Atomic-Layer-Grown Pt on Textile Boosts Adsorption and Sensitivity of MXene Gel Inks for Wearable Electronics
Abstract
1. Introduction
2. Results and Discussion
2.1. MXene/Pt@Textile: High-Performance Flexible Self-Powered Sensor
2.2. ALD for Pt Layer
2.3. Surface Morphology
2.4. Crystalline Structure and Chemical State
2.5. Theoretical Simulation
2.6. Wearable Electronic Performance
3. Conclusions
4. Materials and Methods
4.1. Materials and Instruments
4.2. ALD Process
4.3. Preparation of MXene/Pt@ Textile
4.4. Characterization
4.5. Power Generation Test
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
| Pt | platinum |
| ALD | atomic layer deposition |
| DFT | density functional theory |
| XPS | X-ray photoelectron spectroscopy |
| TENG | triboelectric nanogenerator |
| SEM | scanning electron microscopy |
| GPC | growth amount per cycle |
| Pt@textile | Pt nanoparticles deposited on textile |
| MXene/Pt@textile | MXene nanoflakes coated on Pt@textile |
| MXene@textile | MXene nanoflakes coated on textile |
References
- Choudhry, N.A.; Arnold, L.; Rasheed, A.; Khan, I.A.; Wang, L. Textronics—A review of textile-based wearable electronics. Adv. Eng. Mater. 2021, 23, 2100469. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, R.; Ding, B.; Zhang, Z.; Shi, Y.; Yin, L.; Cao, W.; Wang, Z.; Li, G.; Liu, Z.; et al. A bionic textile sensory system for humanoid robots capable of intelligent texture recognition. Adv. Mater. 2025, 37, 2417729. [Google Scholar] [CrossRef]
- Shi, S.; Jiang, Y.; Xu, Q.; Zhang, J.; Zhang, Y.; Li, J.; Xie, Y.; Cao, Z.-P. A self-powered triboelectric multi-information motion monitoring sensor and its application in wireless real-time control. Nano Energy 2022, 97, 107150. [Google Scholar] [CrossRef]
- Yu, W.; Bai, X.; Tian, G.; Deng, J.; Zhang, Z.; Ke, Q.; Liu, S.; Huang, C. Robust bonding of Ag nanoparticles on bicomponent fibers enabled highly reliable, multi-functional piezoresistive sensing. Chem. Eng. J. 2025, 503, 158414. [Google Scholar] [CrossRef]
- Zhang, F.; Zhang, X.; Yang, T.; Shi, K.; Han, Y.; Song, X.; Yao, H.; Song, Y. High-efficiency preparation of large-sized MXene nanosheets for flexible piezoresistive sensors with high sensitivity and wide strain range. Chem. Eng. J. 2025, 515, 163779. [Google Scholar] [CrossRef]
- Seyedin, S.; Uzun, S.; Levitt, A.; Anasori, B.; Dion, G.; Gogotsi, Y.; Razal, J.M. MXene composite and coaxial fibers with high stretchability and conductivity for wearable strain sensing textiles. Adv. Funct. Mater. 2020, 30, 1910504. [Google Scholar] [CrossRef]
- Linh, V.T.N.; Han, S.; Koh, E.; Kim, S.; Jung, H.S.; Koo, J. Advances in wearable electronics for monitoring human organs: Bridging external and internal health assessments. Biomaterials 2025, 314, 122865. [Google Scholar] [CrossRef]
- Shen, Z.; Liu, F.; Huang, S.; Wang, H.; Yang, C.; Hang, T.; Tao, J.; Xia, W.; Xie, X. Progress of flexible strain sensors for physiological signal monitoring. Biosens. Bioelectron. 2022, 211, 114298. [Google Scholar] [CrossRef]
- Zheng, X.; Wang, S.; Ding, B.; Xia, H.; Liu, Z.; Zhao, Z.; Li, G.; Wang, Z.; Zou, L.; Cao, W. Ultrathin elastomer nanofiber-based skin-like electronic with multi-mode sensing capabilities. Small Methods 2025, 9, e01064. [Google Scholar] [CrossRef]
