Preparation of Cassia Bean Gum/Soy Protein Isolate Composite Matrix Emulsion Gel and Its Effect on the Stability of Meat Sausage
Abstract
1. Introduction
2. Results and Discussion
2.1. Texture Characteristics of the Emulsion Gel
2.2. Rheological Behavior of the Emulsion Gel
2.3. Water-Holding Capacity and Strength of the Emulsion Gel
2.4. Observation of the Emulsion Gel Structure
2.5. FTIR Spectroscopy of Emulsion Gel
2.6. Analysis of the Thermal Properties of the Emulsion Gel
2.7. Cooking Loss, Emulsification Stability, and pH of Meat Sausage before and after FT Treatment
2.8. Color Difference Characteristics of Meat Sausage before and after Freeze–Thaw Treatment
2.9. Texture Characteristics of Meat Sausage before and after Freeze–Thaw Treatment
2.10. Antioxidant Activity of Meat Sausage
3. Conclusions
4. Materials and Methods
4.1. Materials
4.2. Preparation of Emulsion Gel
4.3. Observation of Emulsion Gel Structure
4.4. Determination of Physical and Chemical Properties of Emulsion Gel
4.4.1. Texture Characteristics
4.4.2. Rheological Behavior
4.4.3. Water Holding Capacity
4.4.4. FTIR Spectroscopy
4.4.5. Differential Scanning Calorimetry (DSC) Analysis
4.5. Preparation of Meat Sausage
4.6. Quality Determination of Meat Sausage before and after FT Treatment
4.6.1. Determination of Cooking Loss
4.6.2. Determination of Emulsification Stability
4.6.3. Measurement of pH Value
4.6.4. Determination of Color Difference
4.6.5. Determination of Texture
4.7. Determination of Antioxidant Activity of Meat Sausage
4.8. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leeuwis, C.; Boogaard, B.K.; Atta-Krah, K. How Food Systems Change (or Not): Governance Implications for System Transformation Processes. Food Secur. 2021, 13, 761–780. [Google Scholar] [CrossRef] [PubMed]
- Tremonte, P.; Pannella, G.; Lombardi, S.J.; Iorizzo, M.; Vergalito, F.; Cozzolino, A.; Maiuro, L.; Succi, M.; Sorrentino, E.; Coppola, R. Low-Fat and High-Quality Fermented Sausages. Microorganisms 2020, 8, 1025. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Liu, B.; Li, Y.; Huang, D.; Zhu, S. Influence Mechanism of Components and Characteristics on Structural and Oxidative Stability of Emulsion Gel. Food Hydrocoll. 2024, 151, 109852. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Z.; Jia, L.; Wang, X.; He, T.; Wang, L.; Yao, G.; Xie, F. Soybean Protein Isolate-Sodium Alginate Double Network Emulsion Gels: Mechanism of Formation and Improved Freeze-Thaw Stability. Int. J. Biol. Macromol. 2024, 274, 133296. [Google Scholar] [CrossRef]
- Li, M.; Feng, L.; Dai, Z.; Li, D.; Zhang, Z.; Zhou, C.; Yu, D. Improvement of 3D Printing Performance of Whey Protein Isolate Emulsion Gels by Regulating Rheological Properties: Effect of Polysaccharides Incorporation. Food Bioprocess Technol. 2024, 1–15. [Google Scholar] [CrossRef]
