Next Article in Journal
First Case of Candida auris Colonization in a Preterm, Extremely Low-Birth-Weight Newborn after Vaginal Delivery
Next Article in Special Issue
Adapting an Ergosterol Extraction Method with Marine Yeasts for the Quantification of Oceanic Fungal Biomass
Previous Article in Journal
Clotrimazole-Induced Oxidative Stress Triggers Novel Yeast Pkc1-Independent Cell Wall Integrity MAPK Pathway Circuitry
Previous Article in Special Issue
The Culturable Mycobiome of Mesophotic Agelas oroides: Constituents and Changes Following Sponge Transplantation to Shallow Water
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Fungal Biodiversity in Salt Marsh Ecosystems

by
Mark S. Calabon
1,2,
E. B. Gareth Jones
3,
Itthayakorn Promputtha
4,5 and
Kevin D. Hyde
1,2,4,6,*
1
Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand
2
School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
3
Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
4
Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
5
Environmental Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
6
Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
*
Author to whom correspondence should be addressed.
J. Fungi 2021, 7(8), 648; https://doi.org/10.3390/jof7080648
Submission received: 26 June 2021 / Revised: 27 July 2021 / Accepted: 30 July 2021 / Published: 9 August 2021
(This article belongs to the Special Issue Marine Fungus)

Abstract

:
This review brings together the research efforts on salt marsh fungi, including their geographical distribution and host association. A total of 486 taxa associated with different hosts in salt marsh ecosystems are listed in this review. The taxa belong to three phyla wherein Ascomycota dominates the taxa from salt marsh ecosystems accounting for 95.27% (463 taxa). The Basidiomycota and Mucoromycota constitute 19 taxa and four taxa, respectively. Dothideomycetes has the highest number of taxa, which comprises 47.12% (229 taxa), followed by Sordariomycetes with 167 taxa (34.36%). Pleosporales is the largest order with 178 taxa recorded. Twenty-seven genera under 11 families of halophytes were reviewed for its fungal associates. Juncus roemerianus has been extensively studied for its associates with 162 documented taxa followed by Phragmites australis (137 taxa) and Spartina alterniflora (79 taxa). The highest number of salt marsh fungi have been recorded from Atlantic Ocean countries wherein the USA had the highest number of species recorded (232 taxa) followed by the UK (101 taxa), the Netherlands (74 taxa), and Argentina (51 taxa). China had the highest number of salt marsh fungi in the Pacific Ocean with 165 taxa reported, while in the Indian Ocean, India reported the highest taxa (16 taxa). Many salt marsh areas remain unexplored, especially those habitats in the Indian and Pacific Oceans areas that are hotspots of biodiversity and novel fungal taxa based on the exploration of various habitats.

1. Introduction

Salt marsh ecosystems are known for their high productivity, exceeding primary production estimates of species rich ecosystems (e.g., tropical rainforests, coral reefs) [1]. The flora in salt marsh ecosystems is mainly composed of grasses, herbs, and shrubs and these are terrestrial organisms variously adapted to, or tolerant of, a semi-marine environment. Halophytes are a diverse group of plants that have a worldwide distribution, and grow in different climatic regions, wherein soils have high salinity levels [2]. Halophytes are common in temperate and Mediterranean climates, and fewer both in the tropics and at high latitudes [3,4,5,6]. The vegetation in these ecosystems shows the vertical zonation of different communities as tidal submergence decreases with increasing elevation, and species tolerance to changing gradient conditions. Salt marsh vegetation generally increases the attenuation of both tidal currents and waves as they pass over the vegetated area and immobilize elements with their sediments. Furthermore, halophytes serve as a natural buffer, protecting other shoreline ecosystems from human impacts and disturbances. The area provides a habitat and nursery for marine organisms [7]. Worldwide, salt marshes cover an area of 5,495,089 hectare in 43 countries [8].
There are over 500 species of salt marsh plants worldwide [9]. The families Amaranthaceae (subfamilies Chenopodiaceae, Salicornieae), Poaceae, Juncaceae, and Cyperaceae are the major vegetation in salt marsh ecosystems, while the minor components are Plumbaginaceae and Frankeniaceae [3], and are represented in Figure 1 and Figure 2. Salinity, latitude, region of the world, the frequency and duration of tidal flooding, substrate, oxygen and nutrient availability, surface elevation, competition among species, disturbance by wrack deposition are interacting factors that influence the species of halophytes in the salt marshes [10,11]. For example, Spartina alterniflora is a dominant grass from mid-tide to high-tide levels in temperate Eastern North America, while Puccinellia dominates in boreal and arctic marshes [10,11].
Major studies on halophytes focus on ecology and conservation [12,13,14]. One of these is the decomposition of vascular plant material wherein the detritus breakdown was reviewed in Pomeroy and Wiegert [15], Howarth and Hobbie [16], and Long and Mason [17]. The active decomposition processes in salt marsh ecosystems reflects to the relatively high rates of primary production. Three phases of plant decomposition were noted by Valiela et al. [18]. The early phase involves the leaching of soluble compounds, resulting in a fast rate of weight loss lasting for less than a month. Organic matter breakdown by microorganisms and continuous leaching of decayed products occurs in the second phase that lasts for a year. The last phase lasts for another year when there is a slow decay of refractory materials such as humates and fulvates [19].
The continuous breakdown of detritus into smaller fragments increases the surface-to-volume ratio and this is exposed to further microbial degradation. Bacteria and fungi are key decomposers in the salt marsh ecosystem that are essential for the transformation and recycling of nutrients through the environment. The colonization of fungi on standing dead halophytes commences during the early stages of decomposition before leaf fall to the salt marsh sediment surface [20,21]. The decomposition of the senescent tissues of halophytes by salt marsh fungi is brought about by the direct penetration of the host cell wall and the production of enzymes active in degrading lignocellulosic compounds, such as lignin, cellulose, and hemicellulose [22,23,24,25,26]. Bacterial communities are the major decomposers in the latter stage of decomposition [27,28]. Studies in salt marsh ecosystems not only consider microbial activity and the recycling of nutrients, but also bacterial [29,30] and fungal diversity [20,31,32].
The present review compiles the published data of fungi from halophytes, including their geographical distribution and host association. When compared to other fungal groups, salt marsh fungi are underexplored, and this review brings together the research efforts on these undiscovered habitats and plants. The pertinent literature from bibliographic databases (e.g., Scopus, Web of Science, Google Scholar) and published resources on salt marsh fungi documenting halophytes were compiled. Published works, wherein the documented fungal taxa were observed directly from halophytic substrates, are included (Table 1). The different host parts, living and dead, that are either partly or wholly submerged are documented, as well as drift plant portions washed up in salt marsh areas. Salt marsh fungi isolated using cultivation-dependent techniques were not included since it is not known if these fungi were actively growing and reproducing on the halophytes. The taxa were listed based on the recent outline of fungi and fungus-like taxa by Wijayawardene et al. [33]. Since previous works only listed the taxa and the hosts [34,35,36], here we include the plant parts where the fungus was observed, the location (country: state/province) where the host was collected, the life mode of the fungus, and the pertinent literature citations are included (Table 1). The accepted name of the host was based on the webpage of the World Flora Online consortium (http://www.worldfloraonline.org/; accessed on 10 May 2021), GrassBase (https://www.kew.org/data/grasses-db/sppindex.htm; accessed on 10 May 2021) and CRC World Dictionary of Grasses by Quattrocchi [37]. The graphs presented in the next sections summarizes the information from Table 1 and was developed using data visualization tools (Excel Office 365, Tableau Desktop Professional Edition 19.2.2).

