In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations
Abstract
1. Introduction
2. Materials and Methods
2.1. Organisms
2.2. Identification Methods
2.3. Susceptibility Testing
2.4. Characterization of Mutations in the Sterol 14 Alpha-Demethylase-Encoding Gene
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thornton, C.R. Detection of the ‘big five’ mold killers of humans: Aspergillus, Fusarium, Lomentospora, Scedosporium and Mucormycetes. Adv. Appl. Microbiol. 2020, 110, 1–61. [Google Scholar] [CrossRef] [PubMed]
- Bongomin, F.; Gago, S.; Oladele, R.O.; Denning, D.W. Global and Multi-National Prevalence of Fungal Diseases-Estimate Precision. J. Fungi 2017, 3, 57. [Google Scholar] [CrossRef] [PubMed]
- Fisher, M.C.; Alastruey-Izquierdo, A.; Berman, J.; Bicanic, T.; Bignell, E.M.; Bowyer, P.; Bromley, M.; Bruggemann, R.; Garber, G.; Cornely, O.A.; et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 2022, 20, 557–571. [Google Scholar] [CrossRef]
- Gow, N.A.R.; Johnson, C.; Berman, J.; Coste, A.T.; Cuomo, C.A.; Perlin, D.S.; Bicanic, T.; Harrison, T.S.; Wiederhold, N.; Bromley, M.; et al. The importance of antimicrobial resistance in medical mycology. Nat. Commun. 2022, 13, 5352. [Google Scholar] [CrossRef]
- Wiederhold, N.P.; Verweij, P.E. Aspergillus fumigatus and pan-azole resistance: Who should be concerned? Curr. Opin. Infect. Dis. 2020, 33, 290–297. [Google Scholar] [CrossRef] [PubMed]
- Rogers, T.; Verweij, P.; Castanheira, M.; Dannaoui, E.; White, P.; Arendrup, M. Molecular mechanisms of acquired antifungal drug resistance in principal fungal pathogens and EUCAST guidance for their laboratory detection and clinical implications. J. Antimicrob. Chemother. 2022, 77, 2053–2073. [Google Scholar] [CrossRef] [PubMed]
- Rivero-Menendez, O.; Alastruey-Izquierdo, A.; Mellado, E.; Cuenca-Estrella, M. Triazole resistance in Aspergillus spp.: A worldwide problem? J. Fungi 2016, 2, 21. [Google Scholar] [CrossRef]
- Camps, S.M.; van der Linden, J.W.; Li, Y.; Kuijper, E.J.; van Dissel, J.T.; Verweij, P.E.; Melchers, W.J. Rapid induction of multiple resistance mechanisms in Aspergillus fumigatus during azole therapy: A case study and review of the literature. Antimicrob. Agents Chemother. 2012, 56, 10–16. [Google Scholar] [CrossRef]
- Howard, S.J.; Pasqualotto, A.C.; Anderson, M.J.; Leatherbarrow, H.; Albarrag, A.M.; Harrison, E.; Gregson, L.; Bowyer, P.; Denning, D.W. Major variations in Aspergillus fumigatus arising within aspergillomas in chronic pulmonary aspergillosis. Mycoses 2013, 56, 434–441. [Google Scholar] [CrossRef]
- Badali, H.; Canete-Gibas, C.; McCarthy, D.; Patterson, H.; Sanders, C.; David, M.P.; Mele, J.; Fan, H.; Wiederhold, N.P. Species Distribution and Antifungal Susceptibilities of Aspergillus Section Fumigati Isolates in Clinical Samples from the United States. J. Clin. Microbiol. 2022, 60, e0028022. [Google Scholar] [CrossRef]
- Schelenz, S.; Owens, K.; Guy, R.; Rautemaa-Richardson, R.; Manuel, R.J.; Richardson, M.; Moore, C.; Enoch, D.A.; Micallef, C.; Howard, P.; et al. National mycology laboratory diagnostic capacity for invasive fungal diseases in 2017: Evidence of sub-optimal practice. J. Infect. 2019, 79, 167–173. [Google Scholar] [CrossRef] [PubMed]
- Patterson, T.F.; Thompson, G.R., 3rd; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef] [PubMed]
- Ullmann, A.J.; Aguado, J.M.; Arikan-Akdagli, S.; Denning, D.W.; Groll, A.H.; Lagrou, K.; Lass-Florl, C.; Lewis, R.E.; Munoz, P.; Verweij, P.E.; et al. Diagnosis and management of Aspergillus diseases: Executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin. Microbiol. Infect. 2018, 24 (Suppl. 1), e1–e38. [Google Scholar] [CrossRef]