- Matos, M.E.; Sanz, T.; Rosell, C.M. Establishing the Function of Proteins on the Rheological and Quality Properties of Rice Based Gluten Free Muffins. Food Hydrocoll. 2014, 35, 150–158. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, Y.-R.; Li-Sha, Y.-J.; Chen, H.-Q. The Effects of Basil Seed Gum on the Physicochemical and Structural Properties of Arachin Gel. Food Hydrocoll. 2021, 110, 106189. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Gong, Y.; Li, Z.; Guo, Y.; Yu, D.; Pan, M. Emulsion Gels Stabilized by Soybean Protein Isolate and Pectin: Effects of High Intensity Ultrasound on the Gel Properties, Stability and β-Carotene Digestive Characteristics. Ultrason. Sonochemistry 2021, 79, 105756. [Google Scholar] [CrossRef]
- Wang, X.; Luo, K.; Liu, S.; Adhikari, B.; Chen, J. Improvement of Gelation Properties of Soy Protein Isolate Emulsion Induced by Calcium Cooperated with Magnesium. J. Food Eng. 2019, 244, 32–39. [Google Scholar] [CrossRef]
- Sharma, D.; Sharma, P. Synergistic Studies of Cassia Tora Gum with Xanthan and Guar Gum: Carboxymethyl Synthesis of Cassia Gum-Xanthan Synergistic Blend and Characterization. Carbohydr. Res. 2023, 523, 108723. [Google Scholar] [CrossRef]
- Cao, L.; Ge, T.; Meng, F.; Xu, S.; Li, J.; Wang, L. An Edible Oil Packaging Film with Improved Barrier Properties and Heat Sealability from Cassia Gum Incorporating Carboxylated Cellulose Nano Crystal Whisker. Food Hydrocoll. 2020, 98, 105251. [Google Scholar] [CrossRef]
- Li, X.; Chen, X.; Cheng, H. Impact of κ-Carrageenan on the Cold-Set Pea Protein Isolate Emulsion-Filled Gels: Mechanical Property, Microstructure, and In Vitro Digestive Behavior. Foods 2024, 13, 483. [Google Scholar] [CrossRef]
- Jiang, S.; Ma, Y.; Wang, Y.; Wang, R.; Zeng, M. Effect of κ-Carrageenan on the Gelation Properties of Oyster Protein. Food Chem. 2022, 382, 132329. [Google Scholar] [CrossRef]
- Hou, W.; Long, J.; Hua, Y.; Chen, Y.; Kong, X.; Zhang, C.; Li, X. Formation and Characterization of Solid Fat Mimetic Based on Pea Protein Isolate/Polysaccharide Emulsion Gels. Front. Nutr. 2022, 9, 1053469. [Google Scholar] [CrossRef]
- Lu, Y.; Ma, Y.; Zhang, Y.; Gao, Y.; Mao, L. Facile Synthesis of Zein-Based Emulsion Gels with Adjustable Texture, Rheology and Stability by Adding β-Carotene in Different Phases. Food Hydrocoll. 2022, 124, 107178. [Google Scholar] [CrossRef]
- Wang, X.-Y.; Wang, J.; Rousseau, D.; Tang, C.-H. Chitosan-Stabilized Emulsion Gels via pH-Induced Droplet Flocculation. Food Hydrocoll. 2020, 105, 105811. [Google Scholar] [CrossRef]
- Li, A.; Gong, T.; Hou, Y.; Yang, X.; Guo, Y. Alginate-Stabilized Thixotropic Emulsion Gels and Their Applications in Fabrication of Low-Fat Mayonnaise Alternatives. Int. J. Biol. Macromol. 2020, 146, 821–831. [Google Scholar] [CrossRef]