2. Taxonomic Classification of Salt Marsh Fungi

2.1. Phyla

Calado and Barata [34] documented 332 taxa associated with Juncus roemerianus, Phragmites australis, and Spartina spp. In this review, we list 486 taxa that belong to three phyla (Ascomycota, Basidiomycota, Mucoromoycota) (Table 1, Figure 3) and selected species are illustrated in Figure 4. Ascomycota dominates the taxa from salt marsh ecosystems, accounting for 95.27% (463 taxa). Nineteen species in twelve genera (Aecidium, Chaetospermum, Falmingomyces, Merismodes, Nia, Parvulago, Puccinia, Sporobolomyces, Stilbum, Tranzscheliella, Tremella, Uromyces) belong to Basidiomycota (3.91%), while Mucoromycota account for 0.82% (four species) of the salt marsh fungi.

2.2. Class

Salt marsh fungi are distributed into 17 classes (Table 1, Figure 5). Dothideomycetes has the highest number of taxa, which comprises 47.12% (229 taxa), followed by Sordariomycetes with 167 taxa (34.36%). Twenty-one species (in 20 genera) can be referred to as Ascomycota genera incertae sedis. The Ascomycetes with the least number of species include Leotiomycetes (21 species, 4.32%), Eurotiomycetes (16 species, 3.29%), Orbiliomycetes (3 species, 0.62%), Saccharomycetes (3 species, 0.62%), Lecanoromycetes (2 species, 0.41%), and Pezizomycetes (1 species, 0.21%).
Seven classes represent the Basidiomycota (Figure 5). Puccinomycetes has the highest number of taxa documented (eight species, three genera) followed by Agaricomycetes (three species, two genera), Ustilaginomycetes (three species, three genera), and Microbotryomycetes (two taxa, one genus). Agaricostilbomycetes, Bartheletiomycetes, and Tremellomycetes have one representative taxon each.
The Mucoromoycota account for the taxa Blakeslea trispora, Mucor sp., Rhizopus stolonifera, and Syncephalastrum racemosum [43,48,49].

2.3. Orders

Salt marsh fungi recorded from different halophytes were distributed among 48 orders (Table 1, Figure 6). The Pleosporales is the largest order, with 178 taxa recorded followed by Hypocreales (41), Microascales (26), Capnodiales (22), Helotiales (18), Xylariales (17), Sordariales (16), Amphisphaeriales (15), and Eurotiales (13). The remaining 41 orders have less than 10 species (Table 1, Figure 5). Forty-two taxa belong to incertae sedis (Ascomycota genera incertae sedis: 21; Dothideomycetes families incertae sedis: 11; Sordariomycetes families incertae sedis: 9; Xylariomycetidae family incertae sedis: 1).

2.4. Families

A total of 108 families and 12 incertae sedis were recorded to be associated with salt marsh fungi (Table 1, Figure 7). Phaeosphaeriaceae and Pleosporaceae account for the largest families with 34 and 31 taxa recorded, respectively. Thirteen families have ten or more than taxa and include Nectriaceae (25), Halosphaeriaceae (25), Didymellaceae (17), Mycosphaerellaceae (14), Lentitheciaceae (13), Massarinaceae (13), Chaetomiaceae (12), Xylariaceae (11), Didymosphaeriaceae (10), Leptosphaeriaceae (10), and Aspergillaceae (10). The remaining 95 families have less than ten species recorded. Forty-four taxa are placed as incertae sedis, wherein 21 of these belong to Ascomycota genera incertae sedis.

