Candida palmioleophila: A New Emerging Threat in Brazil?
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Etty, T.; Heyvaert, V.; Carlarne, C.; Farber, D.; Huber, B.; van Zeben, J. Transnational Climate Law. Transnatl. Environ. Law 2018, 7, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Solache, M.A.; Casadevall, A. Global warming will bring new fungal diseases for mammals. mBio 2010, 18, e00061-10. [Google Scholar] [CrossRef] [Green Version]
- De Crecy, E.; Jaronski, S.; Lyons, B.; Lyons, T.J.; Keyhani, N.O. Directed evolution of a filamentous fungus for thermotolerance. BMC Biotechnol. 2009, 74, 74. [Google Scholar] [CrossRef] [Green Version]
- Casadevall, A. Don’t Forget the Fungi When Considering Global Catastrophic Biorisks. Health Secur. 2017, 15, 341–342. [Google Scholar] [CrossRef]
- Jackson, B.R.; Chow, N.; Forsberg, K.; Litvintseva, A.P.; Lockhart, S.R.; Welsh, R.; Vallabhaneni, S.; Chiller, T. On the Origins of a Species: What Might Explain the Rise of Candida auris? J. Fungi 2019, 5, 58. [Google Scholar] [CrossRef] [Green Version]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. Environmental Candida auris and the Global Warming Emergence Hypothesis. mBio 2021, 12, e00360-21. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Carvalhaes, C.G.; DeVries, S.; Rhomberg, P.R.; Castanheira, M. Impact of COVID-19 on the antifungal susceptibility profiles of isolates collected in a global surveillance program that monitors invasive fungal infections. Med. Mycol. J. 2022, 60, myac028. [Google Scholar] [CrossRef] [PubMed]
- Sugita, T.; Kagaya, K.; Takashima, M.; Suzuki, M.; Fukazawa, Y.; Nakase, T. A clinical isolate of Candida palmioleophila formerly identified as Torulopsis candida. Nippon Ishinkin Gakkai Zasshi 1999, 40, 21–25. [Google Scholar] [CrossRef]
- Stavrou, A.A.; Pérez-Hansen, A.; Lackner, M.; Lass-Flörl, C.; Boekhout, T. Elevated minimum inhibitory concentrations to antifungal drugs prevail in 14 rare species of candidemia-causing Saccharomycotina yeasts. Med. Mycol. J. 2020, 58, 987–995. [Google Scholar] [CrossRef]
- Ullmann, A.J.; Akova, M.; Herbrecht, R.; Viscoli, C.; Arendrup, M.C.; Arikan-Akdagli, S.; Bassetti, M.; Bille, J.; Calandra, T.; Castagnola, G.; et al. Fungal Infection Study Group: Guideline for the diagnosis and management of Candida diseases 2012: Adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin. Microbiol. Infect. 2012, 18, 53–67. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jensen, R.H.; Arendrup, M.C. Candida palmioleophila: Characterization of a previously overlooked pathogen and its unique susceptibility profile in comparison with five related species. J. Clin. Microbiol. 2011, 49, 549–556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Datta, N.; Arendrup, M.C.; Saunte, J.P. First report of Candida palmioleophila endogenous endophthalmitis. Acta Ophthalmol. 2015, 93, 517–518. [Google Scholar] [CrossRef] [PubMed]
- Scapaticci, M.; Bartolini, A.; Del Chierico, F.; Accardi, C.; Di Girolamo, F.; Masotti, A.; Muraca, M.; Putignani, L. Phenotypic typing and epidemiological survey of antifungal resistance of Candida species detected in clinical samples of Italian patients in a 17 months’ period. Germs 2018, 8, 58–66. [Google Scholar] [CrossRef] [PubMed]