- Bi, C.; Chi, S.; Wang, X.; Alkhatib, A.; Huang, Z.; Liu, Y. Effect of Flax Gum on the Functional Properties of Soy Protein Isolate Emulsion Gel. LWT 2021, 149, 111846. [Google Scholar] [CrossRef]
- Çakır, E.; Foegeding, E.A. Combining Protein Micro-Phase Separation and Protein–Polysaccharide Segregative Phase Separation to Produce Gel Structures. Food Hydrocoll. 2011, 25, 1538–1546. [Google Scholar] [CrossRef]
- Zhao, H.; Chen, J.; Hemar, Y.; Cui, B. Improvement of the Rheological and Textural Properties of Calcium Sulfate-Induced Soy Protein Isolate Gels by the Incorporation of Different Polysaccharides. Food Chem. 2020, 310, 125983. [Google Scholar] [CrossRef]
- Neiser, S.; Draget, K.I.; Smidsrød, O. Gel Formation in Heat-Treated Bovine Serum Albumin–κ-Carrageenan Systems. Food Hydrocoll. 2000, 14, 95–110. [Google Scholar] [CrossRef]
- Hu, Y.; Liang, H.; Xu, W.; Wang, Y.; An, Y.; Yan, X.; Ye, S.; Huang, Q.; Liu, J.; Li, B. Synergistic Effects of Small Amounts of Konjac Glucomannan on Functional Properties of Egg White Protein. Food Hydrocoll. 2016, 52, 213–220. [Google Scholar] [CrossRef]
- Huang, H.; Belwal, T.; Aalim, H.; Li, L.; Lin, X.; Liu, S.; Ma, C.; Li, Q.; Zou, Y.; Luo, Z. Protein-Polysaccharide Complex Coated W/O/W Emulsion as Secondary Microcapsule for Hydrophilic Arbutin and Hydrophobic Coumaric Acid. Food Chem. 2019, 300, 125171. [Google Scholar] [CrossRef] [PubMed]
- Wei, Z.; Dong, Y.; Si, J. Ovotransferrin Fibril—Gum Arabic Complexes as Stabilizers for Oleogel-in-Water Pickering Emulsions: Formation Mechanism, Physicochemical Properties, and Curcumin Delivery. Foods 2024, 13, 1323. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, C.; Yuan, J.; Wu, Y.; Li, F.; Waterhouse, G.I.N.; Li, D.; Huang, Q. Exploiting the Robust Network Structure of Zein/Low-Acyl Gellan Gum Nanocomplexes to Create Pickering Emulsion Gels with Favorable Properties. Food Chem. 2021, 349, 129112. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Guo, C.; Li, X.; Yuan, K.; Yang, X.; Guo, Y.; Yang, X. Preparation and Structural Characteristics of Composite Alginate/Casein Emulsion Gels: A Microscopy and Rheology Study. Food Hydrocoll. 2021, 118, 106792. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, B.; Qiao, D.; Yan, X.; Zhao, S.; Jia, C.; Niu, M.; Xu, Y. Addition of κ-Carrageenan Increases the Strength and Chewiness of Gelatin-Based Composite Gel. Food Hydrocoll. 2022, 128, 107565. [Google Scholar] [CrossRef]
- Zhang, B.; Meng, R.; Li, X.-L.; Liu, W.-J.; Cheng, J.-S.; Wang, W. Preparation of Pickering Emulsion Gels Based on κ-Carrageenan and Covalent Crosslinking with EDC: Gelation Mechanism and Bioaccessibility of Curcumin. Food Chem. 2021, 357, 129726. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, W.; Wang, Y.; Wang, Y.; Wang, X.; Gao, G.; Chen, G.; Liu, A. Effects of Nanofiber Cellulose on Functional Properties of Heat-Induced Chicken Salt-Soluble Meat Protein Gel Enhanced with Microbial Transglutaminase. Food Hydrocoll. 2018, 84, 1–8. [Google Scholar] [CrossRef]
