circRNA/miRNA Networks Regulate KLF4 in Tumor Development
Abstract
1. Introduction
2. KLF4 Is a Target for miRNAs
3. KLF4 Is a Target for circRNAs
circRNA/miRNA | Tumor | References |
---|---|---|
circ_0071681/miR-29a-3p | Colorectal cancer | [34] |
ciRS-7 (CDR1as)/miR-7-5p | Colorectal cancer, esophageal squamous cell carcinoma, hepatocellular carcinoma, hepatoblastoma | [4,31,35,36,37,40] |
ciRS-7 (CDR1as)/miR-7 | Esophageal carcinoma | [35] |
circ_0015756/miR-7 | Hepatoblastoma, hepatocellular carcinoma | [41,42,43] |
circPRMT5/miR-7-5p | Wilms’ tumor | [20] |
circLECRC/miR-135b-5p | Colorectal cancer | [44] |
circUBAP2/miR-3182 | Non-small cell lung cancer | [46] |
circEHMT1/miR-1233-3p | Breast cancer | [47] |
circPLEKHM3/miR-9 | Ovarian cancer | [48] |
4. KLF4 May Serve Either as Tumor Promoter or Suppressor During Different Stages of the Disease
5. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
Abbreviations
References
- Li, Z.; Wang, S.; Guo, T.; Yan, X.; Chen, C.; Zhang, W.; Zhao, J.; Zhang, J.; Zhao, S.; Wang, Y.; et al. Macc1 ablation suppresses the dedifferentiation process of non-cscs in lung cancer through stabilizing klf4. Cell Death Discov. 2024, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Ghaleb, A.M.; Yang, V.W. Kruppel-like factor 4 (klf4): What we currently know. Gene 2017, 611, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Kaikkonen, M.U.; Lam, M.T.; Glass, C.K. Non-coding rnas as regulators of gene expression and epigenetics. Cardiovasc. Res. 2011, 90, 430–440. [Google Scholar] [CrossRef]
- Frazzi, R. Klf4 is an epigenetically modulated, context-dependent tumor suppressor. Front. Cell Dev. Biol. 2024, 12, 1392391. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Lu, B.; Xu, F.; Gu, H.; Fang, Y.; Huang, Q.; Lai, M. Dynamic down-regulation of kruppel-like factor 4 in colorectal adenoma-carcinoma sequence. J. Cancer Res. Clin. Oncol. 2008, 134, 891–898. [Google Scholar] [CrossRef]
- Traka, M.H.; Chambers, K.F.; Lund, E.K.; Goodlad, R.A.; Johnson, I.T.; Mithen, R.F. Involvement of klf4 in sulforaphane- and iberin-mediated induction of p21(waf1/cip1). Nutr. Cancer 2009, 61, 137–145. [Google Scholar] [CrossRef]
- Frazzi, R.; Cusenza, V.Y.; Pistoni, M.; Canovi, L.; Cascione, L.; Bertoni, F.; Merli, F. Klf4, dapk1 and spg20 promoter methylation is not affected by dnmt1 silencing and hypomethylating drugs in lymphoma cells. Oncol. Rep. 2022, 47, 10. [Google Scholar] [CrossRef]
- Peng, F.; He, R.; Liu, Y.; Xie, Y.; Xiong, G.; Li, X.; Wang, M.; Zhao, C.; Zhang, H.; Xu, S.; et al. Mir-200b-3p elevates 5-fu sensitivity in cholangiocarcinoma cells via autophagy inhibition by targeting klf4. Non-Coding RNA Res. 2024, 9, 1098–1110. [Google Scholar] [CrossRef]
- Wei, L.; He, P.; Tan, Z.; Zhao, L.; Lin, C.; Wei, Z. Unveiling the role of the klf4/lnc18q22.2/ulbp3 axis in the tumorigenesis and immune escape of hepatocellular carcinoma under hypoxic condition. J. Cell. Mol. Med. 2024, 28, e18411. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Wang, Y.; Li, N.; Zhang, S.; Lv, K.; Jia, R.; Wei, T.; Li, X.; Han, C.; et al. Klf4 suppresses anticancer effects of brusatol via transcriptional upregulating nck2 expression in melanoma. Biochem. Pharmacol. 2024, 223, 116197. [Google Scholar] [CrossRef]
- Jeck, W.R.; Sorrentino, J.A.; Wang, K.; Slevin, M.K.; Burd, C.E.; Liu, J.; Marzluff, W.F.; Sharpless, N.E. Circular rnas are abundant, conserved, and associated with alu repeats. RNA 2013, 19, 141–157. [Google Scholar] [CrossRef]
- TargetScan Human; Targetscan7.2; (mir-200b-3p Predicted Targets) Dataset; Whitehead Institute for Biomedical Research: Cambridge, MA, USA, 2018; Available online: http://www.targetscan.org/vert_72/ (accessed on 13 March 2025).