3. Diversity of Fungi in Halophytes

Twenty-seven genera under 11 families (Amaranthaceae, Apiaceae, Caryophyllaceae, Compositae, Juncaceae, Juncaginaceae, Plumbaginaceae, Poaceae, Poaceae, Primulaceae, Ruppiaceae, Typhaceae, Zosteraceae) of halophytes were reviewed for its fungal associates (Table 1, Figure 8). Halophytic species are represented in Figure 1 and Figure 2.

3.1. Amaranthaceae

Six genera (Arthrocnemum, Atriplex, Salicornia, Salsola, Sarcocornia, Suaeda) represent the Amaranthaceae. Suaeda and Salicornia are the most studied hosts in Amaranthaceae. Ascomycota account for 96.30% of the 52 taxa recorded in Amaranthaceae (Figure 9, Table 1). Two Pucciniomycetes species, Aecidium suaedae [154] and Uromyces salicorniae [95], represent Basidiomycota. The taxa in Amaranthaceae represent three classes wherein Dothideomycetes accounts for 85.19% (46 taxa), followed by Sordariomycetes with six taxa reported.
Fungi associated with Suaeda total 18 taxa. Dothideomycetes was represented by 14 taxa (77.78%), while three taxa were Sordariomycetes (Cryptovalsa suaedicola [144], Fusarium fujikuroi [62], Moheitospora fruticosae [130]) and one taxon of Pucciniomycetes (Aecidium suaedae [154]).
A total of 14 taxa were documented in Salicornia. Eleven of these belong to Dothideomycetes (Pleosporales: 10; Capnodiales: 1), followed by Sordariomycetes (two taxa: Halocryptovalsa salicorniae [145], Tubercularia pulverulenta [35]), and Pucciniomycetes (one taxon: Uromyces salicorniae [95]).
Fungi from Atriplex total 11 taxa (10 genera) and all of these belong to Pleosporales (Dothideomycetes). Sarcocornia harbors seven taxa (six Dothideomycetes, one Sordariomycetes). Only two taxa (Alternaria spp., Stemphylium spp.) and a single taxon (Mycosphaerella salicorniae) were reported from Salsola [35] and Arthrocnemum [35], respectively.

3.2. Poaceae

The association of fungi with grasses have been documented and most of the host plants are members of Poaceae. Ten genera of salt marsh grasses under Poaceae are included in this review wherein Spartina is the most studied of halophytic hosts for direct observation of marine fungi. In addition to Spartina, salt marsh grasses such as Phragmites and Distichlis were well studied also for their fungal associates.
Salt marsh fungi are not well-documented from grasses such as Spartina anglica, S. pectinata, Spergularia marina, Uniola paniculata, Elymus farctus, × Ammocalamagrostis baltica, and Agropyron sp. with one taxon recorded for each host [35]. Furthermore, there are few studies on the fungal composition of Arundo donax (4 taxa) [35] and Ammophila arenaria (four taxa). Marram grass (Ammophila arenaria) is more common in sand dunes and supports quite a diverse fungal community [157,158], while arbuscular mycorrhizal fungi (AMF) play a key role in the establishment, growth, and survival of plants [159].

3.2.1. Distichlis spicata

Ascomycota dominates the taxa associated with Distichlis spicata (93.55%) wherein 16 and 13 species are members of Dothideomycetes and Sordariomycetes, respectively. Pleosporalean taxa constitute the majority of fungi associated with D. spicata (14 species), followed by Hypocreales with nine species recorded. Puccinia distichlidis and Tranzscheliella distichlidis represent the Basidiomycota. A total of 26 genera were recorded as associates of D. spicata and were mostly observed on senescent and decaying leaves.

3.2.2. Elymus pungens

Sixty-seven taxa were recorded in Elymus pungens and belong to Ascomycota. Most of the taxa belong to Dothideomycetes (32 taxa), followed by Sordariomycetes (21 taxa), Leotiomycetes, and Eurotiomycetes (6 taxa) (Table 1, Figure 10).

3.2.3. Puccinellia maritima

A total of 12 taxa (six Sordariomycetes; the following five Dothideomycetes: Micronectriella agropyri, Lautitia danica, Leptosphaeria pelagica, Septoriella vagans, Paradendryphiella salina; one Leotiomycetes: Thelebolus crustaceus) were recorded in Puccinellia maritima [38]. All the taxa from Sordariomycetes belong to Sordariales (Chaetomium elatum, C. globosum, C. thermophilum, Corynascus sepedonium, Thermothielavioides terrestris, Sordaria fimicola) [38].

3.2.4. Spartina

A total of 149 taxa (141 Ascomycota, 6 Basidiomycota, 2 Mucoromycota) were recorded in Spartina. The majority of the taxa belong to Dothideomycetes (70 taxa), followed by Sordariomycetes (59 taxa). Pleosporaceae and Halosphaeriaceae dominate the fungi documented in Spartina with 19 and 17 taxa recorded, respectively. Spartina alterniflora, S. maritima, and Spartina × townsendii harbor 79, 46, and 49 taxa, respectively (Figure 11, Table 1). A total of 78 taxa were recorded in the unidentified Spartina species. The identification of the Spartina species can be challenging, wherein species are morphologically similar.
Halobyssothecium obiones was recorded from six species of Spartina (S. alterniflora [20,35,52,61,71,74,80,81,82], S. cynosuroides [35], S. densiflora [64], S. maritima [31,54,59,63], S. patens [36], S. townsendii [49,65], and the unidentified Spartina sp. [32,35,36,58,84]), while six Spartina spp. harbors unidentified Mycosphaerella species. Six species (Leptosphaeria pelagica, Lulworthia spp., Phaeosphaeria halima, Phaeosphaeria spartinicola, Phoma spp., Stagonospora spp.) were recorded in five different hosts. The unidentified Spartina species harbors 28 unique species. Amongst the taxa found in Spartina, 32 species can only be found in S. alterniflora, while S. maritima harbors 21 unique species, the most intensively surveyed species.