- Panagiotopoulou, E.; Moschakis, T.; Katsanidis, E. Sunflower Oil Organogels and Organogel-in-Water Emulsions (Part II): Implementation in Frankfurter Sausages. LWT 2016, 73, 351–356. [Google Scholar] [CrossRef]
- Abbasi, E.; Amini Sarteshnizi, R.; Ahmadi Gavlighi, H.; Nikoo, M.; Azizi, M.H.; Sadeghinejad, N. Effect of Partial Replacement of Fat with Added Water and Tragacanth Gum (Astragalus Gossypinus and Astragalus Compactus) on the Physicochemical, Texture, Oxidative Stability, and Sensory Property of Reduced Fat Emulsion Type Sausage. Meat Sci. 2019, 147, 135–143. [Google Scholar] [CrossRef]
- Paglarini, C.d.S.; Martini, S.; Pollonio, M.A.R. Using Emulsion Gels Made with Sonicated Soy Protein Isolate Dispersions to Replace Fat in Frankfurters. LWT 2019, 99, 453–459. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, S.; Li, X.; Li, X.; Huang, Y.; An, F.; Huang, Q.; Song, H. Effect of Gel Composition Interaction on Rheological, Physicochemical and Textural Properties of Methyl Cellulose Oleogels and Lard Replacement in Ham Sausage. Int. J. Biol. Macromol. 2024, 280, 135902. [Google Scholar] [CrossRef]
- Cui, B.; Mao, Y.; Liang, H.; Li, Y.; Li, J.; Ye, S.; Chen, W.; Li, B. Properties of Soybean Protein Isolate/Curdlan Based Emulsion Gel for Fat Analogue: Comparison with Pork Backfat. Int. J. Biol. Macromol. 2022, 206, 481–488. [Google Scholar] [CrossRef]
- Li, Y.; Wang, S.; Liu, X.; Zhao, G.; Yang, L.; Zhu, L.; Liu, H. Improvement in Texture and Color of Soy Protein Isolate Gel Containing Capsorubin and Carotenoid Emulsions Following Microwave Heating. Food Chem. 2023, 428, 136743. [Google Scholar] [CrossRef]
- Kılıç, B.; Özer, C.O. Potential Use of Interesterified Palm Kernel Oil to Replace Animal Fat in Frankfurters. Meat Sci. 2019, 148, 206–212. [Google Scholar] [CrossRef]
- Pintado, T.; Muñoz-González, I.; Salvador, M.; Ruiz-Capillas, C.; Herrero, A.M. Phenolic Compounds in Emulsion Gel-Based Delivery Systems Applied as Animal Fat Replacers in Frankfurters: Physico-Chemical, Structural and Microbiological Approach. Food Chem. 2021, 340, 128095. [Google Scholar] [CrossRef]
- Liu, N.; Lu, Y.; Zhang, Y.; Gao, Y.; Mao, L. Surfactant Addition to Modify the Structures of Ethylcellulose Oleogels for Higher Solubility and Stability of Curcumin. Int. J. Biol. Macromol. 2020, 165, 2286–2294. [Google Scholar] [CrossRef]
- Millao, S.; Iturra, N.; Contardo, I.; Morales, E.; Quilaqueo, M.; Rubilar, M. Structuring of Oils with High PUFA Content: Evaluation of the Formulation Conditions on the Oxidative Stability and Structural Properties of Ethylcellulose Oleogels. Food Chem. 2023, 405, 134772. [Google Scholar] [CrossRef]