- Verweij, P.E.; Chowdhary, A.; Melchers, W.J.; Meis, J.F. Azole resistance in Aspergillus fumigatus: Can we retain the clinical use of mold-active antifungal azoles? Clin. Infect. Dis. 2016, 62, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Batchelor, R.; Thomas, C.; Gardiner, B.J.; Lee, S.J.; Fleming, S.; Wei, A.; Coutsouvelis, J.; Ananda-Rajah, M. When Azoles Cannot Be Used: The Clinical Effectiveness of Intermittent Liposomal Amphotericin Prophylaxis in Hematology Patients. Open Forum Infect. Dis. 2021, 8, ofab113. [Google Scholar] [CrossRef]
- Garbati, M.A.; Alasmari, F.A.; Al-Tannir, M.A.; Tleyjeh, I.M. The role of combination antifungal therapy in the treatment of invasive aspergillosis: A systematic review. Int. J. Infect. Dis. 2012, 16, e76–e81. [Google Scholar] [CrossRef]
- van der Linden, J.W.; Snelders, E.; Kampinga, G.A.; Rijnders, B.J.; Mattsson, E.; Debets-Ossenkopp, Y.J.; Kuijper, E.J.; Van Tiel, F.H.; Melchers, W.J.; Verweij, P.E. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg. Infect. Dis. 2011, 17, 1846–1854. [Google Scholar] [CrossRef]
- Zhang, S.; O’Donnell, K.; Sutton, D. Fusarium and other opportunistic hyaline fungi. In Manual of Clinical Microbiology, 11th ed.; Jorgensen, J., Carroll, K., Funke, G., Pfaller, M., Landry, M., Richter, S., Warnock, D., Eds.; ASM Press: Washington DC, USA, 2015. [Google Scholar] [CrossRef]
- Castanheira, M.; Collingsworth, T.D.; Davis, A.P.; Deshpande, L.M.; Pfaller, M.A. Isavuconazole nonwildtype Aspergillus fumigatus isolates from a global surveillance study display alterations in multiple genes involved in the ergosterol biosynthesis pathway not previously associated with resistance to other azoles. Mycoses 2021, 64, 1279–1290. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Woosley, L.N.; Messer, S.A.; Jones, R.N.; Castanheira, M. Significance of molecular identification and antifungal susceptibility of clinically significant yeasts and moulds in a global antifungal surveillance program. Mycopathologia 2012, 174, 259–271. [Google Scholar] [CrossRef]
- CLSI. M38Ed3; Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2017.
- CLSI. M59Ed3; Epidemiological Cutoff Values for Antifungal Susceptibility Testing. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.
- Espinel-Ingroff, A.; Chowdhary, A.; Gonzalez, G.M.; Lass-Florl, C.; Martin-Mazuelos, E.; Meis, J.; Pelaez, T.; Pfaller, M.A.; Turnidge, J. Multicenter study of isavuconazole MIC distributions and epidemiological cutoff values for Aspergillus spp. for the CLSI M38-A2 broth microdilution method. Antimicrob. Agents Chemother. 2013, 57, 3823–3828. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Diekema, D.J.; Fothergill, A.; Johnson, E.; Pelaez, T.; Pfaller, M.A.; Rinaldi, M.G.; Canton, E.; Turnidge, J. Wild-type MIC distributions and epidemiological cutoff values for the triazoles and six Aspergillus spp. for the CLSI broth microdilution method (M38-A2 document). J. Clin. Microbiol. 2010, 48, 3251–3257. [Google Scholar] [CrossRef] [PubMed]
- CLSI. M61Ed2; Performance Standards for Antifungal Susceptibility Testing of Filamentous Fungi. Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2020.
- EUCAST. v10.0. Breakpoint Tables for Interpretation of MICs and Zone Diameters. European Committee on Antimicrobial Susceptibility Testing, 2020. Available online: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_10.0_Breakpoint_Tables.pdf (accessed on 1 March 2020).