- Saleh, A.; Wustoni, S.; Bihar, E.; El-Demellawi, J.K.; Zhang, Y.; Hama, A.; Druet, V.; Yudhanto, A.; Lubineau, G.; Alshareef, H.N.; et al. Inkjet-printed Ti3C2Tx MXene electrodes for multimodal cutaneous biosensing. J. Phys. Mater. 2020, 3, 044004. [Google Scholar] [CrossRef]
- Zhou, L.; Wu, F.; Yu, J.; Deng, Q.; Zhang, F.; Wang, G. Titanium carbide (Ti3C2Tx) MXene: A novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 2017, 118, 50–57. [Google Scholar] [CrossRef]
- Shi, Z.; Li, M.; Sun, J.; Chen, Z. Defect engineering for expediting Li–S chemistry: Strategies, mechanisms, and perspectives. Adv. Energy Mater. 2021, 11, 2100332. [Google Scholar] [CrossRef]
- Shin, H.; Eom, W.; Lee, K.H.; Jeong, W.; Kang, D.J.; Han, T.H. Highly electroconductive and mechanically strong Ti3C2Tx MXene Fibers Using a Deformable MXene Gel. ACS Nano 2021, 15, 3320–3329. [Google Scholar] [CrossRef]
- Li, Y.; Cao, W.; Liu, Z.; Zhang, Y.; Chen, Z.; Zheng, X. A personalized electronic textile for ultrasensitive pressure sensing enabled by biocompatible MXene/PEDOT:PSS composite. Carbon Energy 2024, 6, e530. [Google Scholar] [CrossRef]
- Levitt, A.; Zhang, J.; Dion, G.; Gogotsi, Y.; Razal, J.M. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Adv. Funct. Mater. 2020, 30, 2000739. [Google Scholar] [CrossRef]
- Li, X.; Hao, J.; Liu, R.; He, H.; Wang, Y.; Liang, G.; Liu, Y.; Yuan, G.; Guo, Z. Interfacing MXene flakes on fiber fabric as an ultrafast electron transport layer for high performance textile electrodes. Energy Storage Materials 2020, 33, 62–70. [Google Scholar] [CrossRef]
- Ma, Z.; Ma, K.; Lu, S.; Wang, S.; Liu, X.; Li, B.; Zhang, L.; Wang, X. Flexible Ti3C2Tx MXene/ink human wearable strain sensors with high sensitivity and a wide sensing range. Sens. Actuators A Phys. 2020, 315, 112304. [Google Scholar] [CrossRef]
- Duan, N.; Shi, Z.; Wang, Z.; Zou, B.; Zhang, C.; Wang, J.; Xi, J.; Zhang, X.; Zhang, X.; Wang, G. Mechanically robust Ti3C2Tx MXene/carbon fiber fabric/thermoplastic polyurethane composite for efficient electromagnetic interference shielding applications. Mater. Des. 2022, 214, 110382. [Google Scholar] [CrossRef]
- Jang, D.; Park, K.T.; Lee, S.-S.; Kim, H. Highly stretchable three-dimensional thermoelectric fabrics exploiting woven structure deformability and passivation-induced fiber elasticity. Nano Energy 2022, 97, 107143. [Google Scholar] [CrossRef]
- Zheng, X.; Zhang, S.; Zhou, M.; Lu, H.; Guo, S.; Zhang, Y.; Li, C.; Tan, S.C. MXene functionalized, highly breathable and sensitive pressure sensors with multi-layered porous structure. Adv. Funct. Mater. 2023, 33, 2214880. [Google Scholar] [CrossRef]
- Zheng, X.; Zhou, D.; Liu, Z.; Hong, X.; Li, C.; Ge, S.; Cao, W. Skin-inspired textile electronics enable ultrasensitive pressure sensing. Small 2024, 20, 2310032. [Google Scholar] [CrossRef]
- Wang, S.; Wu, X.; Lu, J.; Luo, Z.; Xie, H.; Zhang, X.; Lin, K.; Wang, Y. Inkjet-printed silver nanowire ink for flexible transparent conductive film applications. Nanomaterials 2022, 12, 842. [Google Scholar] [CrossRef]
- Baranowska-Korczyc, A.; Nejman, A.; Rosowski, M.; Cieślak, M. Multifunctional silk textile composites functionalized with silver nanowires. J. Appl. Polym. Sci. 2023, 140, e53882. [Google Scholar] [CrossRef]