- Gao, T.; Wu, X.; Gao, Y.; Teng, F.; Li, Y. Construction of Emulsion Gel Based on the Interaction of Anionic Polysaccharide and Soy Protein Isolate: Focusing on Structural, Emulsification and Functional Properties. Food Chem. X 2024, 22, 101377. [Google Scholar] [CrossRef]
- Lei, D.; Qin, L.; Wang, M.; Li, H.; Lei, Z.; Dong, N.; Liu, J. Insights into the Acid-Induced Gelation of Original Pectin from Potato Cell Walls by Gluconic Acid-δ-Lactone. Foods 2023, 12, 3427. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Macro-Micro Structure Characterization and Molecular Properties of Emulsion-Templated Polysaccharide Oleogels. Food Hydrocoll. 2018, 77, 17–29. [Google Scholar] [CrossRef]
- You, K.-M.; Murray, B.S.; Sarkar, A. Tribology and Rheology of Water-in-Water Emulsions Stabilized by Whey Protein Microgels. Food Hydrocoll. 2023, 134, 108009. [Google Scholar] [CrossRef]
- Zhao, Q.; Zheng, B.; Li, J.; Cheong, K.L.; Li, R.; Chen, J.; Liu, X.; Jia, X.; Song, B.; Wang, Z.; et al. Emulsion-Filled Surimi Gel: A Promising Approach for Enhancing Gel Properties, Water Holding Capacity, and Flavor. Trends Food Sci. Technol. 2024, 152, 104663. [Google Scholar] [CrossRef]
- Meng, Z.; Qi, K.; Guo, Y.; Wang, Y.; Liu, Y. Effects of Thickening Agents on the Formation and Properties of Edible Oleogels Based on Hydroxypropyl Methyl Cellulose. Food Chem. 2018, 246, 137–149. [Google Scholar] [CrossRef]
- Zhu, Q.; Gao, J.; Han, L.; Han, K.; Wei, W.; Wu, T.; Li, J.; Zhang, M. Development and Characterization of Novel Bigels Based on Monoglyceride-Beeswax Oleogel and High Acyl Gellan Gum Hydrogel for Lycopene Delivery. Food Chem. 2021, 365, 130419. [Google Scholar] [CrossRef]
- Qi, W.; Wu, J.; Shu, Y.; Wang, H.; Rao, W.; Xu, H.-N.; Zhang, Z. Microstructure and Physiochemical Properties of Meat Sausages Based on Nanocellulose-Stabilized Emulsions. Int. J. Biol. Macromol. 2020, 152, 567–575. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Liu, S.; Han, Z.; Shen, L.; Lan, W.; Shao, J.-H.; Cheng, K.; Liu, Y.; Xia, Q.; Wang, Z.; et al. The Underlying Mechanism between Emulsification Stability and in Vitro Digestion in Golden Pompano (Trachinotus Ovatus) Myofibrillar Protein-Fish Oil Oleogel Emulsion under Ultrasonic Treatments. Food Hydrocoll. 2024, 154, 110015. [Google Scholar] [CrossRef]
- Yu, D.; Feng, M.; Sun, J. Influence of Mixed Starters on the Degradation of Proteins and the Formation of Peptides with Antioxidant Activities in Dry Fermented Sausages. Food Control 2021, 123, 107743. [Google Scholar] [CrossRef]
