Chitosan Is Necessary for the Structure of the Cell Wall, and Full Virulence of Ustilago maydis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fungal Strains, Culture Media, and Growth Conditions
2.2. Techniques for Nucleic Acids Manipulation
2.3. Polymerase Chain Reaction (PCR) Conditions
2.4. Isolation of Ustilago Maydis Mutants
2.5. Chitosan Measurement
2.6. Pathogenicity Tests
2.7. Microscopic Observations and Photographs
2.8. Mating Assays
2.9. Effect of Stress by Monovalent Cations on Cell Growth
2.10. Effect of Osmotic Stress on Cell Growth
2.11. Dimorphism Induced by Acid pH
2.12. Phylogenetic Analysis
3. Results
3.1. U. maydis CDAs Classification and Characterization
3.2. CDA1 Is Involved in Mycelial Growth of U. maydis at Acid pH
3.3. CDA1 Affects Chitosan Content and Provokes Chitosan Deposition in U. maydis Cells
3.4. CDA1 Is Involved in U. maydis Pathogenesis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banuett, F.; Herskowitz, I. Different a alleles of Ustilago maydis are necessary for maintenance of filamentous growth but not for meiosis. Proc. Natl. Acad. Sci. USA 1989, 86, 5878–5882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Banuett, F.; Herskowitz, I. Identification of Fuz7, a Ustilago maydis MEK/MAPKK homolog required for a-locus-dependent and–independent steps in the fungal life cycle. Genes Dev. 1994, 8, 1367–1378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klosterman, S.J.; Perlin, M.H.; Garcia-Pedrajas, M.; Covert, S.F.; Gold, S.E. Genetics of Morphogenesis and Pathogenic Development of Ustilago maydis. Adv. Genet. 2007, 57, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Herrera, J.; Martínez-Espinoza, A.D. The fungus Ustilago maydis, from the aztec cuisine to the research laboratory. Int. Microbiol. 1998, 1, 149–158. [Google Scholar]
- Vollmeister, E.; Schipper, K.; Baumann, S.; Haag, C.; Pohlmann, T.; Stock, J.; Feldbrügge, M. Fungal development of the plant pathogen Ustilago maydis. FEMS Microbiol. Rev. 2012, 36, 59–77. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Herrera, J.; León-Ramírez, C.G. Developmental and dimorphism of the Phytopathogenic Basidiomycota Ustilago maydis. In Dimorphic Fungi: Their Importance as Models for Differentiation and Fungal Pathogenesis; Ruiz-Herrera, J., Ed.; Bentham eBooks: Sharjah, United Arab Emirates, 2012; pp. 105–116. ISBN 978-1-60805-364-3. [Google Scholar]
- Banuett, F.; Herskowitz, I. Discrete developmental stages during teliospore formation in the corn smut fungus. Ustilago Maydis. Dev. 1996, 122, 2965–2976. [Google Scholar] [CrossRef]
- Christensen, J.J. Corn smut induced by Ustilago maydis. Am. Phytopathol. Soc. Monogr. 1963, 2, 41. [Google Scholar]
- Snetselaar, K.M.; Mims, C.W. Sporidial fusion and infection of maize seedlings by the smut fungus Ustilago maydis. Mycologia 1992, 84, 193–203. [Google Scholar] [CrossRef]
- Snetselaar, K.M.; Mims, C.W. Light and electron microscopy of Ustilago maydis hyphae in maize. Mycol. Res. 1994, 98, 347–365. [Google Scholar] [CrossRef]
- Ruiz-Herrera, J.; Cabrera-Ponce, J.L.; León-Ramírez, C.; Pérez-Rodríguez, F.; Salazar-Chávez, M.; Sánchez-Arreguin, A.; Vélez-Haro, J. The developmental history of Ustilago maydis: A saprophytic yeast, a mycelial fungus, mushroom-like, and a smut. In Advancing Frontiers in Mycology & Mycotechnology; Satyanarayana, T., Deshmukh, S.K., Deshpande, M.V., Eds.; Springer: Singapore, 2019; pp. 49–68. [Google Scholar] [CrossRef]
- Adams, D.J. Fungal cell wall chitinases and glucanases. Microbiology 2004, 150, 2029–2035. [Google Scholar] [CrossRef]
- Davis, L.L.; Bartnicki-Garcia, S. Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii. Biochemistry 1984, 23, 1065–1073. [Google Scholar] [CrossRef]
- Davis, L.L.; Bartnicki-Garcia, S. The co-ordination of chitosan and chitin synthesis in Mucor rouxii. Microbiology 1984, 130, 2095–2102. [Google Scholar] [CrossRef] [Green Version]