- Agarwal, V.; Bell, G.W.; Nam, J.; Bartel, D.P. Predicting effective microRNA target sites in mammalian mRNAs. eLife 2015, 4, e05005. [Google Scholar] [CrossRef] [PubMed]
- McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The biochemical basis of microRNA targeting efficacy. Science 2019, 366, eaav1741. [Google Scholar] [CrossRef] [PubMed]
- Luo, H.Q.; Wang, Y.; Ren, J.; Zhang, Q.Y.; Chen, Y.; Chen, M.H.; Huang, N.X.; Wu, M.H.; Tang, X.D.; Li, X.Y. Mirna-296-5p promotes the sensitivity of nasopharyngeal carcinoma cells to cisplatin via targeted inhibition of stat3/klf4 signaling axis. Sci. Rep. 2024, 14, 6681. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Shang, Y.; Lu, J.; Liu, Y.; Wang, T.; Li, D.; Li, J.; Lu, Y.; Wang, Z.; Yu, Z. Mir-29a-klf4 signaling inhibits breast tumor initiation by regulating cancer stem cells. Int. Immunopharmacol. 2024, 130, 111797. [Google Scholar] [CrossRef]
- Lu, J.; Zhao, Q.; Guo, Y.; Li, D.; Xie, H.; Liu, C.; Hu, X.; Liu, S.; Hou, Z.; Wei, X.; et al. Regulation of eralpha-dependent breast cancer metastasis by a mir-29a signaling. J. Exp. Clin. Cancer Res. 2023, 42, 93. [Google Scholar] [CrossRef]
- Shang, Y.; Zhu, Z.; Zhang, Y.; Ji, F.; Zhu, L.; Liu, M.; Deng, Y.; Lv, G.; Li, D.; Zhou, Z.; et al. Mir-7-5p/klf4 signaling inhibits stemness and radioresistance in colorectal cancer. Cell Death Discov. 2023, 9, 42. [Google Scholar] [CrossRef]
- Dong, M.; Xie, Y.; Xu, Y. Mir-7-5p regulates the proliferation and migration of colorectal cancer cells by negatively regulating the expression of kruppel-like factor 4. Oncol. Lett. 2019, 17, 3241–3246. [Google Scholar]
- Zhang, J.; Quan, Y.; Su, X.; Qiu, B.; Dong, Q. Circ-prmt5 stimulates the proliferative ability in wilms’ tumor through the mir-7-5p/klf4 axis. Cell. Mol. Biol. 2023, 69, 232–236. [Google Scholar] [CrossRef]
- Gao, D.; Qi, X.; Zhang, X.; Fang, K.; Guo, Z.; Li, L. Hsa_circrna_0006528 as a competing endogenous rna promotes human breast cancer progression by sponging mir-7-5p and activating the mapk/erk signaling pathway. Mol. Carcinog. 2019, 58, 554–564. [Google Scholar] [CrossRef]
- Xiao, H. Mir-7-5p suppresses tumor metastasis of non-small cell lung cancer by targeting nova2. Cell. Mol. Biol. Lett. 2019, 24, 60. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, H.; Zhang, G.; Luo, C.; Zhang, S.; Luo, R.; Deng, B. Hsa-mir-7-5p suppresses proliferation, migration and promotes apoptosis in hepatocellular carcinoma cell lines by inhibiting spc24 expression. Biochem. Biophys. Res. Commun. 2021, 561, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, N.; Ishii, H.; Nagano, H.; Haraguchi, N.; Dewi, D.L.; Kano, Y.; Nishikawa, S.; Tanemura, M.; Mimori, K.; Tanaka, F.; et al. Reprogramming of mouse and human cells to pluripotency using mature micrornas. Cell Stem Cell 2011, 8, 633–638. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, S.; Yamamoto, H.; Miyoshi, N.; Takahashi, H.; Suzuki, Y.; Haraguchi, N.; Ishii, H.; Doki, Y.; Mori, M. Emerging methods for preparing ips cells. Jpn. J. Clin. Oncol. 2012, 42, 773–779. [Google Scholar] [CrossRef]