- Cheng, J.-R.; Liu, X.-M.; Zhang, Y.-S.; Zhang, Y.-H.; Chen, Z.-Y.; Tang, D.-B.; Wang, J.-Y. Protective Effects of Momordica Grosvenori Extract against Lipid and Protein Oxidation-Induced Damage in Dried Minced Pork Slices. Meat Sci. 2017, 133, 26–35. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Zhang, X.; Kong, B.; Li, Y.; Chen, Q.; Wen, R. Effect of Inoculation with Autochthonous Lactic Acid Bacteria on Flavor, Texture, and Color Formation of Dry Sausages with NaCl Partly Substituted by KCl. Foods 2024, 13, 1747. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, B.; Fu, X.; Huang, Q. Starch-Lauric Acid Complex-Stabilised Pickering Emulsion Gels Enhance the Thermo-Oxidative Resistance of Flaxseed Oil. Carbohydr. Polym. 2022, 292, 119715. [Google Scholar] [CrossRef]
- Kong, Y.; Feng, M.; Sun, J. Effects of Lactobacillus Plantarum CD101 and Staphylococcus Simulans NJ201 on Proteolytic Changes and Bioactivities (Antioxidant and Antihypertensive Activities) in Fermented Pork Sausage. LWT 2020, 133, 109985. [Google Scholar] [CrossRef]
Groups | Hardness (N) | Elasticity | Cohesiveness | Chewiness (mJ) |
---|---|---|---|---|
SPI/CG 0% | 43.67 ± 0.16 f | 0.99 ± 0.02 a | 0.98 ± 0.01 a | 43.53 ± 0.16 f |
SPI/CG 0.85% | 131.68 ± 1.22 e | 0.98 ± 0.01 ab | 0.91 ± 0.01 b | 115.35 ± 4.16 e |
SPI/CG 1.15% | 221.50 ± 3.10 d | 0.95 ± 0.01 c | 0.82 ± 0.01 c | 167.26 ± 8.16 d |
SPI/CG 1.45% | 384.67 ± 6.34 c | 0.94 ± 0.01 c | 0.81 ± 0.01 c | 294.79 ± 4.41 c |
SPI/CG 1.75% | 586.91 ± 11.84 b | 0.94 ± 0.01 bc | 0.81 ± 0.01 c | 452.94 ± 9.77 a |
SPI/CG 2% | 558.94 ± 9.14 a | 0.93 ± 0.01 bc | 0.80 ± 0.01 d | 399.89 ± 7.23 b |
Groups | Cooking Loss | Before FT Treatment | After FT Treatment | ||||
---|---|---|---|---|---|---|---|
PH | W | F | PH | W | F | ||
C | 0.07 ± 0.002 c | 6.56 ± 0.02 c | 0.046 ± 0.004 c | 0.01 ± 0.008 c | 6.53 ± 0.04 d | 0.058 ± 0.001 c | 0.028 ± 0.004 c |
S1 | 0.04 ± 0.002 e | 6.61 ± 0.02 b | 0.041 ± 0.007 c | 0.011 ± 0.003 bc | 6.55 ± 0.01 c | 0.046 ± 0.003 d | 0.026 ± 0.003 d |
S2 | 0.06 ± 0.002 d | 6.62 ± 0.04 d | 0.047 ± 0.005 c | 0.017 ± 0.006 ab | 6.57 ± 0.02 c | 0.056 ± 0.004 c | 0.031 ± 0.005 c |
S3 | 0.09 ± 0.003 b | 6.63 ± 0.01 b | 0.073 ± 0.006 b | 0.02 ± 0.005 ab | 6.59 ± 0.01 b | 0.074 ± 0.008 b | 0.04 ± 0.005 b |
S4 | 0.1 ± 0.001 a | 6.68 ± 0.02 a | 0.085 ± 0.001 a | 0.022 ± 0.002 a | 6.63 ± 0.02 a | 0.096 ± 0.002 a | 0.053 ± 0.002 a |
Groups | Before FT Treatment | After FT Treatment | ||||
---|---|---|---|---|---|---|
L* | a* | b* | L* | a* | b* | |
C | 60.55 ± 0.17 e | 15.78 ± 0.13 a | 3.11 ± 0.03 a | 61.59 ± 0.16 e | 15.86 ± 0.11 a | 3.77 ± 0.12 a |
S1 | 61.45 ± 0.16 d | 15.56 ± 0.08 b | 2.84 ± 0.13 b | 62.04 ± 0.04 d | 15.64 ± 0.05 c | 3.63 ± 0.04 ab |
S2 | 61.78 ± 0.05 c | 15.49 ± 0.02 bc | 2.34 ± 0.09 c | 62.81 ± 0.14 c | 15.61 ± 0.26 ab | 3.49 ± 0.11 b |
S3 | 62.63 ± 0.13 b | 15.37 ± 0.08 c | 1.90 ± 0.09 d | 63.51 ± 0.10 b | 15.42 ± 0.17 b | 2.92 ± 0.04 c |