- Pfaller, M.; Boyken, L.; Hollis, R.; Kroeger, J.; Messer, S.; Tendolkar, S.; Diekema, D. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Candida species to anidulafungin, caspofungin, and micafungin. J. Clin. Microbiol. 2011, 49, 624–629. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Rhomberg, P.R.; Wiederhold, N.P.; Gibas, C.; Sanders, C.; Fan, H.; Mele, J.; Kovanda, L.L.; Castanheira, M. In vitro activity of isavuconazole versus opportunistic fungal pathogens from two mycology reference laboratories. Antimicrob. Agents Chemother. 2018, 62, e01230. [Google Scholar] [CrossRef]
- CDC. Antibiotic Resistance Threats in the United States, 2019; Centers for Disease Control and Prevention: Atlanta, GA, USA, 2019. Available online: https://www.cdc.gov/drugresistance/pdf/threats-report/2019-ar-threats-report-508.pdf (accessed on 24 February 2023).
- Sievert, D.; Kirby, A.; McDonald, L.C. The CDC response to antibiotic and antifungal resistance in the environment. Med 2021, 2, 365–369. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report: 2021. 2021. Available online: https://www.who.int/publications/i/item/9789240027336 (accessed on 24 February 2023).
- CDC. Antibiotic Resistance Threats in the United States; CDC: Atlanta, GA, USA, 2019.
- WHO. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022. Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 24 February 2023).
- Messer, S.A.; Carvalhaes, C.G.; Castanheira, M.; Pfaller, M.A. In vitro activity of isavuconazole versus opportunistic filamentous fungal pathogens from the SENTRY Antifungal Surveillance Program, 2017–2018. Diagn. Microbiol. Infect. Dis. 2020, 97, 115007. [Google Scholar] [CrossRef] [PubMed]
- Pfaller, M.A.; Diekema, D.J.; Turnidge, J.D.; Castanheira, M.; Jones, R.N. Twenty years of the SENTRY Antifungal Surveillance Program: Results for Candida species From 1997–2016. Open Forum Infect. Dis. 2019, 6, S79–S94. [Google Scholar] [CrossRef] [PubMed]
- Berkow, E.L.; Nunnally, N.S.; Bandea, A.; Kuykendall, R.; Beer, K.; Lockhart, S.R. Detection of TR34/L98H CYP51A mutation through passive surveillance for azole-resistant Aspergillus fumigatus in the United States from 2015 to 2017. Antimicrob. Agents Chemother. 2018, 62, e02240. [Google Scholar] [CrossRef]
- Buil, J.B.; Hagen, F.; Chowdhary, A.; Verweij, P.E.; Meis, J.F. Itraconazole, voriconazole, and posaconazole CLSI MIC distributions for wild-type and azole-resistant Aspergillus fumigatus isolates. J. Fungi 2018, 4, 103. [Google Scholar] [CrossRef]
- Chowdhary, A.; Sharma, C.; Meis, J.F. Azole-resistant aspergillosis: Epidemiology, molecular mechanisms, and treatment. J. Infect. Dis. 2017, 216, S436–S444. [Google Scholar] [CrossRef]
Organism (No. of Isolates) | No. and Cumulative % of Isolates Inhibited at MIC (mg/L) of: | MIC50 | MIC90 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
≤0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | >8 | |||
Aspergillus fumigatus | ||||||||||||
