Intragenomic Variability of ITS Sequences in Bjerkandera adusta
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ryvarden, L.; Melo, I. Poroid Fungi of Europe, 2nd ed.; Fungiflora: Oslo, Norway, 2017. [Google Scholar]
- Zmitrovich, I.V.; Bondartseva, M.A.; Vasilyev, N.P. The Meruliaceae of Russia. I. Bjerkandera. Turcraninowia 2016, 19, 5–18. [Google Scholar]
- Wang, C.G.; Vlasák, J.; Dai, Y.C. Phylogeny and diversity of Bjerkandera (Polyporales, Basidiomycota), including four new species from South America and Asia. MycoKeys 2021, 79, 149–172. [Google Scholar] [CrossRef] [PubMed]
- Motato-Vásquez, V.; Gugliotta, A.M.; Rajchenberg, M.; Catania, M.; Urcelay, C.; Robledo, G. New insights on Bjerkandera (Phanerochaetaceae, Polyporales) in the Neotropics with description of Bjerkandera albocinerea based on morphological and molecular evidence. Plant Ecol. Evol. 2020, 153, 229–245. [Google Scholar] [CrossRef]
- Westphalen, M.C.; Tomšovský, M.; Kout, J.; Gugliotta, A.M. Bjerkandera in the Neotropics: Phylogenetic and morphological relations of Tyromyces atroalbus and description of a new species. Mycol. Progress 2015, 14, 100. [Google Scholar] [CrossRef]
- Ryvarden, L. Studies in Neotropical polypores 43. Some new species from tropical America. Synopsis Fungorum 2016, 35, 43–52. [Google Scholar]
- Carmichael, J.W. Geotrichum candidum. Mycologia 1957, 49, 820–830. [Google Scholar] [CrossRef]
- Barnett, H.L.; Hunter, B.B. Descriptions and Illustrations of Genera. Illustrated Genera of Imperfect Fungi; American Phytopathological Society Press: St Paul, MN, USA, 1998. [Google Scholar]
- Romero, E.; Speranza, M.; García-Guinea, J.; Martínez, A.T.; Martínez, J.M. An anamorph of the white-rot fungus Bjerkandera adusta capable of colonizing and degrading compact disc components. FEMS Microbiol. Lett. 2007, 275, 122–129. [Google Scholar] [CrossRef] [Green Version]
- Korniłłowicz–Kowalska, T.; Wrzosek, M.; Ginalska, G.; Iglik, H.; Bancerz, R. Identification and application of a new fungal strain Bjerkandera adusta R59 in decolorization of daunomycin wastes. Enzyme Microb. Technol. 2006, 38, 583–590. [Google Scholar] [CrossRef]
- Korniłłowicz-Kowalska, T.; Rybczyńska-Tkaczyk, K. Growth conditions, physiological properties, and selection of optimal parameters of biodegradation of anticancer drug daunomycin in industrial effluents by Bjerkandera adusta CCBAS930. Int. Microbiol. 2020, 23, 287–301. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Ichinose, T.; He, M.; Kobayashi, F.; Maki, T.; Yoshida, S.; Yoshida, Y.; Arashidani, K.; Takano, H.; Nishikawa, M.; et al. Lung inflammation by fungus, Bjerkandera adusta isolated from Asian sand dust (ASD) aerosol and enhancement of ovalbumin-induced lung eosinophilia by ASD and the fungus in mice. Allergy Asthma Clin. Immunol. 2014, 10, 10. [Google Scholar] [CrossRef] [Green Version]
- Wirsel, S.; Leibinger, W.; Ernst, M.; Mendgen, K. Genetic diversity of fungi closely associated with common reed. New Phytol. 2001, 149, 589–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thormann, M.N.; Currah, R.S.; Bayley, S.E. The relative ability of fungi from Sphagnum fuscum to decompose selected carbon substrates. Can. J. Microbiol. 2002, 48, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Oses, R.; Valenzuela, S.; Freer, J.; Sanfuentes, E.; Rodríguez, J. Fungal endophytes of healthy Chilean trees and their possible role in early wood decay. Fungal Divers. 2008, 33, 77–86. [Google Scholar]