- Prado, T.; Fumian, T.M.; Mannarino, C.F.; Resende, P.C.; Motta, F.C.; Eppinghaus, A.L.F.; Chagas do Vale, V.H.; Soares Braz, R.M.; da Silva Ribeiro de Andrade, J.; Gonçalves Maranhão, A.; et al. Wastewater-based epidemiology as a useful tool to track SARS-CoV-2 and support public health policies at municipal level in Brazil. Water Res. 2021, 191, 116810. [Google Scholar] [CrossRef]
- Wu, F.; Xiao, A.; Zhang, J.; Moniz, K.; Endo, N.; Armas, F.; Bushman, M.; Chai, P.R.; Duvallet, C.; Erickson, T.B.; et al. Wastewater Surveillance of SARS-CoV-2 across 40 U.S. states. Water Res. 2021, 202, 117400. [Google Scholar] [CrossRef]
- Lindsley, M.D.; Hurst, S.F.; Iqbal, N.J.; Morrison, C.J. Rapid identification of dimorphic and yeast-like fungal pathogens using specific DNA probes. J. Clin. Microbiol. 2001, 39, 3505–3511. [Google Scholar] [CrossRef] [Green Version]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Pinto, T.N.; Kohn, A.; da Costa, G.L.; Oliveira, L.M.A.; Pinto, T.C.A.; Oliveira, M.M.E. Candida guilliermondii as an agent of postpartum subacute mastitis in Rio de Janeiro, Brazil: Case report. Front. Microbiol. 2022, 23, 964685. [Google Scholar] [CrossRef]
- Peeters, E.; Nelis, H.J.; Coenye, T. Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 2008, 72, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Price, M.F.; Wilkinson, I.D.; Gentry, L.O. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia 1982, 20, 7–14. [Google Scholar] [CrossRef]
- Rüchel, R. Properties of a purified proteinase from the yeast Candida albicans. Biochim. Biophys. Acta 1981, 659, 99–113. [Google Scholar] [CrossRef]
- Aktas, E.; Yigit, N.; Ayyildiz, A. Esterase activity in various Candida species. J. Int. Med. Res. 2002, 30, 322–324. [Google Scholar] [CrossRef] [PubMed]
- Tsang, P.W. Differential phytate utilization in Candida species. Mycopathologia 2011, 172, 473–479. [Google Scholar] [CrossRef] [PubMed]
- National Committee for Clinical Laboratory Standards. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts: Approved Standard M27-A2, 2nd ed.; National Committee for Clinical Laboratory Standards: Wayne, PA, USA, 2002. [Google Scholar]
- Jarros, I.C.; Veiga, F.F.; Corrêa, J.L.; Barros, I.L.E.; Gadelha, M.C.; Voidaleski, M.F.; Pieralisi, N.; Bocchi Pedroso, R.; Vicente, V.A.; Negri, M.; et al. Microbiological and virulence aspects of Rhodotorula mucilaginosa. EXCLI J. 2020, 19, 687–704. [Google Scholar] [PubMed]
- Tsang, E.W.T.; Ingledew, W.M. Studies on the Heat Resistance of Wild Yeasts and Bacteria in Beer. J. Am. Soc. Brew. Chem. 1982, 40, 1–8. [Google Scholar] [CrossRef]
- Belbahi, A.; Bohuon, P.; Leguérinel, I.; Meot, J.-M.; Loiseau, G.; Madani, K. Heat Resistances of Candida apicola and Aspergillus niger Spores Isolated From Date Fruit Surface. J. Food Process Eng. 2015, 40, e12272. [Google Scholar] [CrossRef]
- Gonzalez, R.; Curtis, K.; Bivins, A.; Bibby, K.; Weir, M.; Yetka, K.; Thompson, H.; Keeling, D.; Mitchell, J.; Gonzalez, D. COVID-19 Surveillance in Southeastern Virginia Using Wastewater-Based Epidemiology. Water Res. 2020, 186, 01–09. [Google Scholar] [CrossRef]
- Medema, G.; Been, F.; Heijnen, L.; Petterson, S. Implementation of environmental surveillance for SARS-CoV-2 virus to support public health decisions: Opportunities and challenges. Curr. Opin. Environ. Sci. Health 2020, 17, 49–71. [Google Scholar] [CrossRef]