3.2.5. Phragmites

A total of 138 taxa have been documented in Phragmites (Figure 12, Table 1). Most of the taxa belong to Ascomycota (131 taxa), while six taxa represent the Basidiomycota. Dothideomycetes dominates half of the taxa in Phragmites (71 taxa, 51.45%) followed by Sordariomycetes (44 taxa, 31.88%), Leotiomycetes (6 taxa, 4.35%), Ascomycota genera incertae sedis (5 taxa, 3.62%), Eurotiomycetes (3 taxa, 2.17%), Orbiliomycetes (2 taxon, 1.45%), and Pucciniomycetes (1 taxa, 1.45%). One taxon each were recorded to Agaricomycetes [40], Bartheletiomycetes [41], Lecanoromycetes [39], Microbotryomycetes [39,50], and Tremellomycetes [39,40]. Pleosporalean taxa accounts for the highest number of fungi associated with Phragmites (42.75%, 59 taxa).
Phragmites australis harbors diverse fungi that totals to 137 taxa (101 genera) [39,40,41,50,79,115]. Seven species (Arthrinium arundinis [62], Halazoon fuscus [87], Halobyssothecium phragmitis [85], Keissleriella linearis [85], Phomatospora dinemasporium [62], Remispora hamata [87], Setoseptoria phragmitis [87]) were recorded in unidentified Phragmites species.

3.3. Juncaceae

Juncus roemerianus, J. maritimus, and an unidentified Juncus species represent Juncaceae. Salt marsh fungi are diverse in Juncus and dominated by Ascomycota, which constitutes 97.58% of the 165 reported taxa (Figure 13, Table 1). Stilbum sp. represented the Basidiomycota, while three taxa (Blakeslea trispora, Mucor sp., Syncephalastrum racemosum) of Mucoromycota were recorded. Dothideomycetes and Sordariomycetes account for the highest number of Juncus-associated fungi with 72 (43.64%) and 64 (38.79%) taxa documented.
Juncus roemerianus has been extensively studied for its associates with 162 documented taxa [32,42,43,60,66,76,77,78,97,98,104,105,110,116,117,118,135,147,148]. Few species were reported to Juncus maritimus that harbor only two taxa (Leptosphaeria albopunctata, Phaeosphaeria neomaritima) [35]. Phaeosphaeria neomaritima [36,52,71,80], P. spartinicola [52], and Monodictys pelagica [35] were observed in an unidentified species of Juncus.
Phragmites australis harbors diverse fungi that totals to 137 taxa (101 genera) [39,40,41,50,79,115]. Seven species (Arthrinium arundinis [62], Halazoon fuscus [87], Halobyssothecium phragmitis [85], Keissleriella linearis [85], Phomatospora dinemasporium [62], Remispora hamata [87], Setoseptoria phragmitis [87]) were recorded in unidentified Phragmites species.

3.4. Other Families

Few reports on salt marsh fungi are from the following hosts: Apiaceae: Crithmum maritimum (one taxon: Phoma sp.), Typhaceae: Typha spp. (five taxa: Arundellina typhae, Chaetomium sp., Magnisphaera spartinae, Pleospora pelagica, Remispora hamata); Compositae: Artemisia maritima (two taxon: Neocamarosporium artemisiae, N. maritimae); Caryophyllaceae: Spergularia marina (one taxon: Cladosporium algarum); Plumbaginaceae: Limonium sp. (one taxon: Mycosphaerella salicorniae); Armeria pungens (one taxon: Mycosphaerella staticicola); Juncaginaceae: Triglochin sp. and T. maritima (one taxon: Stemphylium triglochinicola); Primulaceae: Lysimachia maritima (two taxa: Leptosphaeria orae-maris, Stemphylium vesicarium); Ruppiaceae: Ruppia maritima (one taxon: Flamingomyces ruppiae); and Zosteraceae: Zostera marina (one taxon: Corollospora ramulosa) and Zostera sp. (Asteromyces cruciatus). Alva et al. [160] report Penicillium chrysogenum as an endophyte from Zostera japonica.
Fourteen taxa were documented from unidentified salt marsh plants. All of the taxa belong to Ascomycota (seven Dothideomycetes, five Sordariomycetes, one Eurotiomycetes). Pleosporalean taxa from six families account for half of the taxa (the following seven species: Camarosporium palliatum, C. roumeguerei, Coniothyrium obiones, Halobyssothecium obiones, Periconia sp., Loratospora aestuarii, Pleospora pelvetiae).

4. Geographical Distribution of Salt Marsh Fungi

The salt marsh fungi reported are from countries of three major oceans, as documented in Figure 14. The Atlantic Ocean consists of 12 countries, wherein the USA had the highest number of species recorded (232 taxa) followed by the UK (101 taxa), the Netherlands (74 taxa), and Argentina (51 taxa). China had the highest number of salt marsh fungi in the Pacific Ocean with 165 taxa reported, while in the Indian Ocean, India reported the highest taxa (16 taxa). Most of the biodiversity studies documenting salt marsh fungi in the Atlantic Ocean are mostly from the USA and the UK and this reflects the high number of taxa [32,36,38,49,61]. China ranked second with the most number of salt marsh fungal taxa, mainly due to the biodiversity study in Phragmites australis conducted by Poon et al. [41].
The geographical distribution of salt marsh fungi and the different halophytes are presented in Figure 15. The fungi associated with salt marsh grass Phragmites australis have been studied in different countries (Australia, Belgium, Egypt, France, Germany, China, Iraq, Japan, the Netherlands, South Australia, Thailand). Spartina alterniflora was recorded in countries along the Atlantic (Argentina, Canada, France, USA) and the Indian Ocean (India), but lacks data from countries in the Pacific Ocean.