- Asadzadeh, Z.; Mansoori, B.; Mohammadi, A.; Aghajani, M.; Haji-Asgarzadeh, K.; Safarzadeh, E.; Mokhtarzadeh, A.; Duijf, P.H.G.; Baradaran, B. Micrornas in cancer stem cells: Biology, pathways, and therapeutic opportunities. J. Cell. Physiol. 2019, 234, 10002–10017. [Google Scholar] [CrossRef]
- Okuda, H.; Xing, F.; Pandey, P.R.; Sharma, S.; Watabe, M.; Pai, S.K.; Mo, Y.Y.; Iiizumi-Gairani, M.; Hirota, S.; Liu, Y.; et al. Mir-7 suppresses brain metastasis of breast cancer stem-like cells by modulating klf4. Cancer Res. 2013, 73, 1434–1444. [Google Scholar] [CrossRef]
- Zeng, Z.; Li, Y.; Pan, Y.; Lan, X.; Song, F.; Sun, J.; Zhou, K.; Liu, X.; Ren, X.; Wang, F.; et al. Cancer-derived exosomal mir-25-3p promotes pre-metastatic niche formation by inducing vascular permeability and angiogenesis. Nat. Commun. 2018, 9, 5395. [Google Scholar] [CrossRef]
- Iacomino, G. miRNAs: The Road from Bench to Bedside. Genes 2023, 14, 314. [Google Scholar] [CrossRef]
- Wu, W.; Ji, P.; Zhao, F. Circatlas: An integrated resource of one million highly accurate circular rnas from 1070 vertebrate transcriptomes. Genome Biol. 2020, 21, 101. [Google Scholar] [CrossRef]
- Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular rnas. Nat. Rev. Genet. 2019, 20, 675–691. [Google Scholar] [CrossRef]
- Chen, L.L. The biogenesis and emerging roles of circular rnas. Nat. Rev. Mol. Cell Biol. 2016, 17, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Datta, D.; Serrat, J.; Morey, L.; Solanas, G.; Avgustinova, A.; Blanco, E.; Pons, J.I.; Matallanas, D.; Von Kriegsheim, A.; et al. Dnmt3a and dnmt3b associate with enhancers to regulate human epidermal stem cell homeostasis. Cell Stem Cell 2016, 19, 491–501. [Google Scholar] [CrossRef] [PubMed]
- Mollanoori, H.; Ghelmani, Y.; Hassani, B.; Dehghani, M. Integrated whole transcriptome profiling revealed a convoluted circular rna-based competing endogenous rnas regulatory network in colorectal cancer. Sci. Rep. 2024, 14, 91. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Khoshbakht, T.; Hussen, B.M.; Sarfaraz, S.; Taheri, M.; Ayatollahi, S.A. Circ_cdr1as: A circular rna with roles in the carcinogenesis. Pathol. Res. Pract. 2022, 236, 153968. [Google Scholar] [CrossRef]
- Huang, H.; Wei, L.; Qin, T.; Yang, N.; Li, Z.; Xu, Z. Circular rna cirs-7 triggers the migration and invasion of esophageal squamous cell carcinoma via mir-7/klf4 and nf-kappab signals. Cancer Biol. Ther. 2019, 20, 73–80. [Google Scholar] [CrossRef]
- Hansen, T.B.; Jensen, T.I.; Clausen, B.H.; Bramsen, J.B.; Finsen, B.; Damgaard, C.K.; Kjems, J. Natural rna circles function as efficient microrna sponges. Nature 2013, 495, 384–388. [Google Scholar] [CrossRef]
- Weng, W.; Wei, Q.; Toden, S.; Yoshida, K.; Nagasaka, T.; Fujiwara, T.; Cai, S.; Qin, H.; Ma, Y.; Goel, A. Circular rna cirs-7-a promising prognostic biomarker and a potential therapeutic target in colorectal cancer. Clin. Cancer Res. 2017, 23, 3918–3928. [Google Scholar] [CrossRef]
