Internally Symmetrical Stwintrons and Related Canonical Introns in Hypoxylaceae Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Mining, Gene Model, SRA Verification, and Functional Annotation of Genes with Sister (Stw)Introns in Species of Hypoxylaceae
2.2. Other Informatics Methods
2.3. Hypoxylon sp. CO27-5, Growth Medium and Nucleic Acid Isolation
2.4. Reverse Transcription Polymerase Chain Reaction (RT-PCR) and cDNA Sequencing
3. Results
3.1. Identification of a New (D1,2) Stwintron in the Gene for a Mitochondrial Carrier Protein in Two Allied Hypoxylon
3.2. Abundance of Highly Similar (D1,2) Stwintrons in the Genome and Transcriptome of Hypoxylon sp. CO27-5
3.3. Experimental Identification of Sister Stwintrons
3.4. Identification of Canonical U2 Introns with High Sequence Similarity to the above (D1,2) Sister Stwintrons in Hypoxylon sp. CO27-5
3.5. Symmetrical Characteristics of Type-2 Cropped Sister Introns and Sister Stwintrons
3.6. Sister (Stw)Intron Integration Sites Are Apparently Not Biased
3.7. Recent Emergence of the Structurally Related Sister Stwintrons and Derived Type-2 Cropped Sister Introns
4. Discussion
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kastner, B.; Will, C.L.; Stark, H.; Lührmann, R. Structural insights into nuclear pre-mRNA splicing in higher eukaryotes. Cold Spring Harb. Perspect. Biol. 2019, 11, a032417. [Google Scholar] [CrossRef]
- Plaschka, C.; Newman, A.J.; Nagai, K. Structural basis of nuclear pre-mRNA splicing: Lessons from yeast. Cold Spring Harb. Perspect. Biol. 2019, 11, a032391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, C.; Wan, R.; Shi, Y. Molecular mechanisms of pre-mRNA splicing through structural biology of the spliceosome. Cold Spring Harb. Perspect. Biol. 2019, 11, a032409. [Google Scholar] [CrossRef]
- Ooi, S.L.; Dann, C.; Nam, K.; Leahy, D.J.; Damha, M.J.; Boeke, J.D. RNA lariat debranching enzyme. Methods Enzymol. 2001, 342, 233–248. [Google Scholar]
- Mohanta, A.; Chakrabarti, K. Dbr1 functions in mRNA processing, intron turnover and human diseases. Biochimie 2021, 180, 134–142. [Google Scholar] [CrossRef]
- Hesselberth, J.R. Lives that introns lead after splicing. Wiley Interdiscip. Rev. RNA 2013, 4, 677–691. [Google Scholar] [CrossRef] [PubMed]
- Chan, S.N.; Pek, J.W. Stable intronic sequence RNAs (sisRNAs): An expanding universe. Trends Biochem. Sci. 2019, 44, 258–272. [Google Scholar] [CrossRef] [PubMed]
- Neil, C.R.; Fairbrother, W.G. Intronic RNA: Ad ‘junk’ mediator of post-transcriptional gene regulation. Biochim. Biophys. Acta Gene Regul. Mech. 2019, 1862, 194439. [Google Scholar] [CrossRef]
- Hafez, M.; Hausner, G. Convergent evolution of twintron-like configurations: One is never enough. RNA Biol. 2015, 12, 1275–1288. [Google Scholar] [CrossRef] [Green Version]
- Georgomanolis, T.; Sofiadis, K.; Papantonis, A. Cutting a long intron short: Recursive splicing and its implications. Front. Physiol. 2016, 7, 598. [Google Scholar] [CrossRef] [Green Version]
- Flipphi, M.; Fekete, E.; Ág, N.; Scazzocchio, C.; Karaffa, L. Spliceosome twin introns in fungal nuclear transcripts. Fungal Genet. Biol. 2013, 57, 48–57. [Google Scholar] [CrossRef]
- Ág, N.; Flipphi, M.; Karaffa, L.; Scazzocchio, C.; Fekete, E. Alternatively spliced, spliceosomal twin introns in Helminthosporium solani. Fungal Genet. Biol. 2015, 85, 7–13. [Google Scholar] [CrossRef]
- Fekete, E.; Flipphi, M.; Ág, N.; Kavalecz, N.; Cerqueira, G.; Scazzocchio, C.; Karaffa, L. A mechanism for a single nucleotide intron shift. Nucleic Acids Res. 2017, 45, 9085–9092. [Google Scholar] [CrossRef] [Green Version]