Isavuconazole (660) | 0 0.0 | 3 0.5 | 49 7.9 | 422 71.8 | 138 92.7 | 26 96.7 | 13 98.6 | 5 99.4 | 4 100.0 | 0.5 | 1 | |
Itraconazole (660) | 0 0.0 | 36 5.5 | 295 50.2 | 282 92.9 | 27 97.0 | 10 98.5 | 4 99.1 | 6 100.0 | 0.5 | 1 | ||
Voriconazole (660) | 0 0.0 | 1 0.2 | 13 2.1 | 311 49.2 | 284 92.3 | 29 96.7 | 16 99.1 | 3 99.5 | 1 99.7 | 2 100.0 | 0.5 | 0.5 |
Posaconazole (660) | 0 0.0 | 7 1.1 | 118 18.9 | 331 69.1 | 186 97.3 | 16 99.7 | 0 99.7 | 1 99.8 | 1 100.0 | 0.25 | 0.5 |
Year/Antifungal Agent (ref) | No. Tested | Mode (mg/L) | Range | % > ECV |
---|---|---|---|---|
2001–2009 (27) | ||||
Isavuconazole | NA | NA | NA | NA |
Itraconazole | 1221 | 0.25 | 0.015 to >8 | 2.0 |
Posaconazole | 1312 | 0.03 | 0.007 to 2 | 3.5 |
Voriconazole | 1312 | 0.25 | 0.06 to 4 | 1.4 |
2015–2017 (28) | ||||
Isavuconazole | 1189 | 0.5 | 0.12 to 32 | 3.8 |
Itraconazole | 876 | 1 | 0.12 to 32 | 4.2 |
Posaconazole | 817 | 0.25 | 0.008 to 4 | 2.1 |
Voriconazole | 1122 | 0.5 | 0.12 to 32 | 1.9 |
2017–2020 (This study) | ||||
Isavuconazole | 660 | 0.5 | 0.12 to >8 | 7.3 |
Itraconazole | 660 | 0.5 | 0.25 to >8 | 7.1 |
Posaconazole | 660 | 0.25 | 0.06 to 8 | 2.7 |
Voriconazole | 660 | 0.25 | 0.06 to >8 | 3.3 |
Study Year | Site Code | Continent | Country | City | ISC | ITC | VRC | PSC | CYP51A | CYP51B |
---|---|---|---|---|---|---|---|---|---|---|
2018 | 203 | Asia-W. Pacific | Australia | Perth | 1 | 1 | 2 | 0.25 | wild-type | Q42L |
2020 | 260 | Asia-W. Pacific | New Zealand | Auckland | 8.1 | 8.1 | 8 | 8 | G138C | wild-type |
2017 | 603 | Asia-W. Pacific | Thailand | Bangkok | 2 | 1 | 0.5 | 0.25 | F46Y, M172V, N248T, D255E, E427K | Q42L |
2018 | 131 | Europe | Belgium | Antwerp | 4 | 4 | 2 | 1 | L98H, TR34 | wild-type |
2019 | 131 | Europe | Belgium | Antwerp | 8.1 | 8 | 8.1 | 0.5 | Y121F, M172I, T289A, G448S, TR46 | wild-type |
2018 | 302 | Europe | Czech Republic | Hradec Kralove | 2 | 2 | 1 | 0.5 | F46Y, M172V, N248T, D255E, E427K | wild-type |
2020 | 91 | Europe | France | Caen Cedex | 4 | 4 | 1 | 1 | wild-type | Q42L |
2018 | 377 | Europe | Italy | Milan | 8 | 8 | 2 | 1 | L98H, TR34 | wild-type |
2018 | 377 | Europe | Italy | Milan | 8.1 | 8.1 | 8.1 | 4 | L98H, TR34 | wild-type |
2018 | 377 | Europe | Italy | Milan | 4 | 4 | 2 | 1 | L98H, TR34 | wild-type |
2018 | 377 | Europe | Italy | Milan | 4 | 4 | 1 | 0.5 | L98H, TR34 | wild-type |
2018 | 377 | Europe | Italy | Milan | 4 | 4 | 2 | 1 | L98H, TR34 | wild-type |
2019 | 377 | Europe | Italy | Milan | 4 | 2 | 2 | 0.5 | L98H, TR34 | wild-type |
2019 | 377 | Europe | Italy | Milan | 2 | 2 | 2 | 0.5 | L98H, TR34 | wild-type |
2019 | 329 | Europe | Slovenia | Ljubljana | 4 | 8.1 | 2 | 0.5 | L98H, TR34 | wild-type |
2019 | 303 | Europe | UK | Leeds | 4 | 8.1 | 2 | 0.5 | L98H, TR34 | wild-type |
2020 | 303 | Europe | UK | Leeds | 4 | 4 | 2 | 1 | L98H, TR34 | wild-type |
2020 | 303 | Europe | UK | Leeds | 4 | 4 | 2 | 0.5 | L98H, TR34 | wild-type |
2020 | 303 | Europe | UK | Leeds | 8 | 8 | 2 | 1 | L98H, TR34 | wild-type |