United States of America

Most of the studies of halophytes-associated fungi were concentrated on the United States of America (USA) (Figure 16). Table 1 lists the salt marsh fungi in 20 states. Florida has been the frequently studied, wherein seven hosts (Juncus roemerianus: 108 taxa; Spartina × townsendii: 1; Spartina alterniflora: 16; Spartina cynosuroides: 3; Spartina densiflora: 1; Spartina patens: 2; Spartina spp.: 3) were observed for salt marsh fungi. Six hosts were studied in North Carolina, wherein Juncus roemerianus harbored the highest number of fungi (48 taxa). In Rhode Island, Spartina alterniflora accounts for the highest number of fungi, with 41 taxa recorded.

5. Conclusions and Future Perspectives

Most studies of fungi on salt marsh plants are from Spartina, Juncus, and Phragmites, probably due to the huge biomass generated by these taxa. The mycota of less bulky halophytes (e.g., Limonium, Triglochin, Uniola) and litter from the surrounding sea grass beds washed off to marsh areas (e.g., Zostera japonica, Z. marina, Z. noltii) are also less represented, or these hosts are yet to be explored. The checklist presented in the current study updates the list of Calado and Barata [34] and the inclusion of fungi associated with rarely studied halophytes record 486 taxa worldwide. Ascomycota dominate the taxa (463 taxa) and are comprised mostly of Dothideomycetes with their ability to eject their ascospores forcibly and widely, spore type, the formation of ascomata or ascostromata under a clypeus or just immersed in thin leaves, and an ability to decompose lignocellulose substrates [57,161]. Meyers et al. [162] showed that salt marsh yeasts and the ascomycete, Buergenerula spartinae, produce degradative enzymes and utilize simple carbon and nitrogen compounds. The yeast, Pichia spartinae, produces β-glucosidase and other degradative enzymes. Gessner [74] demonstrated that a number of salt marsh fungi isolated from Spartina alterniflora, Zostera sp., and Z. marina produced enzymes capable of degrading cellulose, cellobiose, lipids, pectin, starch, tannic acid, and xylan and, thus, play a key role in the degradation of storage and structural compounds. Salt marsh fungi might possess high biotransformation and metabolic abilities, which could be related to their ecology.
Basidiomycota (19 taxa) and Mucoromycota (4 taxa) are poorly represented in salt marsh ecosystems as they are in other marine habitats [163]. There are no records of Chytridiomycota listed in the present work and only a few authors detected this group, and other basal fungal lineages, in salt marsh ecosystems using molecular analysis [164,165,166,167]. These groups are worth exploring to determine the overall fungal communities in the salt marsh ecosystems. Many chytrids and other basal fungi are more challenging to cultivate and require different isolation methods (e.g., baiting techniques in liquid culture) than the saprobes, methods that have rarely been applied in the study of saltmarsh plants. When appropriate techniques are used, chytrids and other zoosporic organisms have been reported. For example, the fungal-like organism Phytophthora inundata has been recovered from the halophilic plants Aster tripolium and Salicornia europaea, while P. gemini and P. chesapeakensis occur on Zostera marina, and Salisapilia nakagirii on the decaying litter of Spartina alterniflora (www.marinefungi.org; accessed on 10 May 2021, [163]). Marine chytrids have been isolated from substrates such as seaweeds and mangrove leaves [163].
The taxa listed are mostly saprobes and these can be attributed to the inclusion of salt marsh fungi observed directly from the different host parts, which are mostly submerged decaying substrates. When compared to saprobic fungi in halophytes, few studies have been carried out on the diversity of endophytes and pathogens and their interaction in the salt marsh ecosystems. Surveys on endophytic fungi from halophytes using cultivation-dependent methods coupled with molecular approaches, showed that endophytes were dominated by Ascomycota and a few belonged to Basidiomycota and Zygomycota [168,169,170,171,172,173,174,175]. Pathogenic fungi from salt marsh ecosystems are poorly documented but play a significant role in the dynamics of the ecosystem [176,177,178]. For example, Govers et al. [179] reported that the fungal-like organisms Phytophthora gemini and P. inundata caused widespread infection of the common seagrass species, Zostera marina (eelgrass), across the northern Atlantic and Mediterranean that threatened the conservation and restoration of vegetated marine coastal systems. Likewise, Claviceps purpurea affects the viability of Spartina townsedii in south coast UK salt marshes. Fisher et al. [180] noted that Cl. purpea in the Alabama and Mississippi coastlines rendered the seeds of one of the primary salt marsh grasses sterile. Raybold et al. [181] recorded epidemics of C. purpurea on Spartina anglica in Poole Harbor (UK) and that ergot growth was detrimental to seed production. These underexplored fungal groups are worthy to be explored for their ecological and biotechnological importance.
This shows how salt marsh fungal studies were concentrated in countries in the Atlantic Ocean specifically the USA (232 taxa) and the UK (101 taxa). Many salt marsh areas remain unexplored, especially those in the Indian and Pacific Oceans, and these areas are hotspots of biodiversity and novel fungal taxa based on the exploration of various habitats [85,100,163,182,183,184,185,186,187]. Recently, novel species were isolated in halophytes [85,100,145] and further taxa remain to be discovered, isolated, and sequenced, while vast areas worldwide have yet to be surveyed. For example, salt marsh plants are immensely numerous, diverse, and common along the south-east coast of Australia, yet little is known of their fungal associates [188].
The salt marsh vegetation and its fungal associates are adapted to salt stress and inundation and are subjected to extreme environmental conditions such as being periodically wet to different lengths of time leading to drying out at low tides and exposure to high temperatures and drying out at midday. Many are well adapted to prevailing conditions by their fleshy leaves (Suaeda australis), others can tolerate high flooding.
Few data are currently available on the specificity of fungi on their salt marsh hosts. Figure 17 shows the number of fungal taxa recorded from the three commonly studied hosts, Juncus, Phragmites, and Spartina, wherein there is little overlap in the species composition. One of the common species on Spartina plants is undoubtedly Halobyssothecium obiones, while Leptosphaeria pelagica is common. A common ascomycete on Atriplex portulacoides and Suaeda maritima is Decorospora gaudefroyi. Host plants that have been little surveyed for fungi are Limonium vulgare (sea lavender) and Atriplex portulacoides (sea purslane), yet they do support a number of taxa, e.g., Neocamarosporium obiones and Amarenomyces ammophilae. The fungal community reported on Juncus roemerianus in the salt marsh at North Carolina is significantly different from those on Spartina and Phragmites. It remains to be seen if this is due to the host plant or its geographical location.
Another groups of fungi that have not been fully studied in the salt marsh habitat are yeasts, as these also require specific techniques for their isolation from the water column or from plant tissue. Spencer et al. [189] recovered a number of yeasts from the vicinity of Spartina townsendii, as follows: very numerous Cryptococcus spp.; Trichosporon cutaneum; Trichosporon pullulans; the relatively rare species, Metschnikowia bicuspidata and Cryptococcus flavus; and Saturnospora ahearnii [190]. Although marine yeasts are common in sea water and deep seawater vents [163], their large-scale sampling in salt marshes remains a challenge for the future.
Currently, the salt marsh ecosystem has been threatened both by global warming and human activity. Sea-level rises brought about by climate change alter the location and character of the land–sea interface wherein salt marsh vegetation moves upward and inland. The increase in the sea level may not lead to the loss of coastal marshes, but the resiliency will depend on the ability of halophytes to migrate upland. Susceptible areas are organogenic marshes and areas where sediment is limited, potentially leading to catastrophic shifts and marsh loss. In this paper, a total of 57 plant taxa under 27 genera were reviewed for their fungal associates. The halophytes included here are only approximately 11% of the total number of species of salt marsh plants worldwide. Thus, many salt marsh fungi await discovery with wider host plant sampling and the use of a wider range techniques for their isolation. For this reason, it is imperative to study the halophytic fungi to document not just biodiversity but also to discover novel taxa restricted only to this kind of habitat.

