, B86, 195413. [Google Scholar] [CrossRef]
- Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G.L.; Cococcioni, M.; Dabo, I.; et al. QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys. 2009, 21, 395502. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.B.; Zhou, C.; Wu, J.; Lü, T.; He, K.-H. GGA+U study of the electronic and optical properties of hexagonal BN phase ZnO under pressure. Comput. Mater. Sci. 2015, 102, 196. [Google Scholar] [CrossRef]
- Etienne, M.; Quach, A.; Grosso, D.; Nicole, L.; Sanchez, C.; Walcarius, A. Molecular Transport into Mesostructured Silica Thin Films: Electrochemical Monitoring and Comparison between p6m, P63/mmc, and Pm3n Structures. Chem. Mater. 2007, 19, 844. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. 1976, B13, 5188. [Google Scholar] [CrossRef]
- Tit, N.; Peressi, M.; Baroni, S. Ab initio calculation of the band offset at strained GaAs/InAs (001) heterojunctions. Phys. Rev. 1993, B48, 17607. [Google Scholar] [CrossRef]
- Cooper, D.R.; D’Anjou, B.; Ghattamaneni, N.; Harack, B.; Hilke, M.; Horth, A.; Majlis, N.; Massicotte, M.; Vandsburger, L.; Whiteway, E.; et al. Experimental Review of Graphene. ISRN Condens. Matter Phys. 2012, 2012, 501686. [Google Scholar] [CrossRef]
- Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M.S. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954. [Google Scholar] [CrossRef]
- Knittle, E.; Wentzcovitch, R.M.; Jeanloz, R.; Cohen, M.L. Experimental and theoretical equation of state of cubic boron nitride. Nature 1989, 337, 349. [Google Scholar] [CrossRef]
- Goto, K.; Kubo, T.; Yamamoto, K.; Nakasuji, K.; Sato, K.; Shiomi, D.; Takui, T.; Kubota, M.; Kobayashi, T.; Yakusi, K.; et al. A Stable Neutral Hydrocarbon Radical: Synthesis, Crystal Structure, and Physical Properties of 2,5,8-Tri-tert-butyl-phenalenyl. Am. Chem. Soc. 1999, 121, 1619. [Google Scholar] [CrossRef]
- Chi, X.; Itkis, M.E.; Patrick, B.O.; Barclay, T.M.; Reed, R.W.; Oakley, R.T.; Cordes, A.W.; Haddon, R.C. The First Phenalenyl-Based Neutral Radical Molecular Conductor. J. Am. Chem. Soc. 1999, 121, 10395. [Google Scholar] [CrossRef]
- Itkis, M.E.; Chi, X.; Cordes, A.W.; Haddon, R.C. Resonating valence-bond ground state in a phenalenyl-based neutral radical conductor. Science 2002, 296, 1443. [Google Scholar] [CrossRef] [PubMed]
- Morita, Y.; Suzuki, S.; Sato, K.; Takui, T. Synthetic organic spin chemistry for structurally well-defined open-shell graphene fragments. Nat. Chem. 2011, 3, 197. [Google Scholar] [CrossRef] [PubMed]
- Ratera, I.; Veciana, J. Playing with organic radicals as building blocks for functional molecular materials. Chem. Soc. Rev. 2012, 41, 303. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, M.; Bando, Y.; Golberg, D. Post-Synthesis Carbon Doping of Individual Multiwalled Boron Nitride Nanotubes via Electron-Beam Irradiation. J. Am. Chem. Soc. 2010, 132, 13592. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Wang, M.; Bando, Y.; Golberg, D. Electron-Beam-Induced Substitutional Carbon Doping of Boron Nitride Nanosheets, Nanoribbons, and Nanotubes. ACS Nano 2011, 5, 2916. [Google Scholar] [CrossRef] [PubMed]
- Berseneva, N.; Krasheninnikov, A.V.; Nieminen, R.M. Mechanisms of Postsynthesis Doping of Boron Nitride Nanostructures with Carbon from First-Principles Simulations. Phys. Rev. Lett. 2011, 107, 035501. [Google Scholar] [CrossRef] [PubMed]
© 2016 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license ( http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xie, W.; Yanase, T.; Nagahama, T.; Shimada, T. Carbon-Doped Hexagonal Boron Nitride: Analysis as π-Conjugate Molecules Embedded in Two Dimensional Insulator. C 2016, 2, 2. https://doi.org/10.3390/c2010002
Xie W, Yanase T, Nagahama T, Shimada T. Carbon-Doped Hexagonal Boron Nitride: Analysis as π-Conjugate Molecules Embedded in Two Dimensional Insulator. C. 2016; 2(1):2. https://doi.org/10.3390/c2010002
Chicago/Turabian StyleXie, Wei, Takashi Yanase, Taro Nagahama, and Toshihiro Shimada. 2016. "Carbon-Doped Hexagonal Boron Nitride: Analysis as π-Conjugate Molecules Embedded in Two Dimensional Insulator" C 2, no. 1: 2. https://doi.org/10.3390/c2010002
APA StyleXie, W., Yanase, T., Nagahama, T., & Shimada, T. (2016). Carbon-Doped Hexagonal Boron Nitride: Analysis as π-Conjugate Molecules Embedded in Two Dimensional Insulator. C, 2(1), 2. https://doi.org/10.3390/c2010002