2018 | 32 | North America | Canada | Winnipeg | 1 | 2 | 0.5 | 0.5 | I242V | wild-type |
2018 | 2 | North America | USA | Indianapolis | 1 | 2 | 1 | 1 | I242V | wild-type |
2018 | 122 | North America | USA | Burlington | 2 | 2 | 1 | 0.5 | F46Y, M172V, E427K | wild-type |
2018 | 806 | North America | USA | Richmond | 1 | 2 | 0.5 | 0.5 | I242V | wild-type |
2019 | 806 | North America | USA | Richmond | 8.1 | 8.1 | 4 | 0.5 | G448S | wild-type |
2019 | 129 | North America | USA | New Brunswick | 2 | 2 | 1 | 0.5 | wild-type | Q42L |
2020 | 122 | North America | USA | Burlington | 1 | 2 | 0.5 | 0.5 | F46Y, M172V, N248T, D255E, E427K | wild-type |
2020 | 456 | North America | USA | Birmingham | 1 | 2 | 0.5 | 0.25 | I242V | wild-type |
2020 | 129 | North America | USA | New Brunswick | 2 | 2 | 1 | 0.5 | wild-type | Q42L |
2020 | 129 | North America | USA | New Brunswick | 0.5 | 2 | 0.5 | 0.25 | wild-type | Q42L |
2020 | 614 | Asia-W. Pacific | Australia | Melbourne | 2 | 2 | 1 | 0.5 | wild-type | K82Q, F149V, P383L |
2020 | 381 | Europe | Germany | Hamburg | 8 | 8.1 | 4 | 1 | L98H, TR34 | wild-type |
2018 | 122 | North America | USA | Burlington | 2 | 1 | 0.5 | 0.25 | A9T | wild-type |
Azole Phenotype (No. Tested) | MIC50 | MIC90 | Range | ECV a | |
---|---|---|---|---|---|
%WT | %NWT | ||||
WT (594) | |||||
Isavuconazole | 0.5 | 1 | 0.12 to 1 | 100.0 | 0.0 |
Itraconazole | 0.5 | 1 | 0.25 to 1 | 100.0 | 0.0 |
Posaconazole | 0.25 | 0.5 | 0.06 to 1 | 99.8 | 0.0 |
Voriconazole | 0.25 | 0.5 | 0.06 to 1 | 100.0 | 0.0 |
NWT (no CYP51 alteration) (34) | |||||
Isavuconazole | 2 | 4 | 0.5 to 8 | 32.4 | 67.6 |
Itraconazole | 2 | 4 | 0.5 to 8 | 47.1 | 52.9 |
Posaconazole | 0.5 | 1 | 0.25 to 1 | 82.4 | 17.6 |
Voriconazole | 0.5 | 2 | 0.5 to 4 | 85.3 | 14.7 |
NWT (with CYP51 alteration) (32) | |||||
Isavuconazole | 4 | >8 | 0.5 to >8 | 21.9 | 78.1 |
Itraconazole | 2 | >8 | 1 to >8 | 9.4 | 90.6 |
Posaconazole | 0.5 | 1 | 0.25 to 8 | 65.6 | 34.4 |
Voriconazole | 2 | 4 | 0.5 to >8 | 46.9 | 53.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pfaller, M.A.; Carvalhaes, C.G.; Deshpande, L.M.; Rhomberg, P.R.; Castanheira, M. In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations. J. Fungi 2023, 9, 608. https://doi.org/10.3390/jof9060608
Pfaller MA, Carvalhaes CG, Deshpande LM, Rhomberg PR, Castanheira M. In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations. Journal of Fungi. 2023; 9(6):608. https://doi.org/10.3390/jof9060608
Chicago/Turabian StylePfaller, Michael A., Cecilia G. Carvalhaes, Lalitagauri M. Deshpande, Paul R. Rhomberg, and Mariana Castanheira. 2023. "In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations" Journal of Fungi 9, no. 6: 608. https://doi.org/10.3390/jof9060608
APA StylePfaller, M. A., Carvalhaes, C. G., Deshpande, L. M., Rhomberg, P. R., & Castanheira, M. (2023). In Vitro Activity of Isavuconazole and Other Mould-Active Azoles against Aspergillus fumigatus with and without CYP51 Alterations. Journal of Fungi, 9(6), 608. https://doi.org/10.3390/jof9060608