- Flipphi, M.; Ág, N.; Karaffa, L.; Kavalecz, N.; Cerqueira, G.; Scazzocchio, C.; Fekete, E. Emergence and loss of spliceosomal twin introns. Fungal Biol. Biotechnol. 2017, 4, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kavalecz, N.; Ág, N.; Karaffa, L.; Scazzocchio, C.; Flipphi, M.; Fekete, E. A spliceosomal twin intron (stwintron) participates in both exon skipping and evolutionary exon loss. Sci. Rep. 2019, 9, 9940. [Google Scholar] [CrossRef] [PubMed]
- Ág, N.; Kavalecz, N.; Pénzes, F.; Karaffa, L.; Scazzocchio, C.; Flipphi, M.; Fekete, E. Complex intron generation in the yeast genus Lipomyces. Sci. Rep. 2020, 10, 6022. [Google Scholar] [CrossRef]
- Stajich, J.E.; Dietrich, F.S.; Roy, S.W. Comparative genomic analysis of fungal genomes reveals intron-rich ancestors. Genome Biol. 2007, 8, R223. [Google Scholar] [CrossRef] [Green Version]
- Ragg, H. Intron creation and DNA repair. Cell. Mol. Life Sci. 2011, 68, 235–242. [Google Scholar] [CrossRef]
- Yenerall, P.; Zhou, L. Identifying the mechanisms of intron gain: Progress and trends. Biol. Direct 2012, 7, 29. [Google Scholar] [CrossRef] [Green Version]
- Kupfer, D.M.; Drabenstot, S.D.; Buchanan, K.L.; Lai, H.; Zhu, H.; Dyer, D.W.; Roe, B.A.; Murphy, J.W. Introns and splicing elements of five diverse fungi. Eukaryot. Cell 2004, 3, 1088–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Conti, L.; Baralle, M.; Buratti, E. Exon and intron definition in pre-mRNA splicing. Wiley Interdiscip. Rev. RNA 2013, 4, 49–60. [Google Scholar] [CrossRef] [PubMed]
- Romfo, C.M.; Alvarez, C.J.; van Heeckeren, W.J.; Webb, C.J.; Wise, J.A. Evidence for splice site pairing via intron definition in Schizosaccharomyces pombe. Mol. Cell. Biol. 2000, 20, 7955–7970. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Wu, W.; Davis, R.W.; Tran-Gyamfi, M.B.; Kuo, A.; LaButti, K.; Mihaltcheva, S.; Hundley, H.; Chovatia, M.; Lindquist, E.; Barry, K.; et al. Characterization of four endophytic fungi as potential consolidated bioprocessing hosts for conversion of lignocellulose into advanced biofuels. Appl. Microbiol. Biotechnol. 2017, 101, 2603–2618. [Google Scholar] [CrossRef] [PubMed]
- Shaw, J.J.; Berbasova, T.; Sasaki, T.; Jefferson-George, K.; Spakowicz, D.J.; Dunican, B.F.; Portero, C.E.; Narváez-Trujillo, A.; Strobel, S.A. Identification of a fungal 1,8-cineole synthase from Hypoxylon sp. with specificity determinants in common with the plant synthases. J. Biol. Chem. 2015, 290, 8511–8526. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, M.J.; Van de Bittner, K.C.; Ram, A.; Bustamante, L.Y.; Scott, B.; Parker, E.J. Draft genome sequence of the filamentous fungus Hypoxylon pulicicidum ATCC 74245. Genome Announc. 2018, 6, e01380-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wibberg, D.; Stadler, M.; Lambert, C.; Bunk, B.; Spröer, C.; Rückert, C.; Kalinowski, J.; Cox, R.J.; Kuhnert, E. High quality genome sequences of thirteen Hypoxylaceae (Ascomycota) strengthen the phylogenetic family backbone and enable the discovery of new taxa. Fungal Divers. 2021, 106, 7–28. [Google Scholar] [CrossRef]
- Li, H.; Wu, S.; Ma, X.; Chen, W.; Zhang, J.; Duan, S.; Gao, Y.; Kui, L.; Huang, W.; Wu, P.; et al. The genome sequences of 90 mushrooms. Sci. Rep. 2018, 8, 9982. [Google Scholar] [CrossRef]