- Randazzo, W.; Truchado, P.; Cuevas-Ferrando, E.; Simón, P.; Allende, A.; Sánchez, G. SARS-CoV-2 RNA in wastewater anticipated COVID-19 occurrence in a low prevalence area. Water Res. 2020, 17, 49–51. [Google Scholar] [CrossRef]
- Ewbank, A.C.; Duarte-Benvenuto, A.; Zamana-Ramblas, R.; Navas-Suárez, P.E.; Gattamorta, M.A.; dos Santos-Costa, P.C.; Catão-Dias, J.L.; Sacristán, C. Case report of respiratory aspergillosis and candidiasis in wild Magellanic penguins (Spheniscus magellanicus), Brazil. Braz. J. Microbiol. 2021, 52, 967–975. [Google Scholar] [CrossRef]
- Jafari, N.; Kasra-Kermanshahi, R.; Soudi, M.R. Screening, identification and optimization of a yeast strain, Candida palmioleophila JKS4, capable of azo dye decolorization. Iran. J. Microbiol. 2013, 5, 434–440. [Google Scholar] [PubMed]
- Valderrama, B.; Ruiz, J.J.; Gutiérrez, M.S.; Alveal, K.; Caruffo, M.; Oliva, M.; Flores, H.; Silva, A.; Toro, M.; Reyes-Jara, A.; et al. Cultivable Yeast Microbiota from the Marine Fish Species Genypterus chilensis and Seriolella violacea. J. Fungi 2021, 7, 515. [Google Scholar] [CrossRef] [PubMed]
- Prasana Kummar, C.; Velmurugan, S.; Subramanian, K.; Chayiasut, C. Previously unrecorded distribution of marine sediments derived yeast isolates revealed by DNA barcoding. bioRxiv 2020. [Google Scholar] [CrossRef]
- Medeiros, A.O.; Missagia, B.S.; Brandão, L.R.; Callisto, M.; Barbosa, F.A.R.; Rosa, C.A. Water quality and diversity of yeasts from tropical lakes and rivers from the Rio Doce basin in Southeastern Brazil. Braz. J. Microbiol. 2012, 43, 1582–1594. [Google Scholar] [CrossRef] [Green Version]
- Enjalbert, B.; Rachini, A.; Vediyappan, G.; Pietrella, D.; Spaccapelo, R.; Vecchiarelli, A.; Brown, A.J.P.; d’Enfert, C. A multifunctional, synthetic Gaussia princeps luciferase reporter for live imaging of Candida albicans infections. Infect.Immun. 2009, 77, 4847–4858. [Google Scholar] [CrossRef] [Green Version]
- Brown, A.J.P.; Brown, G.D.; Netea, M.G.; Gow, N.A.R. Metabolism impacts upon Candida immunogenicity and pathogenicity at multiple levels. Trends Microbiol. 2014, 22, 614–622. [Google Scholar] [CrossRef] [Green Version]
- Ene, I.V.; Walker, L.A.; Schiavone, M.; Lee, K.K.; Martin-Yken, H.; Dague, E.; Gow, N.A.R.; Munro, C.A.; Brown, A.J.P. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance. mBio 2015, 6, e00986. [Google Scholar] [CrossRef] [Green Version]
- Reyna-Beltrán, E.; Iranzo, M.; Calderón-González, K.G.; Mondragón-Flores, R.; Labra-Barrios, M.L.; Mormeneo, S.; Luna-Arias, J.P. The Candida albicans ENO1 gene encodes a transglutaminase involved in growth, cell division, morphogenesis, and osmotic protection. J. Biol. Chem. 2018, 293, 4304–4323. [Google Scholar] [CrossRef] [Green Version]
- Casagrande Pierantoni, D.; Bernardo, M.; Mallardo, E.; Carannante, N.; Attanasio, V.; Corte, L.; Roscini, L.; Di Fiore, L.; Tascini, C.; Cardinali, G. Candida palmioleophila isolation in Italy from two cases of systemic infection, after a CHROMagar and Vitek system mis-identification as C. albicans. New Microbiol. 2020, 43, 47–50. [Google Scholar]
- Arendrup, M.C.; Bergmann, O.J.; Larsson, L.; Nielsen, H.V.; Jarløv, J.O.; Christensson, B. Detection of candidaemia in patients with and without underlying haematological disease. Clin. Microbiol. Infect. 2010, 16, 855–862. [Google Scholar] [CrossRef] [Green Version]
- Pincus, D.H.; Orenga, S.; Chatellier, S. Yeast identification—Past, present and future methods. Med. Mycol. 2007, 45, 97–121. [Google Scholar] [CrossRef] [Green Version]