- Calvo-Mendez, C.; Ruiz-Herrera, J. Biosynthesis of chitosan in membrane fractions from Mucor rouxii by the concerted action of chitin synthetase and a particulate deacetylase. Exp. Mycol. 1987, 11, 128–140. [Google Scholar] [CrossRef]
- Sentandreu, R.; Elorza, M.V.; Valentin, E. The structure and composition of the fungal cell wall. In Pathogenic Fungi: Structural Biology and Taxonomy; San Blas, G., Calderone, R., Eds.; Caister Academic Press: Norfolk, UK, 2004; pp. 3–39. [Google Scholar]
- Garcera-Teruel, A.; Xoconostle-Cazares, B.; Rosas-Quijano, R.; Ortiz, L.; Leon-Ramirez, C.; Spetch, C.; Sentandreu, R.; Ruiz-Herrera, J. Loss of virulence in Ustilago maydis by Umchs6 gene disruption. Res. Microbiol. 2004, 115, 87–97. [Google Scholar] [CrossRef]
- Banks, I.R.; Specht, C.A.; Donlin, M.J.; Gerik, K.J.; Levitz, S.M.; Lodge, J.K. A Chitin Synthase and Its Regulator Protein Are Critical for Chitosan Production and Growth of the Fungal Pathogen Cryptococcus neoformans. Eukaryot. Cell 2005, 4, 1902–1912. [Google Scholar] [CrossRef] [Green Version]
- Ruiz-Herrera, J.; Ortiz-Castellanos, L.; Martinez, A.I.; Leon-Ramirez, C.; Sentandreu, R. Analysis of the proteins involved in the structure and synthesis of the cell wall of Ustilago maydis. Fungal Gent. Biol. 2008, 45, S71–S76. [Google Scholar] [CrossRef]
- Grifoll-Romero, L.; Pascual, S.; Aragunde, H.; Biarnes, X.; Planas, A. Chitin deacetylases: Structures, specificities, and biotech applications. Polymers 2018, 10, 352. [Google Scholar] [CrossRef] [Green Version]
- Van Der Vaart, J.M.; Biesebeke, R.T.; Chapman, J.W.; Klis, F.M.; Verrips, C.T. The β-1,6-glucan containing side-chain of cell wall proteins of Saccharomyces cerevisiae is bound to the glycan core of the GPI moiety. FEMS Microbiol. Lett. 1996, 145, 401–407. [Google Scholar] [CrossRef]
- De Nobel, H.; Lipke, P.N. Is there a role for GPIs in yeast cell-wall assembly? Trends Cell Biol. 1994, 4, 42–45. [Google Scholar] [CrossRef]
- Kapteyn, J.C.; Montijn, R.C.; Dijkgraaf, G.J.; Van den Ende, H.; Klis, F.M. Covalent association of β-1,3-glucan with β-1,6-glucosylated mannoproteins in cell walls of Candida albicans. J. Bacteriol. 1995, 177, 3788–3792. [Google Scholar] [CrossRef] [Green Version]
- Deising, H.; Rausher, M.; Haug, M.; Heiler, S. Differentiation and cell-wall degrading enzimes in the obligately biotrophic rust fungus Uromyces-viciae-fabae. Can. J. Bot. 1995, 73, 624–631. [Google Scholar] [CrossRef]
- Cord-Landwehr, S.; Melcher, R.L.; Kolkenbrock, S.; Moerschbacher, B.M. A chitin deacetylase from the endophytic fungus Pestalotiopsis sp. efficiently inactivates the elicitor activity of chitin oligomers in rice cells. Sci. Rep. 2016, 6, 38018. [Google Scholar] [CrossRef]
- Cord-Landwehr, S.; Richter, C.; Wattjes, J.; Sreekumar, S.; Singh, R.; Basa, S.; El Gueddari, N.E.; Moerschbacher, B.M. Patterns matter part 2: Chitosan oligomers with defined patterns of acetylation. React. Funct. Polym. 2020, 151, 104577. [Google Scholar] [CrossRef]
- Wattjes, J.; Kumar, S.; Richter, C.; Cord-Landwehr, S.; Singh, R.; El Gueddari, N.E.; Moerschbacher, B.M. Patterns matter part 1: Chitosan polymers with non-random patterns of acetylation. React. Funct. Polym. 2020, 151, 104583. [Google Scholar] [CrossRef]
- Geoghegan, I.A.; Gurr, S.J. Chitosan mediates germling adhesion in Magnaporthe oryzae and is required for surface sensing and germling morphogenesis. PLoS Pathog. 2016, 12, e1005703. [Google Scholar] [CrossRef]
- Kuroki, M.; Okauchi, K.; Yoshida, S.; Murata, S.; Nakajima, Y.; Nozaka, A.; Tanaka, N.; Nakajima, M.; Taguchi, H.; Saitoh, K.; et al. Chitin-deacetylase activity induces appressorium differentiation in the rice blast fungus Margnaporthe oryzae. Sci. Rep. 2017, 7, 9697. [Google Scholar] [CrossRef] [Green Version]