- Fang, W.; Ji, S.; Jiang, N.; Wang, W.; Zhao, G.Y.; Zhang, S.; Ge, H.M.; Xu, Q.; Zhang, A.H.; Zhang, Y.L.; et al. Naphthol radical couplings determine structural features and enantiomeric excess of dalesconols in Daldinia eschscholzii. Nat. Commun. 2012, 3, 1039. [Google Scholar] [CrossRef]
- Kim, J.A.; Jeon, J.; Park, S.-Y.; Jeon, M.J.; Yeo, J.-H.; Lee, Y.-H.; Kim, S. Draft genome sequence of Daldinia childiae JS-1345, an endophytic fungus isolated from stem tissue of Korean fir. Microbiol. Resour. Announc. 2020, 9, e01284-19. [Google Scholar] [CrossRef] [Green Version]
- El-Gebali, S.; Mistry, J.; Bateman, A.; Eddy, S.R.; Luciani, A.; Potter, S.C.; Qureshi, M.; Richardson, L.J.; Salazar, G.A.; Smart, A.; et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019, 47, D427–D432. [Google Scholar] [CrossRef]
- Katoh, K.; Standley, D.M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef] [Green Version]
- Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol. 2011, 7, 539. [Google Scholar] [CrossRef]
- Criscuolo, A.; Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): A new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 2010, 10, 210. [Google Scholar] [CrossRef] [Green Version]
- Lefort, V.; Longueville, J.-E.; Gascuel, O. SMS: Smart Model Selection in PhyML. Mol. Biol. Evol. 2017, 34, 2422–2424. [Google Scholar] [CrossRef] [Green Version]
- Gruber, A.R.; Lorenz, R.; Bernhart, S.H.; Neuböck, R.; Hofacker, I.L. The Vienna RNA websuite. Nucleic Acids Res. 2008, 36, W70–W74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bernhart, S.H.; Tafer, H.; Mückstein, U.; Flamm, C.; Stadler, P.F.; Hofacker, I.L. Partition function and base pairing probabilities of RNA heterodimers. Algorithms Mol. Biol. 2006, 1, 3. [Google Scholar] [CrossRef]
- Wheeler, T.J.; Clements, J.; Finn, R.D. Skylign: A tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinform. 2014, 15, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Worden, A.Z.; Lee, J.-H.; Mock, T.; Rouzé, P.; Simmons, M.P.; Aerts, A.L.; Allen, A.E.; Cuvelier, M.L.; Derelle, E.; Everett, M.V.; et al. Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 2009, 324, 268–272. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Tucker, A.E.; Sung, W.; Thomas, W.K.; Lynch, M. Extensive, recent intron gains in Daphnia populations. Science 2009, 326, 1260–1262. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simmons, M.P.; Bachy, C.; Sudek, S.; van Baren, M.J.; Sudek, L.; Ares, M., Jr.; Worden, A.Z. Intron invasions trace algal speciation and reveal nearly identical arctic and antarctic Micromonas populations. Mol. Biol. Evol. 2015, 32, 2219–2235. [Google Scholar] [CrossRef] [Green Version]
- Wu, B.; Macielog, A.I.; Hao, W. Origin and spread of spliceosomal introns: Insights from the fungal clade Zymoseptoria. Genome Biol. Evol. 2017, 9, 2658–2667. [Google Scholar] [CrossRef] [Green Version]
- Denoeud, F.; Henriet, S.; Mungpakdee, S.; Aury, J.M.; Da Silva, C.; Brinkmann, H.; Mikhaleva, J.; Olsen, L.C.; Jubin, C.; Cañestro, C.; et al. Plasticity of animal genome architecture unmasked by rapid evolution of a pelagic tunicate. Science 2010, 330, 1381–1385. [Google Scholar] [CrossRef] [Green Version]
- Torriani, S.F.F.; Stukenbrock, E.H.; Brunner, P.C.; McDonald, B.A.; Croll, D. Evidence for extensive recent intron transposition in closely related fungi. Curr. Biol. 2011, 21, 2017–2022. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Burgt, A.; Severing, E.; de Wit, P.J.G.M.; Collemare, J. Birth of new spliceosomal introns in fungi by multiplication of introner-like elements. Curr. Biol. 2012, 22, 1260–1265. [Google Scholar] [CrossRef] [Green Version]