Author Contributions

Conceptualization: M.S.C., K.D.H. and E.B.G.J.; methodology: M.S.C., K.D.H. and E.B.G.J.; formal analysis and investigation: M.S.C., K.D.H. and E.B.G.J.; resources: K.D.H. and E.B.G.J.; writing—original draft preparation, M.S.C.; writing—review and editing, K.D.H., E.B.G.J. and I.P.; supervision, K.D.H. and E.B.G.J.; funding acquisition, K.D.H. and E.B.G.J. All authors have read and agreed to the published version of the manuscript.

Funding

K.D.H. thanks the Thailand Research Fund for the grant entitled “Impact of climate change on fungal diversity and biogeography in the Greater Mekong Subregion” (Grant No. RDG6130001). E.B.G.J. is supported under the Distinguished Scientist Fellowship Program (DSFP), King Saud University, Kingdom of Saudi Arabia.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

M.S.C. is grateful to the Mushroom Research Foundation and the Department of Science and Technology—Science Education Institute (Philippines). K.D.H. thanks Chiang Mai University.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bertness, M.D. Atlantic Shorelines: Natural History and Ecology; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
  2. Öztürk, M.; Altay, V.; Altundağ, E.; Gücel, S. Halophytic plant diversity of unique habitats in Turkey: Salt mine caves of Çankırı and Iğdır. In Halophytes for Food Security in Dry Lands; Khan, M.A., Ozturk, M., Gul, B., Ahmed, M.Z., Eds.; Academic Press: New York, NY, USA, 2016; pp. 291–315. [Google Scholar]
  3. Adam, P. The saltmarsh biota. In Saltmarsh Ecology; Adam, P., Ed.; Cambridge University Press: Cambridge, UK, 2011; pp. 72–145. [Google Scholar]
  4. Macdonald, K.B. Plant and animal communities of Pacific North American salt marshes. In Wet Coastal Formations; Chapman, V.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1976; pp. 167–191. [Google Scholar]
  5. Saenger, P.; Specht, M.M.; Specht, R.L.; Chapman, V.J. Mangal and coastal salt-marsh communities in Australasia. In Wet Coastal Ecosystems; Chapman, V.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1977; pp. 293–345. [Google Scholar]
  6. Macdonald, K.B. Coastal salt marsh. In Terrestrial Vegetation of California; Barbour, M.G., Major, J., Eds.; Wiley: New York, NY, USA, 1988; pp. 263–294. [Google Scholar]
  7. Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Nature 1997, 387, 253–260. [Google Scholar] [CrossRef]
  8. Mcowen, C.J.; Weatherdon, L.V.; Van Bochove, J.W.; Sullivan, E.; Blyth, S.; Zockler, C.; Stanwell-Smith, D.; Kingston, N.; Martin, C.S.; Spalding, M.; et al. A global map of saltmarshes. Biodivers. Data J. 2017, 5, 11764. [Google Scholar] [CrossRef]
  9. Silliman, B.R. Salt marshes. Curr. Biol. 2014, 24, R348–R350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  10. Teal, J.M. Salt marshes and mud flats. In Encyclopedia of Ocean Sciences; Thorpe, S.A., Turekian, K.K., Eds.; Academic Press: Cambridge, MA, USA, 2008; pp. 43–48. [Google Scholar]
  11. Roman, C.T. Salt marsh vegetation. In Encyclopedia of Ocean Sciences; Thorpe, S.A., Turekian, K.K., Eds.; Academic Press: Cambridge, MA, USA, 2001; pp. 2487–2490. [Google Scholar]
  12. Garbutt, A.; de Groot, A.; Smit, C.; Pétillon, J. European salt marshes: Ecology and conservation in a changing world. J. Coast. Conserv. 2017, 21, 405–408. [Google Scholar] [CrossRef]
  13. Davy, A.J. Development and structure of salt marshes: Community patterns in time and space. In Concepts and Controversies in Tidal Marsh Ecology; Weinstein, M.P., Kreeger, D.A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 137–156. [Google Scholar]
  14. Pennings, S.C.; Callaway, R.M. Salt marsh plant zonation: The relative importance of competition and physical factors. Ecology 1992, 73, 681–690. [Google Scholar] [CrossRef]
  15. Pomeroy, L.R.; Darley, W.M.; Dunn, E.L.; Gallagher, J.L.; Haines, E.B.; Whitney, D.M. Primary production. In The Ecology of Salt Marsh; Pomeroy, L.R., Wiegert, R.G., Eds.; Springer-Verlag: New York, NY, USA, 1981; pp. 39–67. [Google Scholar]