- Baker, L.G.; Specht, C.A.; Donlin, M.J.; Lodge, J.K. Chitosan, the Deacetylated form of chitin, is necessary for cell wall integrity in Cryptococcus neoformans. Eukaryot. Cell 2007, 6, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Shaw, J.A.; Mol, P.C.; Bowers, B.; Silverman, S.J.; Valdivieso, M.H.; Duran, A.; Cabib, E. The function of chitin synthases 2 and 3 in the Saccharomyces cerevisiae cell cycle. J. Cell Biol. 1991, 114, 111–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Soto, D.; Robledo-Briones, A.M.; Estrada-Luna, A.A.; Ruiz-Herrera, J. Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important aspects of the fungus pathogenic mechanisms. Plant Signal. Behav. 2013, 8, e25059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martínez-Soto, D.; Ruiz-Herrera, J. Transcriptomic analysis of the dimorphic transition of Ustilago maydis induced in vitro by a change in pH. Fungal Genet. Biol. 2013, 58, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Holliday, R. Ustilago maydis. In The Handbook of Genetic; King, R.C., Ed.; Plenum Press: New York, NY, USA, 1994; pp. 575–595. [Google Scholar]
- Hoffman, C.S.; Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 1987, 57, 267–272. [Google Scholar] [CrossRef]
- Yu, J.-H.; Hamari, Z.; Han, K.H.; Seo, J.A.; Reyes-Dominguez, Y.; Scazzocchio, C. Double-joint PCR: A PCR-based molecular tool for gene manipulations in filamentous fungi. Fungal Genet. Biol. 2004, 41, 973–981. [Google Scholar] [CrossRef]
- Mayorga, M.E.; Gold, S. Characterization and molecular genetic complementation of mutants affecting dimorphism in the fungus Ustilago maydis. Fungal Genet. Biol. 1998, 24, 364–376. [Google Scholar] [CrossRef]
- Elorza, M.V.; Rico, H.; Gozalbo, D.; Sentandreu, R. Cell wall composition and protoplast regeneration in Candida albicans. Antoine Leewenhoek 1983, 49, 457–469. [Google Scholar] [CrossRef]
- Tsukuda, T.; Carleton, S.; Fotheringham, S.; Holloman, W.K. Isolation and characterization of an autonomously replicating sequence from Ustilago maydis. Mol. Cell Biol. 1988, 8, 3703–3709. [Google Scholar] [CrossRef]
- Ruiz-Herrera, J.; Leon, C.G.; Carabez-Trejo, A.; Reyes-Salinas, E. Structure and Chemical Composition of the Cell Walls from the Haploid Yeast and Mycelial Forms of Ustilago maydis. Fungal Genet. Biol. 1996, 20, 133–142. [Google Scholar] [CrossRef]
- Cifonelli, J.A. Chemical Methods of analysis Nitrous acid depolymerization of glycosaminoglycans. In Methods in Carbohydrate Chemistry; Whistler, R.L., BeMiller, J.N., Eds.; Academic Press: New York, NY, USA, 1976; pp. 139–141. [Google Scholar]
- Chavez-Ontiveros, J.; Martinez-Espinoza, A.D.; Ruiz-Herrera, J. Double chitin synthetase mutants from the corn smut fungus Ustilago maydis. New Phytol. 2000, 146, 335–341. [Google Scholar] [CrossRef]
- Ruiz-Herrera, J.; León-Ramírez, C.G.; Guevara-Olvera, L.; Cárabez-Trejo, A. Yeast-mycelial dimorphism of haploid and diploid strains of Ustilago maydis. Microbiology 1995, 141, 695–703. [Google Scholar] [CrossRef] [Green Version]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Le, S.Q.; Gascuel, O. An improved general amino acid replacement matrix. Mol. Biol. Evol. 2008, 25, 1307–1320. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef]
- Tria, F.D.K.; Landan, G.; Dagan, T. Phylogenetic rooting using minimal ancestor deviation. Nat. Ecol. Evol. 2017, 1, 193–200. [Google Scholar] [CrossRef]