S4 | 63.74 ± 0.12 a | 15.31 ± 0.14 c | 1.78 ± 0.06 d | 63.81 ± 0.06 a | 15.40 ± 0.19 b | 2.71 ± 0.15 d |
Groups | Before FT Treatment | After FT Treatment | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Hardness (N) | Elasticity | Cohesiveness | Adhesiveness (N-mm) | Chewiness (mJ) | Hardness (N) | Elasticity | Cohesiveness | Adhesiveness (N-mm) | Chewiness (mJ) | |
C | 9897.42 ± 107.7 a | 0.95 ± 0.01 | 0.94 ± 0.02 | 9413.59 ± 76.09 a | 8831.74 ± 107.64 a | 7643.38 ± 57.28 b | 0.94 ± 0.02 | 0.94 ± 0.02 | 7248.75 ± 131.14 a | 6905.06 ± 73.94 a |
S1 | 9097.83 ± 65.34 b | 0.96 ± 0.01 | 0.95 ± 0.01 | 8612.65 ± 44.14 b | 8268.27 ± 121.65 c | 7911.79 ± 111.77 a | 0.95 ± 0.01 | 0.91 ± 0.06 | 6532.66 ± 92.26 b | 6108.69 ± 72.63 b |
S2 | 9745.53 ± 55.31 c | 0.96 ± 0.01 | 0.95 ± 0.01 | 9131.36 ± 83.81 c | 8989.2 ± 83.95 b | 7860.28 ± 99.01 a | 0.94 ± 0.01 | 0.91 ± 0.05 | 7169.74 ± 292.5 a | 6878.2 ± 84.31 a |
S3 | 7236.98 ± 22.04 d | 0.95 ± 0.02 | 0.95 ± 0.01 | 6907.28 ± 64.29 d | 6566.53 ± 53.83 d | 5236.98 ± 22.04 c | 0.93 ± 0.01 | 0.92 ± 0.01 | 5207.28 ± 64.29 c | 5033.2 ± 33.25 d |
S4 | 5969.92 ± 43.49 e | 0.95 ± 0.01 | 0.92 ± 0.01 | 5471.42 ± 113.59 e | 5195.68 ± 101.17 e | 4850.13 ± 60.66 d | 0.93 ± 0.01 | 0.92 ± 0.01 | 4552.31 ± 55.05 d | 4394.4 ± 65.19 c |
Component | Groups (Unit: g/100 g) | ||||
---|---|---|---|---|---|
C | S1 | S2 | S3 | S4 | |
Forehock | 70 | 70 | 70 | 70 | 70 |
Pork backfat | 30 | 22.5 | 15 | 7.5 | 0 |
Emulsion gel | 0 | 7.5 | 15 | 22.5 | 30 |
Ice water | 25 | 25 | 25 | 25 | 25 |
Salt | 3 | 3 | 3 | 3 | 3 |
Sugar | 1 | 1 | 1 | 1 | 1 |
Sodium tripolyphosphate | 0.2 | 0.2 | 0.2 | 0.2 | 0.2 |
natrascorb | 0.1 | 0.1 | 0.1 | 0.1 | 0.1 |
Other ingredients | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zou, Q.; Zheng, Y.; Liu, Y.; Luo, L.; Chen, Y.; Ran, G.; Liu, D. Preparation of Cassia Bean Gum/Soy Protein Isolate Composite Matrix Emulsion Gel and Its Effect on the Stability of Meat Sausage. Gels 2024, 10, 643. https://doi.org/10.3390/gels10100643
Zou Q, Zheng Y, Liu Y, Luo L, Chen Y, Ran G, Liu D. Preparation of Cassia Bean Gum/Soy Protein Isolate Composite Matrix Emulsion Gel and Its Effect on the Stability of Meat Sausage. Gels. 2024; 10(10):643. https://doi.org/10.3390/gels10100643
Chicago/Turabian StyleZou, Qiang, Yuhan Zheng, Yudie Liu, Linghui Luo, Yuyou Chen, Guilian Ran, and Dayu Liu. 2024. "Preparation of Cassia Bean Gum/Soy Protein Isolate Composite Matrix Emulsion Gel and Its Effect on the Stability of Meat Sausage" Gels 10, no. 10: 643. https://doi.org/10.3390/gels10100643
APA StyleZou, Q., Zheng, Y., Liu, Y., Luo, L., Chen, Y., Ran, G., & Liu, D. (2024). Preparation of Cassia Bean Gum/Soy Protein Isolate Composite Matrix Emulsion Gel and Its Effect on the Stability of Meat Sausage. Gels, 10(10), 643. https://doi.org/10.3390/gels10100643