Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine
Abstract
1. Introduction
2. Results and Discussion
2.1. Gelation Exploration
2.2. Investigation of the Gelation Process
2.3. Microstructural Characterization of SS/PEGDA Scaffolds
2.4. Mechanical Behavior of SS/PEGDA Scaffolds
2.5. Swelling of SS/PEGDA Scaffolds
2.6. Kinetics of Drug Release
2.7. Antibacterial Property
2.8. In Vitro Cytotoxicity
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Silk Sericin Molecule Thiolation
4.3. Silk Sericin-Derived Hydrogel Scaffold Preparation
4.4. FTIR Analysis
4.5. Effect of Tween-20, PBS, NaCl and Urea on the Gelation
4.6. Microstructural Morphology Characterization
4.7. BET Analysis
4.8. Compression Test of the SS/PEGDA Scaffold
4.9. Study of Swelling Behavior
4.10. Berberine-Loaded SS/PEGDA Hydrogel Scaffold Preparation
4.11. Mathematical Modeling of Drug Release from SS/PEGDA Scaffolds
4.12. Test for Antimicrobial Activity of Berberine-Loaded SS/PEGDA Scaffolds
4.13. In Vitro Cytotoxicity Assay
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, U.-J.; Park, J.; Li, C.; Jin, H.-J.; Valluzzi, R.; Kaplan, D.L. Structure and Properties of Silk Hydrogels. Biomacromolecules 2004, 5, 786–792. [Google Scholar] [CrossRef]
- Santos, N.T.D.G.; Landers, R.; da Silva, M.G.C.; Vieira, M.G.A. Adsorption of Gold Ions onto Sericin and Alginate Particles Chemically Crosslinked by Proanthocyanidins: A Complete Fixed-Bed Column Study. Ind. Eng. Chem. Res. 2020, 59, 318–328. [Google Scholar] [CrossRef]
- Arango, M.C.; Montoya, Y.; Peresin, M.S.; Bustamante, J.; Álvarez-López, C. Silk Sericin as A Biomaterial for Tissue Engineering: A Review. Int. J. Polym. Mater. Polym. Biomater. 2020, 69, 1–15. [Google Scholar] [CrossRef]
- Kunz, R.I.; Brancalhão, R.M.C.; Ribeiro, L.D.F.C.; Natali, M.R.M. Silkworm Sericin: Properties and Biomedical Applications. BioMed Res. Int. 2016, 2016, 8175701. [Google Scholar] [CrossRef]
- Mitran, V.; Dinca, V.; Ion, R.; Cojocaru, V.D.; Neacsu, P.; Dinu, C.Z.; Rusen, L.; Brajnicov, S.; Bonciu, A.; Dinescu, M.; et al. Graphene Nanoplatelets-Sericin Surface-Modified Gum Alloy for Improved Biological Response. RSC Adv. 2018, 8, 18492–18501. [Google Scholar] [CrossRef]
- Kumar, J.P.; Mandal, B.B. Antioxidant Potential of Mulberry and Non-mulberry Silk Sericin and its Implications in Biomedicine. Free Radic. Biol. Med. 2017, 108, 803–818. [Google Scholar] [CrossRef]
- Lamboni, L.; Gauthier, M.; Yang, G.; Wang, Q. Silk sericin: A Versatile Material for Tissue Engineering and Drug Delivery. Biotechnol. Adv. 2015, 33, 1855–1867. [Google Scholar] [CrossRef]
- Elahi, M.; Ali, S.; Tahir, H.M.; Mushtaq, R.; Bhatti, M.F. Sericin and Fibroin Nanoparticles—Natural Product for Cancer Therapy: A Comprehensive Review. Int. J. Polym. Mater. 2020, 70, 256–269. [Google Scholar] [CrossRef]
- Sunaina, S.; Subhayan, D.; Mahitosh, M.; Ghosh, A.K.; Kundu, S.C. Prospects of Nonmulberry Silk Protein Sericin-based Nanofibrous Matrices for Wound Healing—In Vitro and In Vivo Investigations. Acta Biomater. 2018, 78, 137–150. [Google Scholar]
- Qi, C.; Deng, Y.; Xu, L.; Yang, C.; Wang, L. A Sericin/Graphene Oxide Composite Scaffold as A Biomimetic Extracellular Matrix for Structural and Functional Repair of Calvarial Bone. Theranostics 2020, 10, 741–756. [Google Scholar] [CrossRef]
- Tao, G.; Wang, Y.J.; Cai, R.; Chang, H.P.; Song, K.; Zuo, H.; Zhao, P.; Xia, Q.Y.; He, H.W. Design and Performance of Sericin/Poly (vinyl alcohol) Hydrogel as A Drug Delivery Carrier for Potential Wound Dressing Application. Mat. Sci. Eng. C 2019, 101, 341–351. [Google Scholar] [CrossRef]
