Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis
Abstract
:1. Introduction
2. Results and Discussion
2.1. Identification of λmax for RV
2.2. Solubility Studies for Excipient Screening
2.3. Construction of Pseudo-Ternary Phase Diagrams and Formulation of RV-NE
2.4. Thermodynamic Stability Study
2.5. In Vitro Drug Release Studies
2.6. Characterization of the Optimized Formulation NE (NE-2)
2.7. Preparation of NE Gel
2.8. Ex Vivo Skin Permeation Study
2.9. Skin Drug Retention Studies
2.10. In Vivo Studies
2.10.1. Body Weight Measurements
2.10.2. Paw Volume (PV) Measurement
2.10.3. Biochemical Estimation of Cytokines in Joint Tissue Homogenate
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Determination of λmax of RV in Ethanol
4.3. Solubility Studies for Excipient Screening
4.4. Construction of Pseudo-Ternary Phase Diagrams
4.5. Formulation of RV-Loaded Nanoemulsion
4.6. Thermodynamic Stability Testing of Nanoemulsion
4.7. In Vitro Drug Release Study
4.8. Characterization of RV Nanoemulsion (RV-NE)
4.8.1. Droplet Size, Size Distribution, and Zeta Potential
4.8.2. Transmission Electron Microscopy (TEM)
4.9. Preparation of RV-NE Gel and Conventional Gel (RV-CG)
4.10. Ex Vivo Permeation Studies
4.10.1. Preparation of Skin Samples
4.10.2. Ex Vivo Skin Permeation and Deposition Study
4.10.3. Data Analysis of Skin Permeation
4.10.4. Skin Dynamics Study
4.11. In Vivo Studies
4.11.1. Disease Induction and Dosing Schedule
4.11.2. Body Weight Measurements
4.11.3. Biochemical Estimation of Pro-Inflammatory Cytokines in Joint Tissue Homogenate
4.12. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Radu, A.F.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.J.; Anzaghe, M.; Schülke, S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells 2020, 9, 880. [Google Scholar] [CrossRef] [PubMed]
- Gokhale, J.P.; Mahajan, H.S.; Surana, S.J. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: In vivo and in vitro studies. Biomed. Pharmacother. 2019, 112, 108622. [Google Scholar] [CrossRef] [PubMed]
- Poonia, N.; Lather, V.; Kaur, B.; Kirthanashri, S.V.; Pandita, D. Optimization and Development of Methotrexate- and Resveratrol Loaded Nanoemulsion Formulation Using Box-Behnken Design for Rheumatoid Arthritis. Assay Drug Dev. Technol. 2020, 18, 356–368. [Google Scholar] [CrossRef] [PubMed]
- Suresh, P.; Salem-Bekhit, M.M.; Veedu, H.P.; Alshehri, S.; Nair, S.C.; Bukhari, S.I.; Viswanad, V.; Taha, E.I.; Sahu, R.K.; Ghoneim, M.M.; et al. Development of a Novel Methotrexate-Loaded Nanoemulsion for Rheumatoid Arthritis Treatment with Site-Specific Targeting Subcutaneous Delivery. Nanomaterials 2022, 12, 1299. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Xie, X.; Yuan, L.; Qiu, J.; Duan, W.; Xu, B.; Chen, X. Resveratrol ameliorates rheumatoid arthritis via activation of SIRT1-Nrf2 signalling pathway. Biofactors 2020, 46, 441–453. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, D.P.; McClements, D.J. Resveratrol encapsulation: Designing delivery systems to overcome solubility, stability and bioavailability issues. Trends Food Sci. Technol. 2014, 38, 88–103. [Google Scholar]
- Fırtın, B.; Yenipazar, H.; Saygün, A.; Yeşilçubuk, S.N. Encapsulation of chia seed oil with curcumin and investigation of release behaivour & antioxidant properties of microcapsules during in vitro digestion studies. Lebensm. Wiss. Technol. 2020, 134, 109947. [Google Scholar]