  16. Howarth, R.W.; Hobbie, J.E. The Regulation of Decomposition and Heterotrophic Microbial Activity in Salt Marsh Soils: A Review; Kennedy, V.S., Ed.; Academic Press: Cambridge, MA, USA, 1982. [Google Scholar]
  17. Long, S.P.; Mason, C.F. Saltmarsh Ecology; Blackie: Glasgow, UK, 1983. [Google Scholar]
  18. Valiela, I.; Teal, J.M.; Allen, S.D.; Van Etten, R.; Goehringer, D.; Volkmann, S. Decomposition in salt marsh ecosystems: The phases and major factors affecting disappearance of above-ground organic matter. J. Exp. Mar. Biol. Ecol. 1985, 89, 29–54. [Google Scholar] [CrossRef] [Green Version]
  19. Pomeroy, L.R.; Imberger, J. The physical and chemical environment. In The Ecology of Salt Marsh; Pomeroy, L.R., Weigert, R.G., Eds.; Springer-Verlag: New York, NY, USA, 1981; pp. 21–36. [Google Scholar]
  20. Gessner, R.V.; Goos, R.D. Fungi from decomposing Spartina alterniflora. Can. J. Bot. 1973, 51, 51–55. [Google Scholar] [CrossRef]
  21. Gessner, R.V.; Goos, R.D.; Sieburth, J.M.N. The fungal microcosm of the internodes of Spartina alterniflora. Mar. Biol. 1972, 16, 269–273. [Google Scholar] [CrossRef]
  22. Benner, R.; Newell, S.Y.; Maccubbin, A.E.; Hodson, R.E. Relative contributions of bacteria and fungi to rates of degradation of lignocellulosic detritus in salt-marsh sediments. Appl. Environ. Microbiol. 1984, 48, 36–40. [Google Scholar] [CrossRef] [Green Version]
  23. Bergbauer, M.; Newell, S.Y. Contribution to lignocellulose degradation and DOC formation from a salt marsh macrophyte by the ascomycete Phaeosphaeria spartinicola. FEMS Microbiol. Ecol. 1992, 86, 34–348. [Google Scholar] [CrossRef]
  24. Benner, R.; Maccubbin, A.E.; Hodson, R.E. Preparation, characterization, and microbial degradation of specifically radiolabeled [C] lignocelluloses from marine and freshwater macrophytes. Appl. Environ. Microbiol. 1984, 47, 381–389. [Google Scholar] [CrossRef] [Green Version]
  25. Lyons, J.I.; Alber, M.; Hollibaugh, J.T. Ascomycete fungal communities associated with early decaying leaves of Spartina spp. from central California estuaries. Oecologia 2010, 162, 435–442. [Google Scholar] [CrossRef]
  26. Maccubbin, A.E.; Hodson, R.E. Mineralization of detrital lignocelluloses by salt marsh sediment microflora. Appl. Environ. Microbiol. 1980, 40, 735–740. [Google Scholar] [CrossRef] [Green Version]
  27. Newell, S.Y.; Porter, D. Microbial secondary production from salt marsh-grass shoots, and its known and potential fates. In Concepts and Controversies in Tidal Marsh Ecology; Weinstein, M.P., Kreeger, D.A., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 159–185. [Google Scholar]
  28. Newell, S.Y.; Fallon, R.D.; Miller, J.D. Decomposition and microbial dynamics for standing, naturally positioned leaves of the salt-marsh grass Spartina alterniflora. Mar. Biol. 1989, 101, 471–481. [Google Scholar] [CrossRef]
  29. Hernández, E.G.; Baraza, E.; Smit, C.; Berg, M.P.; Salles, J.F. Salt marsh elevation drives root microbial composition of the native invasive grass Elytrigia atherica. Microorganisms 2020, 8, 1619. [Google Scholar] [CrossRef] [PubMed]
  30. Wang, M.; Li, E.; Liu, C.; Jousset, A.; Salles, J.F. Functionality of root-associated bacteria along a salt marsh primary succession. Front. Microbiol. 2017, 8, 2102. [Google Scholar] [CrossRef] [PubMed]
  31. Calado, M.d.L.; Carvalho, L.; Barata, M.; Pang, K.L. Potential roles of marine fungi in the decomposition process of standing stems and leaves of Spartina maritima. Mycologia 2019, 111, 371–383. [Google Scholar] [CrossRef] [PubMed]
  32. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Fungi on Juncus and Spartina: New marine species of Anthostomella, with a list of marine fungi known on Spartina. Mycol. Res. 2002, 106, 365–374. [Google Scholar] [CrossRef]