- Qi, C.; Liu, J.; Jin, Y.; Xu, L.M.; Wang, G.B.; Wang, Z.; Wang, L. Photo-Crosslinkable, Injectable Sericin Hydrogel as 3D Biomimetic Extracellular Matrix for Minimally Invasive Repairing Cartilage. Biomaterials 2018, 163, 89–104. [Google Scholar] [CrossRef]
- Liu, J.; Qi, C.; Tao, K.; Zhang, J.; Zhang, J.; Xu, L.; Jiang, X.; Zhang, Y.; Huang, L.; Li, Q.; et al. Sericin/Dextran Injectable Hydrogel as An Optically Trackable Drug Delivery System for Malignant Melanoma Treatment. ACS Appl. Mater. Interfaces 2016, 8, 6411–6422. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Y.; Zhang, J.; Huang, L.; Liu, J.; Li, Y.; Zhang, G.; Kundu, S.C.; Wang, L. Exploring Natural Silk Protein Sericin for Regenerative Medicine: An Injectable, Photoluminescent, Cell-adhesive 3D Hydrogel. Sci. Rep. 2014, 20, 7064. [Google Scholar] [CrossRef]
- Greg, T.H. Chapter 22-Enzyme Modification and Conjugation. In Bioconjugate Techniques, 3rd ed.; Springer: England, UK, 2013; pp. 951–957. [Google Scholar]
- Leile De Almeida, M.D.O.A.; Isabel, M.B.D.S.S.; Ferreira Borges, S.C.; Pereira Alves, P.J. Silk Sericin-based Hydrgel Methods and Uses Thereof. Portugal Patent WO 2018/011732Al, 18 January 2018. [Google Scholar]
- Chun, J.P.; Jooyeon, R.; Chang, S.K.; Joog, W.K.; Ick, S.K.; Do, G.B.; Um, I.C. Effect of Molecular Weight on the Structure and Mechanical Properties of Silk Sericin Gel, Film, and Sponge. Int. J. Biol. Macromol. 2018, 119, 821–832. [Google Scholar]
- Stichler, S.; Jungst, T.; Schamel, M.; Zilkowski, I.; Kuhlmann, M.; Böck, T.; Blunk, T.; Teßmar, J.; Groll, J. Thiol-ene Clickable Poly (glycidol) Hydrogels for Biofabrication. Ann. Biomed. Eng. 2017, 45, 273–285. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, C.W.; Ma, W.; Takahara, A. Functionalization of Metal Surface via Thiol–Ene Click Chemistry: Synthesis, Adsorption Behavior, and Postfunctionalization of a Catechol- and Allyl-Containing Copolymer. ACS Omega 2020, 5, 7488–7496. [Google Scholar] [CrossRef]
- Ji, S.L.; Qian, H.L.; Yang, C.X.; Zhao, X.; Yan, X.P. Thiol-Ene Click Synthesis of Phenylboronic Acid-Functionalized Covalent Organic Framework for Selective Catechol Removal from Aqueous Medium. ACS Appl. Mater. Interfaces 2019, 11, 46219–46225. [Google Scholar] [CrossRef]
- Felgueiras, H.P.; Wang, L.M.; Ren, K.F.; Querido, M.M.; Jin, Q.; Barbosa, M.A.; Ji, J.; Martins, M.C.L. Octadecyl Chains Immobilized onto Hyaluronic Acid Coatings by Thiol-ene “Click Chemistry” Increase the Surface Antimicrobial Properties and Prevent Platelet Adhesion and Activation to Polyurethane. ACS Appl. Mater. Interfaces 2017, 9, 7979–7989. [Google Scholar] [CrossRef]
- Hoyle, C.E.; Bowman, C.N. Thiol-Ene Click Chemistry. Angew. Chem. Int. Edit. 2010, 49, 1540–1573. [Google Scholar] [CrossRef]
- Xu, J.; Boyer, C. Visible Light Photocatalytic ThiolEne Reaction: An Elegant Approach for Fast Polymer Postfunctionalization and Step-Growth Polymerization. Macromolecules 2015, 48, 520–529. [Google Scholar] [CrossRef]
- Liang, J.; Zhang, X.; Chen, Z.; Li, S.; Yan, C. Thiol-Ene Click Reaction Initiated Rapid Gelation of PEGDA/Silk Fibroin Hydrogels. Polymers 2019, 11, 2102. [Google Scholar] [CrossRef] [PubMed]
- Punyamoonwongsa, P.; Klayya, S.; Sajomsang, W.; Kunyanee, C.; Aueviriyavit, S. Silk Sericin Semi-interpenetrating Network Hydrogels Based on PEG-Diacrylate for Wound Healing Treatment. Int. J. Polym. Sci. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Ammonium Persulfate; CAS No. 7727-54-0 [Online]; Sigma Aldrich: St. Louis, MO, USA, 2018; Available online: https://www.sigmaaldrich.com (accessed on 4 February 2021).