- Yang, X.; Xiong, Q.; Wu, Y.; Li, S.; Ge, F. Quantitative proteomics reveals the regulatory networks of circular rna cdr1as in hepatocellular carcinoma cells. J. Proteome Res. 2017, 16, 3891–3902. [Google Scholar] [CrossRef]
- Chen, L.; Shi, J.; Wu, Y.; Qiu, R.; Zeng, L.; Lou, L.; Su, J.; Liao, M.; Deng, X. Circrna cdr1as promotes hepatoblastoma proliferation and stemness by acting as a mir-7-5p sponge to upregulate klf4 expression. Aging 2020, 12, 19233–19253. [Google Scholar] [CrossRef]
- Liu, B.H.; Zhang, B.B.; Liu, X.Q.; Zheng, S.; Dong, K.R.; Dong, R. Expression profiling identifies circular rna signature in hepatoblastoma. Cell. Physiol. Biochem. 2018, 45, 706–719. [Google Scholar] [CrossRef]
- Liu, L.; Yang, X.; Li, N.F.; Lin, L.; Luo, H. Circ_0015756 promotes proliferation, invasion and migration by microrna-7-dependent inhibition of fak in hepatocellular carcinoma. Cell Cycle 2019, 18, 2939–2953. [Google Scholar] [CrossRef]
- Wu, W.; Liu, S.; Liang, Y.; Zhou, Z.; Liu, X. Mir-7 inhibits progression of hepatocarcinoma by targeting klf-4 and promises a novel diagnostic biomarker. Cancer Cell Int. 2017, 17, 31. [Google Scholar] [CrossRef]
- An, Y.; Xu, B.; Yan, G.; Wang, N.; Yang, Z.; Sun, M. Yap derived circ-lecrc functions as a “brake signal” to suppress hyperactivation of oncogenic yap signalling in colorectal cancer. Cancer Lett. 2022, 532, 215589. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Jin, Y.; Lv, X.; Liao, Q.; Luo, C.; Ye, G.; Zhang, X. Expression profiles of circular rnas in human colorectal cancer based on rna deep sequencing. J. Clin. Lab. Anal. 2019, 33, e22952. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.; Huang, J.; Chen, W.; You, P.; Ding, Y.; Tu, P. Circubap2 exacerbates malignant capabilities of nsclc by targeting klf4 through mir-3182 modulation. Aging 2021, 13, 11083–11095. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.; Wu, Y.; Zeng, B.; Sun, J.; Li, Y.; Luo, J.; Wang, L.; Yi, Z.; Li, H.; Ren, G. Circehmt1 inhibits metastatic potential of breast cancer cells by modulating mir-1233-3p/klf4/mmp2 axis. Biochem. Biophys. Res. Commun. 2020, 526, 306–313. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, Q.; Qiu, Q.; Hou, L.; Wu, M.; Li, J.; Li, X.; Lu, B.; Cheng, X.; Liu, P.; et al. Circplekhm3 acts as a tumor suppressor through regulation of the mir-9/brca1/dnajb6/klf4/akt1 axis in ovarian cancer. Mol. Cancer 2019, 18, 144. [Google Scholar] [CrossRef]
- Sun, B.; Liu, C.; Li, H.; Zhang, L.; Luo, G.; Liang, S.; Lü, M. Research progress on the interactions between long non-coding RNAs and microRNAs in human cancer. Oncol. Lett. 2019, 19, 595–605. [Google Scholar] [CrossRef]
- Gao, Y.; Takenaka, K.; Xu, S.M.; Cheng, Y.; Janitz, M. Recent advances in investigation of circRNA/lncRNA-miRNA-mRNA networks through RNA sequencing data analysis. Brief. Funct. Genom. 2025, 24, elaf005. [Google Scholar] [CrossRef]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef]