- Santos, C.; Lima, N.; Sampaio, P.; Pais, C. Matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry (MALDI-TOF-ICMS) to detect emerging pathogenic Candida species. Diagn. Microb. Infect. Dis. 2011, 71, 304–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.M.E.; Santos, C.; Sampaio, P.; Romeo, O.; Almeida-Paes, R.; Pais, C.; Zancopé-Oliveira, R.M. Development and optimization of a new MALDI-TOF protocol for identification of the Sporothrix species complex. Res. Microbiol. 2015, 166, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valero, C.; Buitrago, M.J.; Gago, S.; Quiles-Melero, I.; García-Rodríguez, J. A matrix-assisted laser desorption/ionization time of flight mass spectrometry reference database for the identification of Histoplasma capsulatum. Med. Mycol. J. 2017, 56, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Harriott, M.M.; Lilly, E.A.; Rodriguez, T.E.; Fidel, P.L.; Noverr, M.C. Candida albicans forms biofilms on the vaginal mucosa. Microbiology 2010, 156, 3635–3644. [Google Scholar] [CrossRef] [Green Version]
- Sanguinetti, M.; Posteraro, B.; Lass-Flörl, C. Antifungal drug resistance among Candida species: Mechanisms and clinical impact. Mycoses 2015, 58, 2–13. [Google Scholar] [CrossRef] [PubMed]
- Pristov, K.E.; Ghannoum, M.A.; FIDSA. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. 2019, 25, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J. Epidemiology of Invasive Candidiasis: A Persistent Public Health Problem. Clin. Microbiol. Rev. 2007, 20, 133–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mroczyńska, M.; Brillowska-Dąbrowska, A. Virulence of Clinical Candida Isolates. Pathogens 2021, 10, 466. [Google Scholar] [CrossRef]
- De Souza, P.C.; Morey, A.T.; Castanheira, G.M.; Bocate, K.P.; Panagio, L.A.; Ito, F.A.; Furlaneto, M.C.; Yamada-Ogatta, S.F.; Costa, I.N.; Mora-Montes, H.M.; et al. Tenebrio molitor (Coleoptera: Tenebrionidae) as an alternative host to study fungal infections. J. Microbiol. Methods 2015, 118, 182–186. [Google Scholar] [CrossRef] [Green Version]
Sample | Biochemical Identification | Probability Identification | Chromoagar Candida 37 °C | Chromoagar Candida Plus 37 °C | MALDI-TOF MS | ITS (Parcial Sequencing) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(VITEK 2 System) | VITEK2 (%) | LT | LPWH | LGWH | LTPH | TQ | WMWH | LBWH | LB | TPH | LTWH | |||
ESG03 | C. albicans/C. famata/C. parapsilosis | 33 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | C. palmioleophila | C. palmioleophila |
ESG13 | C. tropicalis/C. parapsilosis | 50 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | C. palmioleophila | C. palmioleophila |
ESG15 | C. famata | 92 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | C. palmioleophila | C. palmioleophila |
ESG17 | C. parapsilosis | 91 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | C. palmioleophila | C. palmioleophila |
ESG04 | Kodamaea ohmeri | 94 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | C. palmioleophila | C. palmioleophila |
ESG20 | C. famata | 88 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | C. palmioleophila | C. palmioleophila |
ESG07 | C. parapsilosis | 88 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | C. palmioleophila | C. palmioleophila |
Samples | Amphotericin B | Fluconazole | Voriconazole | Caspofungin | Micafungin | Flucytosine | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