- Collemare, J.; van der Burgt, A.; de Wit, P.J.G.M. At the origin of spliceosomal introns: Is multiplication of introner-like elements the main mechanism of intron gain in fungi? Commun. Integr. Biol. 2013, 6, e23147. [Google Scholar] [CrossRef]
- Verhelst, B.; Van de Peer, Y.; Rouzé, P. The complex intron landscape and massive intron invasion in a picoeukaryote provides insights into intron evolution. Genome Biol. Evol. 2013, 5, 2393–2401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunner, P.C.; Torriani, S.F.F.; Croll, D.; Stukenbrock, E.H.; McDonald, B.A. Hitchhiking selection is driving intron gain in a pathogenic fungus. Mol. Biol. Evol. 2014, 31, 1741–1749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, W.; Kuzoff, R.; Wong, C.K.; Tucker, A.; Lynch, M. Characterization of newly gained introns in Daphnia populations. Genome Biol. Evol. 2014, 6, 2218–2234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collemare, J.; Beenen, H.G.; Crous, P.W.; de Wit, P.J.G.M.; van der Burgt, A. Novel introner-like elements in fungi are involved in parallel gains of spliceosomal introns. PLoS ONE 2015, 10, e0129302. [Google Scholar] [CrossRef] [Green Version]
- Felsenstein, J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985, 39, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Sfeir, A.; Symington, L.S. Microhomology-mediated end joining: A back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 2015, 40, 701–714. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Xu, X. Microhomology-mediated end joining: New players join the team. Cell Biosci. 2017, 7, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ozdemir, A.Y.; Rusanov, T.; Kent, T.; Siddique, L.A.; Pomerantz, R.T. Polymerase θ-helicase efficiently unwinds DNA and RNA-DNA hybrids. J. Biol. Chem. 2018, 293, 5259–5269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, S.J.; Ozdemir, A.Y.; Kashkina, E.; Kent, T.; Rusanov, T.; Ristic, D.; Shin, Y.; Suma, A.; Hoang, T.; Chandramouly, G.; et al. Molecular basis of microhomology-mediated end-joining by purified full-length Polθ. Nat. Commun. 2019, 10, 4423. [Google Scholar] [CrossRef] [Green Version]
- Schimmel, J.; van Schendel, R.; den Dunnen, J.T.; Tijsterman, M. Templated insertions: A smoking gun for polymerase theta-mediated end joining. Trends Genet. 2019, 35, 632–644. [Google Scholar] [CrossRef]
- Kalvari, I.; Nawrocki, E.P.; Argasinska, J.; Quinones-Olvera, N.; Finn, R.D.; Bateman, A.; Petrov, A.I. Non-coding RNA analysis using the Rfam database. Curr. Protoc. Bioinform. 2018, 62, e51. [Google Scholar] [CrossRef] [PubMed]
- Anisimova, M.; Gascuel, O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 2006, 55, 539–552. [Google Scholar] [CrossRef]
- Daboussi, M.-J.; Capy, P. Transposable elements in filamentous fungi. Annu. Rev. Microbiol. 2003, 57, 275–299. [Google Scholar] [CrossRef]
- Huff, J.T.; Zilberman, D.; Roy, S.W. Mechanism for DNA transposons to generate introns on genomic scales. Nature 2016, 538, 533–536. [Google Scholar] [CrossRef] [Green Version]
- Henriet, S.; Colom Sanmartí, B.; Sumic, S.; Chourrout, D. Evolution of the U2 spliceosome for processing numerous and highly diverse non-canonical introns in the chordate Fritillaria borealis. Curr. Biol. 2019, 29, 3193–3199. [Google Scholar] [CrossRef]
- Roy, S.W.; Irimia, M. Mystery of intron gain: New data and new models. Trends Genet. 2009, 25, 67–73. [Google Scholar] [CrossRef]