- Tong, K.L.; Tan, K.E.; Lim, Y.Y.; Tien, X.Y.; Wong, P.F. CircRNA-miRNA interactions in atherogenesis. Mol. Cell. Biochem. 2022, 477, 2703–2733. [Google Scholar] [CrossRef] [PubMed]
- Ashmawy, N.E.; Khedr, E.G.; Darwish, R.T.; Ibrahim, A.O. Competing endogenous RNAs network and therapeutic implications: New horizons in disease research. Biochim. Biophys. Acta Gene Regul. Mech. 2025, 1868, 195073. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef] [PubMed]
- Makena, M.R.; Ranjan, A.; Thirumala, V.; Reddy, A.P. Cancer stem cells: Road to therapeutic resistance and strategies to overcome resistance. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165339. [Google Scholar] [CrossRef]
- Pajonk, F.; Vlashi, E.; McBride, W.H. Radiation resistance of cancer stem cells: The 4 R′s of radiobiology revisited. Stem Cells 2010, 28, 639–648. [Google Scholar] [CrossRef]
- Yuan, L.; Meng, Y.; Xiang, J. Klf4 induces colorectal cancer by promoting emt via stat3 activation. Dig. Dis. Sci. 2024, 69, 2841–2855. [Google Scholar] [CrossRef]
- Dang, D.T.; Bachman, K.E.; Mahatan, C.S.; Dang, L.H.; Giardiello, F.M.; Yang, V.W. Decreased expression of the gut-enriched kruppel-like factor gene in intestinal adenomas of multiple intestinal neoplasia mice and in colonic adenomas of familial adenomatous polyposis patients. FEBS Lett. 2000, 476, 203–207. [Google Scholar] [CrossRef]
- Shie, J.L.; Chen, Z.Y.; Fu, M.; Pestell, R.G.; Tseng, C.C. Gut-enriched kruppel-like factor represses cyclin d1 promoter activity through sp1 motif. Nucleic Acids Res. 2000, 28, 2969–2976. [Google Scholar] [CrossRef]
- An, J.; Golech, S.; Klaewsongkram, J.; Zhang, Y.; Subedi, K.; Huston, G.E.; Wood, W.H., III; Wersto, R.P.; Becker, K.G.; Swain, S.L.; et al. Kruppel-like factor 4 (klf4) directly regulates proliferation in thymocyte development and il-17 expression during th17 differentiation. FASEB J. 2011, 25, 3634–3645. [Google Scholar] [CrossRef]
- Schoenhals, M.; Jourdan, M.; Seckinger, A.; Pantesco, V.; Hose, D.; Kassambara, A.; Moreaux, J.; Klein, B. Forced klf4 expression increases the generation of mature plasma cells and uncovers a network linked with plasma cell stage. Cell Cycle 2016, 15, 1919–1928. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frazzi, R.; Farnetti, E.; Nicoli, D. circRNA/miRNA Networks Regulate KLF4 in Tumor Development. Non-Coding RNA 2025, 11, 56. https://doi.org/10.3390/ncrna11040056
Frazzi R, Farnetti E, Nicoli D. circRNA/miRNA Networks Regulate KLF4 in Tumor Development. Non-Coding RNA. 2025; 11(4):56. https://doi.org/10.3390/ncrna11040056
Chicago/Turabian StyleFrazzi, Raffaele, Enrico Farnetti, and Davide Nicoli. 2025. "circRNA/miRNA Networks Regulate KLF4 in Tumor Development" Non-Coding RNA 11, no. 4: 56. https://doi.org/10.3390/ncrna11040056
APA StyleFrazzi, R., Farnetti, E., & Nicoli, D. (2025). circRNA/miRNA Networks Regulate KLF4 in Tumor Development. Non-Coding RNA, 11(4), 56. https://doi.org/10.3390/ncrna11040056