- Lombard, V.; Ramulu, H.G.; Drula, E.; Coutinho, P.M.; Henrissat, B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, D490–D495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Christodoulidou, A.; Bouriotis, V.; Thireos, G. Two sporulation-specific chitin deacetylase-encoding genes are required for the ascospore wall rigidity of Saccharomyces cerevisiae. J. Biol. Chem. 1996, 271, 31420–31425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Robledo-Briones, M.; Ruiz-Herrera, J. Regulation of genes involved in cell wall synthesis and structure during Ustilago maydis dimorphism. FEMS Yeast Res. 2013, 13, 74–84. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geoghegan, I.A.; Gurr, S.J. Investigating chitin deacetylation and chitosan hydrolysis during vegetative growth in Magnaporthe oryzae. Cell Microbiol. 2017, 19, e12743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, F.; Zhang, B.S.; Zhao, J.H.; Huang, J.F.; Jia, P.S.; Wang, S.; Zhang, J.; Zhou, J.M.; Guo, H.S. Deacetylation of chitin oligomers increases virulence in soil-borne fungal pathogens. Nat. Plants 2019, 5, 1167–1176. [Google Scholar] [CrossRef]
- El Gueddari, N.E.; Rauchhaus, U.; Bruno, M.; Moerschbacher, B.M.; Deising, H.B. Developmentally regulated conversion of surface-exposed chitin to chitosan in cell walls of plant pathogenic fungi. New Phytol. 2002, 156, 103–112. [Google Scholar] [CrossRef]
- Rizzi, Y.S.; Happel, P.; Lenz, S.; Urs, M.J.; Bonin, M.; Cord-Landwehr, S.; Singh, R.; Moerschbacher, B.M.; Kahmann, R. Chitosan and chitin deacetylase activity are necessary for development and virulence of Ustilago maydis. mBio 2021, 12, e03419–e03420. [Google Scholar] [CrossRef]
- Baker, L.G.; Specht, C.A.; Lodge, J.K. Cell wall chitosan is necessary for virulence in the opportunistic pathogen Cryptococcus neoformans. Eukaryot. Cell 2011, 10, 1264–1268. [Google Scholar] [CrossRef] [Green Version]
- Hembach, L.; Bonin, M.; Gorzelanny, C.; Moerschbacher, B.M. Unique subsite specificity and potential natural function of a chitosan deacetylase from the human pathogen Cryptococcus neoformans. Proc. Natl. Acad. Sci. USA 2020, 117, 3551–3559. [Google Scholar] [CrossRef]
- Weber, I.; Abmann, D.; Thines, E.; Steinberg, G. Polar localizing class V myosin chitin synthases are essential during early plant infection in the plant pathogenic fungus Ustilago maydis. Plant Cell 2006, 18, 225–242. [Google Scholar] [CrossRef] [Green Version]
- Xoconostle-Cazeres, B.; Leon-Ramirez, C.; Ruiz-Herrera, J. Two chitin synthases genes from Ustilago maydis. Microbiology 1996, 142, 377–387. [Google Scholar] [CrossRef] [Green Version]
- Xoconostle-Cazeres, B.; Spetch, C.; Robbins, P.; Lui, Y.; Leon, C.; Ruiz-Herrera, J. Umchs5, a gene coding for a class IV chitin synthase in Ustilago maydis. Fungal Genet. Biol. 1997, 22, 199–208. [Google Scholar] [CrossRef]
- Gold, S.; Kronstad, J.W. Disruption of two genes for chitin synthase in the phytopathogenic fungus Ustilago maydis. Mol. Microbiol. 1994, 11, 897–902. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Arreguin, J.A.; Ortiz-Castellanos, M.L.; Robledo-Briones, A.M.; León-Ramírez, C.G.; Martínez-Soto, D.; Ruiz-Herrera, J. Chitosan Is Necessary for the Structure of the Cell Wall, and Full Virulence of Ustilago maydis. J. Fungi 2022, 8, 813. https://doi.org/10.3390/jof8080813
Sánchez-Arreguin JA, Ortiz-Castellanos ML, Robledo-Briones AM, León-Ramírez CG, Martínez-Soto D, Ruiz-Herrera J. Chitosan Is Necessary for the Structure of the Cell Wall, and Full Virulence of Ustilago maydis. Journal of Fungi. 2022; 8(8):813. https://doi.org/10.3390/jof8080813
Chicago/Turabian StyleSánchez-Arreguin, José Alejandro, M. Lucila Ortiz-Castellanos, Angélica Mariana Robledo-Briones, Claudia Geraldine León-Ramírez, Domingo Martínez-Soto, and José Ruiz-Herrera. 2022. "Chitosan Is Necessary for the Structure of the Cell Wall, and Full Virulence of Ustilago maydis" Journal of Fungi 8, no. 8: 813. https://doi.org/10.3390/jof8080813
APA StyleSánchez-Arreguin, J. A., Ortiz-Castellanos, M. L., Robledo-Briones, A. M., León-Ramírez, C. G., Martínez-Soto, D., & Ruiz-Herrera, J. (2022). Chitosan Is Necessary for the Structure of the Cell Wall, and Full Virulence of Ustilago maydis. Journal of Fungi, 8(8), 813. https://doi.org/10.3390/jof8080813