- Yuan, Z.L.; Rao, L.B.; Chen, Y.C.; Zhang, C.L.; Wu, Y.G. From pattern to process: Species and functional diversity in fungal endophytes of Abies beshanzuensis. Fungal Biol. 2011, 115, 197–221. [Google Scholar] [CrossRef] [PubMed]
- Zhan, Z.J.; Tian, T.; Xu, Y.L.; Yu, H.F.; Zhang, C.X.; Zhang, Z.D.; Tang, Q.Y.; Shan, W.G.; Ying, Y.M. Biotransformation of huperzine B by a fungal endophyte of Huperzia serrata. Chem. Biodivers. 2019, 16, e1900299. [Google Scholar] [CrossRef]
- Gao, T.; Qin, D.; Zuo, S.; Peng, Y.; Xu, J.; Yu, B.; Song, H.; Dong, J. Decolorization and detoxification of triphenylmethane dyes by isolated endophytic fungus, Bjerkandera adusta SWUSI4 under non-nutritive conditions. Bioresour. Bioprocess. 2020, 7, 53. [Google Scholar] [CrossRef]
- Glenn, A.E.; Bodri, M. Fungal endophyte diversity in Sarracenia. PLoS ONE 2012, 7, e32980. [Google Scholar]
- Martin, R.; Gazis, R.; Skaltsas, D.; Chaverri, P.; Hibbett, D. Unexpected diversity of basidiomycetous endophytes in sapwood and leaves of Hevea. Mycologia 2015, 107, 284–297. [Google Scholar] [CrossRef] [Green Version]
- Bouacem, K.; Rekik, H.; Jaouadi, N.Z.; Zenati, B.; Kourdali, S.; Hattab, M.E.; Abdelmalek, B.; Annane, R.; Bejar, S.; Hacene, H.; et al. Purification and characterization of two novel peroxidases from the dye-decolorizing fungus Bjerkandera adusta strain CX-9. Int. J. Biol. Macromol. 2018, 106, 636–646. [Google Scholar] [CrossRef]
- Heinfling, A.; Bergbauer, M.; Szewzyk, U. Biodegradation of azo and phthalocyanine dyes by Trametes versicolor and Bjerkandera adusta. Appl. Microbiol. Biotechnol. 1977, 48, 261–266. [Google Scholar] [CrossRef]
- Choi, Y.S.; Seo, J.Y.; Lee, H.; Yoo, J.; Kim, J.J.; Kim, G.H. Decolorization and detoxification of wastewater containing industrial dyes by Bjerkandera adusta KUC9065. Water Air Soil Pollut. 2014, 225, 1801. [Google Scholar] [CrossRef]
- Rybczyńska-Tkaczyk, K.; Korniłłowicz-Kowalska, T. Biodecolorization of anthraquinone dyes using immobilised mycelium of Bjerkandera adusta CCBAS930. E3S Web Conf. 2003, 171, 01013. [Google Scholar] [CrossRef]
- Rech, K.S.; de Oliveira, C.F.; Moura, P.F.; de Oliveira, C.D.S.P.; Hirota, B.C.K.; de Oliveira, M.; Rüdiger, A.L.; de Sá, E.L.; Miguel, O.G.; Auer, C.G.; et al. Optimisation of Bjerkandera adusta culture conditions for the production of α-α-trehalose. Nat. Prod. Res. 2021, 35, 4206–4209. [Google Scholar] [CrossRef] [PubMed]
- Rivoire, B. Polypores de France et d´Europe; Mycopolydev: Orliénas, France, 2020. [Google Scholar]
- Jung, P.E.; Fong, J.J.; Park, M.S.; Oh, S.Y.; Kim, C.; Lim, Y.W. Sequence validation for the identification of the white-rot fungi Bjerkandera in public sequence databases. J. Microbiol. Biotechnol. 2014, 24, 1301–1307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications; Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J., Eds.; Academic Press: San Diego, CA, USA, 1990; pp. 315–322. [Google Scholar]
- Náplavová, K.; Beck, T.; Pristaš, P.; Gáperová, S.; Šebesta, M.; Piknová, M.; Gáper, J. Molecular Data Reveal Unrecognized Diversity in the European Ganoderma resinaceum. Forests 2020, 11, 850. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Blaalid, R.; Kumar, S.; Nilsson, R.H.; Abarenkov, K.; Kirk, P.M.; Kauserud, H. ITS1 versus ITS2 as DNA metabarcodes for fungi. Mol. Ecol. Resour. 2013, 13, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Potapov, V.; Ong, J. Examining Sources of Error in PCR by Single-Molecule Sequencing. PLoS ONE 2017, 12, e0169774. [Google Scholar] [CrossRef] [Green Version]