- Pannunzio, N.R.; Watanabe, G.; Lieber, M.R. Nonhomologous DNA end-joining for repair of DNA double-strand breaks. J. Biol. Chem. 2018, 293, 10512–10523. [Google Scholar] [CrossRef] [Green Version]
- Vågbø, C.B.; Slupphaug, G. RNA in DNA repair. DNA Repair 2020, 95, 102927. [Google Scholar] [CrossRef]
- Bader, A.S.; Hawley, B.R.; Wilczynska, A.; Bushell, M. The roles of RNA in DNA double-strand break repair. Br. J. Cancer 2020, 122, 613–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ketley, R.F.; Gullerova, M. Jack of all trades? The versatility of RNA in DNA double-strand break repair. Essays Biochem. 2020, 64, 721–735. [Google Scholar]
- Nava, G.M.; Grasso, L.; Sertic, S.; Pellicioli, A.; Muzi Falconi, M.; Lazzaro, F. One, no one, and one hundred thousand: The many forms of ribonucleotides in DNA. Int. J. Mol. Sci. 2020, 21, 1706. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.; Maeda, R.; Adachi, N. Dual loss of human POLQ and LIG4 abolishes random integration. Nat. Commun. 2017, 8, 16112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelensky, A.N.; Schimmel, J.; Kool, H.; Kanaar, R.; Tijsterman, M. Inactivation of Pol θ and C-NHEJ eliminates off-target integration of exogenous DNA. Nat. Commun. 2017, 8, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zelensky, A.N.; Schoonakker, M.; Brandsma, I.; Tijsterman, M.; van Gent, D.C.; Essers, J.; Kanaar, R. Low dose ionizing radiation strongly stimulates insertional mutagenesis in a γH2AX dependent manner. PLoS Genet. 2020, 16, e1008550. [Google Scholar] [CrossRef]
- Soemedi, R.; Cygan, K.J.; Rhine, C.L.; Glidden, D.T.; Taggart, A.J.; Lin, C.-L.; Fredericks, A.M.; Fairbrother, W.G. The effects of structure on pre-mRNA processing and stability. Methods 2017, 125, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Hellsten, U.; Aspden, J.L.; Rio, D.C.; Rokhsar, D.S. A segmental genomic duplication generates a functional intron. Nat. Commun. 2011, 2, 454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Organism | WGS Master Accession | SRA Accessions (RNA) |
---|---|---|
Hypoxylon sp. CO27-5 | MDCL00000000 [24] | SRX875229–SRX875234 [24] |
Hypoxylon sp. EC38 | MDCK00000000 [24] | SRX872662–SRX872667 [24] |
Hypoxylon sp. E7406B | JYCQ00000000 [25] | |
Hypoxylon pulicicidum ATCC 74245 | PDUJ00000000 [26] CADCWX000000000 [27] | |
Hypoxylon sp. CI-4A | MDGY00000000 [24] | |
Annulohypoxylon stygium MG137 | PYLT00000000 QLPL00000000 [28] | |
Hypoxylon rubiginosum MUCL 52887 | CADCXA000000000 [27] | |
Daldinia sp. EC12 | MDGZ00000000 [24] | SRX872671–SRX872676 [24] |
Daldinia eschscholzii IFB-TL01 | AKGB00000000 [29] | |
Daldinia childiae JS-1345 | VYXO00000000 [30] | |
Daldinia concentrica CBS 113277 | CADCSW000000000 [27] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fekete, E.; Pénzes, F.; Ág, N.; Scazzocchio, C.; Flipphi, M.; Karaffa, L. Internally Symmetrical Stwintrons and Related Canonical Introns in Hypoxylaceae Species. J. Fungi 2021, 7, 710. https://doi.org/10.3390/jof7090710
Fekete E, Pénzes F, Ág N, Scazzocchio C, Flipphi M, Karaffa L. Internally Symmetrical Stwintrons and Related Canonical Introns in Hypoxylaceae Species. Journal of Fungi. 2021; 7(9):710. https://doi.org/10.3390/jof7090710
Chicago/Turabian StyleFekete, Erzsébet, Fruzsina Pénzes, Norbert Ág, Claudio Scazzocchio, Michel Flipphi, and Levente Karaffa. 2021. "Internally Symmetrical Stwintrons and Related Canonical Introns in Hypoxylaceae Species" Journal of Fungi 7, no. 9: 710. https://doi.org/10.3390/jof7090710