- Fernandes, M.; Padrão, J.; Ribeiro, A.I.; Fernandes, R.D.V.; Melro, L.; Nicolau, T.; Mehravani, B.; Alves, C.; Rodrigues, R.; Zille, A. Polysaccharides and Metal Nanoparticles for Functional Textiles: A Review. Nanomaterials 2022, 12, 1006. [Google Scholar] [CrossRef]
- Sarabia-Riquelme, R.; Noble, L.E.; Alarcon Espejo, P.; Ke, Z.; Graham, K.R.; Mei, J.; Paterson, A.F.; Weisenberger, M.C. Highly conductive n-Type polymer fibers from the wet-spinning of n-doped PBDF and their application in thermoelectric textiles. Adv. Funct. Mater. 2024, 34, 2311379. [Google Scholar] [CrossRef]
- Idumah, C.I. Design, fabrication, characterization and properties of metallic and conductive smart polymeric textiles for multifunctional applications. Nano-Struct. Nano-Objects 2023, 35, 100982. [Google Scholar] [CrossRef]
- Althagafy, K.; Alotibi, E.; Al-Dossari, M.; Alhashmi Alamer, F. Design and construction of a flexible conductor based on a complex conductive polymer: PEDOT:PSS/polyaniline and its application as a pressure sensor. Results Phys. 2023, 51, 106689. [Google Scholar] [CrossRef]
- Cheng, Q.; Yu, X.; Song, Y.; Wan, C.; Zhang, M.; Hu, D.; Xu, Y.; Xu, J.; Zhu, J.; Bai, H.; et al. Fine and uniform ultrathin film coating on fiber via nonequilibrium liquid/liquid interfacial engineering. Adv. Mater. 2025, e11852. [Google Scholar] [CrossRef]
- Xu, C.; Li, B.; Sundarrajan, S.; Yu, J.; Fan, Y.; Lu, C.; Chu, F.; Ramakrishna, S. Sustainable nanocellulose-based electrospinning: Unlocking advanced materials for future technologies. Materials Today 2025, 87, 151–175. [Google Scholar] [CrossRef]
- Clevenger, M.; Kim, H.; Song, H.W.; No, K.; Lee, S. Binder-free printed PEDOT wearable sensors on everyday fabrics using oxidative chemical vapor deposition. Sci. Adv. 2021, 7, eabj8958. [Google Scholar] [CrossRef]
- Fonseca, J.; Lu, J. Single-atom catalysts designed and prepared by the atomic layer deposition technique. ACS Catalysis 2021, 11, 7018–7059. [Google Scholar] [CrossRef]
- Kim, H.G.; Lee, H.-B.-R. Atomic layer deposition on 2D materials. Chem. Mater. 2017, 29, 3809–3826. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, Z.; Yang, L.; Yang, J.; Wang, P.; Gao, G.; Sun, C.; Ralchenko, V.; Zhu, J. Comparison of thermal, plasma-enhanced and layer by layer Ar plasma treatment atomic layer deposition of Tin oxide thin films. J. Cryst. Growth 2021, 572, 126264. [Google Scholar] [CrossRef]
- Nam, T.; Lee, H.; Seo, S.; Cho, S.M.; Shong, B.; Lee, H.-B.-R.; Kim, H. Moisture barrier properties of low-temperature atomic layer deposited Al2O3 using various oxidants. Ceram. Int. 2019, 45, 19105–19112. [Google Scholar] [CrossRef]
- Zhang, J.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P.A.; Qin, S.; Han, M.; Yang, W.; Liu, J.; et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093. [Google Scholar] [CrossRef]
- Wang, M.; Liu, Y.; Zhang, H.; Wu, Y.; Pan, L. Thermal conductivities of Ti3C2Tx MXenes and their interfacial thermal performance in MXene/epoxy composites–a molecular dynamics simulation. Int. J. Heat Mass Transf. 2022, 194, 123027. [Google Scholar] [CrossRef]
- Chen, A.; Holt-Hindle, P. Platinum-Based Nanostructured Materials: Synthesis, Properties, and Applications. Chem. Rev. 2010, 110, 3767–3804. [Google Scholar] [CrossRef]
- Kelly, T.G.; Chen, J.G. Metal overlayer on metal carbide substrate: Unique bimetallic properties for catalysis and electrocatalysis. Chem. Soc. Rev. 2012, 41, 8021–8034. [Google Scholar] [CrossRef]