- Garnica, S.; Schön, M.E.; Abarenkov, K.; Riess, K.; Liimatainen, K.; Niskanen, T.; Dima, B.; Soop, K.; Frøslev, T.G.; Jeppesen, T.S.; et al. Determining threshold values for barcoding fungi: Lessons from Cortinarius (Basidiomycota), a highly diverse and widespread ectomycorrhizal genus. FEMS Microbiol. Ecol. 2016, 92, fiw045. [Google Scholar] [CrossRef] [Green Version]
- Lücking, R.; Aime, M.C.; Robbertse, B.; Miller, A.N.; Ariyawansa, H.A.; Aoki, T.; Cardinali, G.; Crous, P.W.; Druzhinina, I.S.; Geiser, D.M.; et al. Unambiguous identification of fungi: Where do we stand and how accurate and precise is fungal DNA barcoding? IMA Fungus 2020, 11, 14. [Google Scholar] [CrossRef]
- Kõljalg, U.; Abarenkov, K.; Nilsson, R.H.; Larsson, K.H.; Taylor, A.F. The UNITE database for molecular identification and for communicating fungal species. BISS 2019, 3, e37402. [Google Scholar] [CrossRef]
- Irinyi, L.; Serena, C.; Garcia-Hermoso, D.; Arabatzis, M.; Desnos-Ollivier, M.; Vu, D.; Cardinali, G.; Arthur, I.; Normand, A.C.; Giraldo, A.; et al. International Society of Human and Animal Mycology (ISHAM)—ITS reference DNA barcoding database—The quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med. Mycol. 2015, 53, 313–337. [Google Scholar] [CrossRef] [PubMed]
- Pristas, P.; Gaperova, S.; Gaper, J.; Judova, J. Genetic variability in Fomes fomentarius reconfirmed by translation elongation factor 1-α DNA sequences and 25S LSU rRNA sequences. Biologia 2013, 68, 816–820. [Google Scholar] [CrossRef]
- Carlson, A.; Justo, A.; Hibbett, D.S. Species delimitation in Trametes: A comparison of ITS, RPB1, RPB2 and TEF1 gene phylogenies. Mycologia 2014, 106, 735–745. [Google Scholar] [CrossRef] [Green Version]
- Hughes, K.W.; Tulloss, R.H.; Petersen, R.H. Intragenomic nuclear RNA variation in a cryptic Amanita taxon. Mycologia 2018, 110, 93–103. [Google Scholar] [CrossRef]
- Stadler, M.; Lambert, C.; Wibberg, D.; Kalinowski, J.; Cox, R.J.; Kolařík, M.; Kuhnert, E. Intragenomic polymorphisms in the ITS region of high-quality genomes of the Hypoxylaceae (Xylariales, Ascomycota). Mycol. Prog. 2020, 19, 235–245. [Google Scholar] [CrossRef] [Green Version]
- Kijpornyongpan, T.; Aime, M.C. Rare or rarely detected? Ceraceosorus guamensis sp. nov.: A second described species of Ceraceosorales and the potential for underdetection of rare lineages with common sampling techniques. Antonie Van Leeuwenhoek 2016, 109, 1127–1139. [Google Scholar]
- Ko, K.S.; Jung, H.S. Three nonorthologous ITS1 types are present in a polypore fungus Trichaptum abietinum. Mol. Phylogenet. Evol. 2002, 23, 112–122. [Google Scholar] [CrossRef]
- McTaggart, A.R.; Aime, M.C. The species of Coleosporium (Pucciniales) on Solidago in North America. Fungal Biol. 2018, 122, 800–809. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pristas, P.; Beck, T.; Piknova, M.; Gaperova, S.; Sebesta, M.; Gaper, J. Intragenomic Variability of ITS Sequences in Bjerkandera adusta. J. Fungi 2022, 8, 654. https://doi.org/10.3390/jof8070654
Pristas P, Beck T, Piknova M, Gaperova S, Sebesta M, Gaper J. Intragenomic Variability of ITS Sequences in Bjerkandera adusta. Journal of Fungi. 2022; 8(7):654. https://doi.org/10.3390/jof8070654
Chicago/Turabian StylePristas, Peter, Terezia Beck, Maria Piknova, Svetlana Gaperova, Martin Sebesta, and Jan Gaper. 2022. "Intragenomic Variability of ITS Sequences in Bjerkandera adusta" Journal of Fungi 8, no. 7: 654. https://doi.org/10.3390/jof8070654
APA StylePristas, P., Beck, T., Piknova, M., Gaperova, S., Sebesta, M., & Gaper, J. (2022). Intragenomic Variability of ITS Sequences in Bjerkandera adusta. Journal of Fungi, 8(7), 654. https://doi.org/10.3390/jof8070654