- Rodriguez, E.S.; Julio, L.M.; Henning, C.; Dieh, B.W.K.; Tomás, M.C.; Lxtaina, V.Y. Effect of natural antioxidants on the physicochemical properties and stability of freeze-dried microencapsulated chia seed oil. J. Sci. Food Agric. 2019, 99, 1682–1690. [Google Scholar] [CrossRef]
- Rashtbari, S.; Dehghan, G.; Yekta, R.; Jouyban, A.; Iranshahi, M. Effects of Resveratrol on the Structure and Catalytic Function of Bovine Liver catalase (BLC): Spectroscopic and Theoretical Studies. Adv. Pharm. Bull. 2017, 7, 349–357. [Google Scholar] [CrossRef]
- Shehzad, Q.; Rehman, A.; Jafari, S.M.; Zuo, M.; Khan, M.A.; Ali, A.; Khan, S.; Karim, A.; Usman, M.; Hussain, A.; et al. Improving the oxidative stability of fish oil nanoemulsions by co-encapsulation with curcumin and resveratrol. Colloids Surf. B Biointerfaces 2021, 199, 111481. [Google Scholar] [CrossRef]
- Khan, N.U.; Ali, A.; Khan, H.; Khan, Z.U.; Ahmed, Z. Stability Studies and Characterization of Glutathione-Loaded Nanoemulsion. J. Cosmet. Sci. 2018, 69, 257–267. [Google Scholar]
- Sharkawy, A.; Casimiro, F.M.; Barreiro, M.F.; Rodrigues, A.E. Enhancing trans-resveratrol topical delivery and photostability through entrapment in chitosan/gum Arabic Pickering emulsions. Int. J. Biol. Macromol. 2020, 147, 150–159. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.S.; Silva, M.F.S.; Nunes, X.P.; Colombo, A.V.; Oliveira, H.P.; Goto, P.L.; Blanzat, M.; Piva, H.L.; Tedesco, A.C.; Siqueira-Moura, M.P. Cineole-containing nanoemulsion: Development, stability, and antibacterial activity. Chem. Phys. Lipids 2021, 239, 105113. [Google Scholar] [CrossRef] [PubMed]
- Naz, Z.; Ahmad, F.J. Curcumin-loaded colloidal carrier system: Formulation optimization, mechanistic insight, ex vivo and in vivo evaluation. Int. J. Nanomed. 2015, 10, 4293–4307. [Google Scholar] [CrossRef] [PubMed]
- Rapalli, V.K.; Kaul, V.; Gorantla, S.; Waghule, T.; Dubey, S.K.; Pandey, M.M. UV Spectrophotometric method for characterization of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: Method development, in-vitro and ex-vivo applications in topical delivery. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 224, 117392. [Google Scholar] [CrossRef]
- Golwala, P.; Rathod, S.; Patil, R.; Joshi, A.; Ray, D.; Aswal, V.K.; Bahadur, P.; Tiwari, S. Effect of cosurfactant addition on the phase behaviour and microstructure of a water dilutable microemulsion. Colloids Surf. B Biointerfaces 2020, 186, 110736. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Z.; Xia, N.; Zhang, W.; Wei, Y.; Huang, J.; Ren, Z.; Meng, F.; Yang, L. Anti-arthritic activity of ferulic acid in complete Freund’s adjuvant (CFA) induced arthritis in rats: JAK2 inhibition. Inflammopharmacology 2020, 28, 463–473. [Google Scholar] [CrossRef]
- Haque, M.; Singh, A.K.; Ouseph, M.M.; Ahmed, S. Regulation of Synovial Inflammation and Tissue Destruction by Guanylate Binding Protein 5 in Synovial Fibroblasts from Patients with Rheumatoid Arthritis and Rats with Adjuvant-Induced Arthritis. Arthritis Rheumatol. 2021, 73, 943–954. [Google Scholar] [CrossRef]
- Lubberts, E.; van den Berg, W.B. Cytokines in the pathogenesis of rheumatoid arthritis and collagen-induced arthritis. Adv. Exp. Med. Biol. 2003, 520, 194–202. [Google Scholar]
- Feldmann, M.; Brennan, F.M.; Williams, R.O.; Woody, J.N.; Maini, R.N. The transfer of a laboratory-based hypothesis to a clinically usesful therapy: The development of anti-TNF therapy of rheumatoid arthritis. Best Pract. Res. Clin. Rheumatol. 2004, 18, 5980. [Google Scholar] [CrossRef] [PubMed]