- Hoyle, C.E.; Lowe, A.B.; Bowman, C.N. Thiol-click Chemistry: A Multifaceted Toolbox for Small Molecule and Polymer Synthesis. Cheminform 2010, 39, 1355–1387. [Google Scholar] [CrossRef] [PubMed]
- Socrates, G. Sulphur and Selenium Compounds. In Infrared and Raman Characteristic Group Frequencies, 3rd ed.; John Wiley & Sons Ltd.: England, UK, 2001; Volume 16, pp. 209–211. [Google Scholar]
- Zhao, J.; Yu, P.; Dong, S. The Influence of Crosslink Density on the Failure Behavior in Amorphous Polymers by Molecular Dynamics Simulations. Materials 2016, 9, 234. [Google Scholar] [CrossRef]
- Bodenberger, N.; Kubiczek, D.; Abrosimova, I.; Scharm, A.; Kipper, F.; Walther, P.; Rosenau, F. Evaluation of Methods for Pore Generation and Their Influence on Physio-Chemical Properties of a Protein Based Hydrogel. Biotechnol. Rep. 2016, 12, 6–12. [Google Scholar] [CrossRef]
- Fu, Y.; Kao, W.J. Drug Release Kinetics and Transport Mechanisms of Non-degradable and Degradable Polymeric Delivery Systems. Expert Opin. Drug Del. 2010, 7, 429–444. [Google Scholar] [CrossRef]
- Ritger, P.L.; Peppas, N.A. A Simple Equation for Description of Solute Release, I. Fickian and Non-Fickian Release from Non-Swellable Devices in the Form of Slabs, Spheres, Cylinders or Discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Čerňáková, M.; Košťálová, D. Antimicrobial Activity of Berberine—A Constituent of Mahonia Aquifolium. Folia Microbiol. 2002, 47, 375–378. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Hou, K.; Chen, W.; Wang, Y.; Wang, R.; Tian, C.; Xu, S.; Ji, Y.; Yang, Q.; Zhao, P. Transgenic PDGF-BB/Sericin Hydrogel Supports for Cell Proliferation and Osteogenic Differentiation. Biomater. Sci. 2020, 8, 657–672. [Google Scholar] [CrossRef] [PubMed]
- Bakhsheshi-Rad, H.R.; Ismail, A.F.; Aziz, M.; Akbari, M.; Hadisi, Z.; Omidi, M.; Chen, X. Development of the PVA/CS Nanofibers Containing Silk Protein Sericin as A Wound Dressing: In Vitro and in Vivo Assessment. Int. J. Biol. Macromol. 2020, 149, 513–521. [Google Scholar] [CrossRef] [PubMed]
Scheme. | Specific Surface Area (m2/g) |
---|---|
10% SS/PEGDA | 0.1230 |
20% SS/PEGDA | 0.2811 |
30% SS/PEGDA | 0.1411 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yan, C.; Liang, J.; Fang, H.; Meng, X.; Chen, J.; Zhong, Z.; Liu, Q.; Hu, H.; Zhang, X. Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine. Gels 2021, 7, 23. https://doi.org/10.3390/gels7010023
Yan C, Liang J, Fang H, Meng X, Chen J, Zhong Z, Liu Q, Hu H, Zhang X. Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine. Gels. 2021; 7(1):23. https://doi.org/10.3390/gels7010023
Chicago/Turabian StyleYan, Chi, Jianwei Liang, Hao Fang, Xizhi Meng, Jiale Chen, Zhi Zhong, Qin Liu, Hongmei Hu, and Xiaoning Zhang. 2021. "Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine" Gels 7, no. 1: 23. https://doi.org/10.3390/gels7010023
APA StyleYan, C., Liang, J., Fang, H., Meng, X., Chen, J., Zhong, Z., Liu, Q., Hu, H., & Zhang, X. (2021). Fabrication and Evaluation of Silk Sericin-Derived Hydrogel for the Release of the Model Drug Berberine. Gels, 7(1), 23. https://doi.org/10.3390/gels7010023