µg/mL (Cut-Off) | µg/mL (Cut-Off) | µg/mL (Cut-Off) | µg/mL (Cut-Off) | µg/mL (Cut-Off) | µg/mL (Cut-Off) | |||||||
Vitek2 | CLSI | Vitek2 | CLSI | Vitek2 | CLSI | Vitek2 | CLSI | Vitek2 | CLSI | Vitek2 | CLSI | |
ESG 03 | 1 (S) | 0.25 (S) | 8 (R) | 4 (S) | £ 0.12 (S) | *** | 0.25 (S) | *** | £ 0.06 (S) | *** | £ 1 (S) | *** |
ESG 04 | *** | 0.5 (S) | *** | 16 (SDD) | *** | *** | *** | *** | *** | *** | *** | *** |
ESG 07 | 1 (S) | 0.25 (S) | 2 (S) | 16 (SDD) | £ 0.12 (S) | *** | 0.25 (S) | *** | £ 0.06 (S) | *** | £ 1 (S) | *** |
ESG 13 | 0.5 (S) | 0.25 (S) | 1 (S) | 1 (S) | £ 0.12 (S) | *** | £ 0.12 (S) | *** | £ 0.06 (S) | *** | £ 1 (S) | *** |
ESG 15 | *** | 0.25 (S) | *** | 64 (R) | *** | *** | *** | *** | *** | *** | *** | *** |
ESG 17 | 1 (S) | 0.5 (S) | 8 (R) | 32 (SDD) | *** | *** | £ 0.12 (S) | *** | 0.25 (S) | *** | £ 0.06 (S) | *** |
ESG 20 | *** | 0.25 (S) | *** | 16 (SDD) | *** | *** | £ 0.12 (S) | *** | 0.25 (S) | *** | £ 0.06 (S) | *** |
MIC50 | 1 | 0.25 | 2 | 16 | £ 0.12 | *** | 0.25 | *** | £ 0.06 | *** | £ 1 | *** |
MIC90 | 1 | 0.5 | 8 | 32 | £ 0.12 | *** | 0.25 | *** | £ 0.06 | *** | £ 1 | *** |
MIC Range | 0.5–1 | 0.25–0.5 | 44774 | 23377 | £ 0.12 | *** | £ 0.12–0.25 | *** | £ 0.06 | *** | £ 1 | *** |
Samples | Biofim | Esterase | Aspartic Protease | Phytase | Phospholipase |
---|---|---|---|---|---|
ESG 03 | 0.448 ± 0.092 | 0.63 ± 0.02 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 |
ESG 04 | 1.008 ± 0.156 | 1.00 ± 0.00 | 0.52 ± 0.09 | 0.67 ± 0.07 | 1.00 ± 0.00 |
ESG 07 | 0.449 ± 0.096 | 0.62 ± 0.01 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 |
ESG 13 | 0.811 ± 0.133 | 0.64 ± 0.01 | 0.56 ± 0.02 | 0.59 ± 0.04 | 1.00 ± 0.00 |
ESG 15 | 0.409 ± 0.096 | 0.56 ± 0.01 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 |
ESG 17 | 0.239 ± 0.051 | 0.55 ± 0.01 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 |
ESG 20 | 0.248 ± 0.065 | 0.61 ± 0.01 | 1.00 ± 0.00 | 1.00 ± 0.00 | 1.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Costa, G.L.d.; Negri, M.; Miranda, R.P.R.d.; Corrêa-Moreira, D.; Pinto, T.C.A.; Ramos, L.d.S.; Ferreira, D.G.; Salomão, B.; Fumian, T.M.; Mannarino, C.F.; et al. Candida palmioleophila: A New Emerging Threat in Brazil? J. Fungi 2023, 9, 770. https://doi.org/10.3390/jof9070770
Costa GLd, Negri M, Miranda RPRd, Corrêa-Moreira D, Pinto TCA, Ramos LdS, Ferreira DG, Salomão B, Fumian TM, Mannarino CF, et al. Candida palmioleophila: A New Emerging Threat in Brazil? Journal of Fungi. 2023; 9(7):770. https://doi.org/10.3390/jof9070770
Chicago/Turabian StyleCosta, Gisela Lara da, Melyssa Negri, Rodrigo Prado Rodrigues de Miranda, Danielly Corrêa-Moreira, Tatiana Castro Abreu Pinto, Livia de Souza Ramos, Deisiany Gomes Ferreira, Bruna Salomão, Tulio Machado Fumian, Camille Ferreira Mannarino, and et al. 2023. "Candida palmioleophila: A New Emerging Threat in Brazil?" Journal of Fungi 9, no. 7: 770. https://doi.org/10.3390/jof9070770
APA StyleCosta, G. L. d., Negri, M., Miranda, R. P. R. d., Corrêa-Moreira, D., Pinto, T. C. A., Ramos, L. d. S., Ferreira, D. G., Salomão, B., Fumian, T. M., Mannarino, C. F., Prado, T., Miagostovich, M. P., Santos, A. L. S. d., & Oliveira, M. M. E. (2023). Candida palmioleophila: A New Emerging Threat in Brazil? Journal of Fungi, 9(7), 770. https://doi.org/10.3390/jof9070770