Formulation from Figure 1 Pseudo-Ternary Phase Diagrams | |||
---|---|---|---|
Nanoemulsion Code | % of Oil (w/w) | % of Aqueous phase (w/w) | % of Smix (w/w) |
NE1 | 9 | 40 | 51 |
NE2 | 8 | 47 | 45 |
NE3 | 7 | 52 | 41 |
NE4 | 10 | 39 | 51 |
NE5 | 11 | 3 | 54 |
NE6 | 6 | 54 | 40 |
NE7 | 12 | 33 | 55 |
NE8 | 5 | 55 | 40 |
NE9 | 13 | 36 | 55 |
NE10 | 12 | 35 | 53 |
S. No. | Days/Weeks | Physical Stability | ||
---|---|---|---|---|
4 ± 2 °C | 30 ± 2 °C | 40 ± 2 °C | ||
NE1-NE5 | 1 day | Pass | Pass | Pass |
NE6-NE10 | Pass | Pass | Pass | |
NE1-NE5 | 1 week | Pass | Pass | Pass |
NE6-NE10 | Pass | Pass | Pass | |
NE1-NE5 | 2 week | Pass | Pass | Pass |
NE6-NE10 | Fail | Fail | Fail | |
NE1-NE5 | 4 week | Pass | Pass | Pass |
NE6-NE10 | Fail | Fail | Fail | |
NE1-NE5 | 5 week | Pass | Pass | Pass |
NE6-NE10 | Fail | Fail | Fail | |
NE1-NE5 | 6 week | Pass | Pass | Pass |
NE6-NE10 | Fail | Fail | Fail |
Nanoemulsion | Drug Content (%) | Particle size (nm) | Polydispersity Index (PDI) | Zeta Potential (mV) | % Cumulative Drug Release (Up to 12 h) |
---|---|---|---|---|---|
NE1 | 99.31 | 70. 21 | 0.321 | −15.21 | 91.14 |
NE2 | 99.73 | 37.48 | 0.290 | −18.0 | 98.21 |
NE3 | 99.20 | 100.21 | 0.356 | −11.31 | 89.31 |
NE4 | 99.11 | 120.2 | 0.378 | −12.34 | 86.12 |
NE5 | 98.92 | 130 | 0.377 | −14.21 | 82.21 |
Nanoemulsion Code | Percentage of RV Permeated (% ± SD) | Permeation Flux (mg/cm2/h ± SD) | Drug Retained (mg ± SD) |
---|---|---|---|
NE2 gel | 80.11 ± 3.12 | 1.23 ± 0.014 | 1.92 ± 0.042 |
RV-CG | 55.42 ± 2.23 | 0.78 ± 0.02 | 0.431 ± 0.032 |
Groups | Day 4 | Day 7 | Day 14 | Day 21 | Day 28 | |||||
---|---|---|---|---|---|---|---|---|---|---|
%AI ± SD | %In ± SD | %AI ± SD | %In ± SD | %AI ± SD | %In ± SD | %AI ± SD | %In ± SD | %AI ± SD | %In ± SD | |
I | 13,156 ± 12.23 | * | 90,120.65 ± 16.24 | - | 2255.12 ± 10.23 | - | 1380.21 ± 12.79 | - | 996.32 ± 13.31 | - |
II | 0 | * | 0 | - | 0 | - | 0 | - | 0 | - |
III | 25.74 ± 3.45 | 20.12 ± 7.33 | 80.12 ± 4.30 | 40.12 ± 3.17 | 80.21 ± 8.81 | 44.21 ± 5.41 | 81.12 ± 5.31 | 55.21 ± 7.15 | 78.72 ± 6.44 | 50.21 ± 5.12 |
IV | 55.51± 6.75 | 36.21 ± 3.15 | 120.2 ± 6.12 | 60.21 ± 3.2 | 180.25 ± 6.55 | 75.32 ± 6.23 | 220.10 ± 3.11 | 72.81 ± 5.72 | 310.23 ± 6.23 | 88.24 ± 5.73 |
V | 46.21 ± 3.89 | 32.13 ± 4.15 | 98.12 ± 7.21 | 53.24 | 140.51 ± 4.23 | 60.13 ± 4.21 | 170.21 ± 12.1 | 64.12 ± 2.39 | 240 ± 6.13 | 80.21 ± 8.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzal, O.; Altamimi, A.S.A.; Alamri, M.A.; Altharawi, A.; Alossaimi, M.A.; Akhtar, M.S.; Tabassum, F.; Almalki, W.H.; Singh, T. Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis. Gels 2023, 9, 131. https://doi.org/10.3390/gels9020131
Afzal O, Altamimi ASA, Alamri MA, Altharawi A, Alossaimi MA, Akhtar MS, Tabassum F, Almalki WH, Singh T. Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis. Gels. 2023; 9(2):131. https://doi.org/10.3390/gels9020131
Chicago/Turabian StyleAfzal, Obaid, Abdulamalik S. A. Altamimi, Mubarak A. Alamri, Ali Altharawi, Manal A. Alossaimi, Md Sayeed Akhtar, Fauzia Tabassum, Waleed H. Almalki, and Tanuja Singh. 2023. "Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis" Gels 9, no. 2: 131. https://doi.org/10.3390/gels9020131
APA StyleAfzal, O., Altamimi, A. S. A., Alamri, M. A., Altharawi, A., Alossaimi, M. A., Akhtar, M. S., Tabassum, F., Almalki, W. H., & Singh, T. (2023). Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis. Gels, 9(2), 131. https://doi.org/10.3390/gels9020131