- Longo, V.; Roozeboom, F.; Kessels, W.M.M.; Verheijen, M. ALD of SrTiO3 and Pt for Pt/SrTiO3/Pt MIM structures: Growth and crystallization study. ECS Trans. 2013, 58, 153. [Google Scholar] [CrossRef]
- Kim, K.; Lee, H.B.; Johnson, R.W.; Tanskanen, J.T.; Liu, N.; Kim, M.G.; Pang, C.; Ahn, C.; Bent, S.F.; Bao, Z. Selective metal deposition at graphene line defects by atomic layer deposition. Nat. Commun. 2014, 5, 4781. [Google Scholar] [CrossRef]
- Johnson, R.W.; Hultqvist, A.; Bent, S.F. A brief review of atomic layer deposition: From fundamentals to applications. Mater. Today 2014, 17, 236–246. [Google Scholar] [CrossRef]
- Tang, T.; Wang, Z.; Guan, J. Structural optimization of carbon-based diatomic catalysts towards advanced electrocatalysis. Coord. Chem. Rev. 2023, 492, 215288. [Google Scholar] [CrossRef]
- Karimzadeh, S.; Safaei, B.; Yuan, C.; Jen, T.-C. Emerging atomic layer deposition for the development of high-performance lithium-ion batteries. Electrochem. Energy Rev. 2023, 6, 24. [Google Scholar] [CrossRef]
- Hämäläinen, J.; Munnik, F.; Ritala, M.; Leskelä, M. Study on Atomic layer deposition of amorphous rhodium oxide thin films. J. Electrochem. Soc. 2009, 156, D418. [Google Scholar] [CrossRef]
- Hämäläinen, J.; Puukilainen, E.; Sajavaara, T.; Ritala, M.; Leskelä, M. Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactants. Thin Solid Film 2013, 531, 243–250. [Google Scholar] [CrossRef]
- Li, J.; Xia, B.; Xiao, X.; Huang, Z.; Yin, J.; Jiang, Y.; Wang, S.; Gao, H.; Shi, Q.; Xie, Y.; et al. Stretchable thermoelectric fibers with three-dimensional interconnected porous network for low-grade body heat energy harvesting. ACS Nano 2023, 17, 19232–19241. [Google Scholar] [CrossRef]
- Li, J.; Wang, B.; Jiang, F.; Song, W.; Hu, X.; Wang, Z.; Chen, S.; Lan, T.; Gao, H.; Huang, Z.; et al. Bimorph soft actuators based on isostructural heterogeneous janus films. ACS Nano 2025, 19, 33070–33079. [Google Scholar] [CrossRef]
- Wang, B.; Li, J.; Wu, Z.; Sheng, N.; Zhang, M.; Han, Z.; Jin, M.; Li, J.; Lv, X.; Ou, K.; et al. Salinity power generation based biocompatible bacterial cellulose/MXene membrane for biological power source. Nano Energy 2022, 102, 107702. [Google Scholar] [CrossRef]





Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Li, J.; Zhang, Y.; Song, W.; Jin, Z.; Lan, T.; Shi, Q.; Xie, Y. Atomic-Layer-Grown Pt on Textile Boosts Adsorption and Sensitivity of MXene Gel Inks for Wearable Electronics. Gels 2026, 12, 19. https://doi.org/10.3390/gels12010019
Li J, Zhang Y, Song W, Jin Z, Lan T, Shi Q, Xie Y. Atomic-Layer-Grown Pt on Textile Boosts Adsorption and Sensitivity of MXene Gel Inks for Wearable Electronics. Gels. 2026; 12(1):19. https://doi.org/10.3390/gels12010019
Chicago/Turabian StyleLi, Jiahui, Yang Zhang, Weidong Song, Zhangping Jin, Tao Lan, Qiuwei Shi, and Yannan Xie. 2026. "Atomic-Layer-Grown Pt on Textile Boosts Adsorption and Sensitivity of MXene Gel Inks for Wearable Electronics" Gels 12, no. 1: 19. https://doi.org/10.3390/gels12010019
APA StyleLi, J., Zhang, Y., Song, W., Jin, Z., Lan, T., Shi, Q., & Xie, Y. (2026). Atomic-Layer-Grown Pt on Textile Boosts Adsorption and Sensitivity of MXene Gel Inks for Wearable Electronics. Gels, 12(1), 19. https://doi.org/10.3390/gels12010019