  33. Wijayawardene, N.N.; Hyde, K.D.; Al-ani, L.K.T.; Tedersoo, L.; Haelewaters, D.; Rajeshkumar, K.C.; Zhao, R.; Aptroot, A.; Leontyev, D.V.; Ramesh, K.; et al. Outline of Fungi and fungus-like taxa. Mycosphere 2020, 11, 1–367. [Google Scholar] [CrossRef]
  34. Calado, M.d.L.; Barata, M. Salt marsh fungi. In Marine Fungi and Fungal-like Organisms; Jones, E.B.G., Pang, K.L., Eds.; Walter de Gruyter GmbH & Co. KG: Berlin, Germany, 2012; pp. 345–381. [Google Scholar]
  35. Kohlmeyer, J.; Kohlmeyer, E. Marine Mycology: The Higher Fungi; Academic Press: New York, NY, USA, 1979. [Google Scholar]
  36. Gessner, R.V.; Kohlmeyer, J. Geographical distribution and taxonomy of fungi from salt marsh Spartina. Can. J. Bot. 1976, 54, 2023–2037. [Google Scholar] [CrossRef]
  37. Quattrocchi, U. CRC World Dictionary of Grasses; CRC Press: Boca Raton, FL, USA, 2006. [Google Scholar]
  38. Apinis, A.E.; Chesters, C.G.C. Ascomycetes of some salt marshes and sand dunes. Trans. Br. Mycol. Soc. 1964, 47, 419–435. [Google Scholar] [CrossRef]
  39. Van Ryckegem, G.; Verbeken, A. Fungal ecology and succession on Phragmites australis in a brackish tidal marsh. I. Leaf sheaths. Fungal Divers. 2005, 19, 157–187. [Google Scholar]
  40. Van Ryckegem, G.; Verbeken, A. Fungal ecology and succession on Phragmites australis in a brackish tidal marsh. II. Stems. Fungal Divers. 2005, 20, 209–233. [Google Scholar]
  41. Poon, M.O.K.; Hyde, K.D. Biodiversity of intertidal estuarine fungi on Phragmites at Mai Po Marshes, Hong Kong. Bot. Mar. 1998, 41, 141–155. [Google Scholar] [CrossRef] [Green Version]
  42. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Fungi on Juncus roemerianus. 7. Tiarosporella halmyra sp. nov. Mycotaxon 1996, 59, 79–83. [Google Scholar]
  43. Fell, J.W.; Hunter, I.L. Fungi associated with the decomposition of the Black Rush, Juncus roemerianus, in South Florida. Mycologia 1979, 71, 322–342. [Google Scholar] [CrossRef]
  44. United State Department of Agriculture Crops Research Division. Index of Plant Diseases in the United States: Agriculture Handbook; USDA: Washington, DC, USA, 1960. [Google Scholar]
  45. Brunaud, P. Champignons nouvellement obsrevés aux environs de Saintes, Charente-inférieure. J. Hist. Nat. Bord Sud. Oust. Bord. 1888, 7, 4. [Google Scholar]
  46. Lobik, A.I. Materialen zur Mykoflora des Terskikreises. Morbi Plant. Leningr. 1928, 17, 157–199. [Google Scholar]
  47. Elíades, L.A.; Voget, C.E.; Arambarri, A.M.; Cabello, M.N. Fungal communities on decaying saltgrass (Distichlis spicata) in Buenos Aires province (Argentina). Sydowia 2007, 59, 227–234. [Google Scholar]
  48. Miller, J.D.; Whitney, N.J. Fungi of the Bay of Fundy V: Fungi from living species of Spartina Schreber. Proc. Nov. Scotian Inst. Sci. 1983, 33, 75–83. [Google Scholar]
  49. Goodman, P.J. The possible role of pathogenic fungi in die-back of Spartina townsendii agg. Trans. Br. Mycol. Soc. 1959, 42, 409–415. [Google Scholar] [CrossRef]
  50. Van Ryckegem, G.; Gessner, M.O.; Verbeken, A. Fungi on leaf blades of Phragmites australis in a brackish tidal marsh: Diversity, succession, and leaf decomposition. Microb. Ecol. 2007, 53, 600–611. [Google Scholar] [CrossRef]
  51. Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Eriksson, O.E. Fungi on Juncus roemerianus 12. Two new species of Mycosphaerella and Paraphaeosphaeria (Ascomycotina). Bot. Mar. 1999, 42, 505–511. [Google Scholar] [CrossRef]
  52. Borse, B.D.; Bhat, D.; Borse, K.; Tuwar, A.; Pawar, N. Marine fungi of India (Monograph); Broadway Book Centre: Panaji, India, 2012. [Google Scholar]
  53. Kohlmeyer, J.; Kohlmeyer, E. Bermuda marine fungi. Trans. Br. Mycol. Soc. 1977, 68, 207–219. [Google Scholar] [CrossRef]
  54. Barata, M. Fungi on the halophyte Spartina maritima in salt marshes. In Fungi in Marine Environments; Hyde, K.D., Ed.; Fungal Diversity Press: Hong Kong, China, 2002; pp. 179–193. [Google Scholar]
  55. Walker, A.K.; Campbell, J. Marine fungal diversity: A comparison of natural and created salt marshes of the north-central Gulf of Mexico. Mycologia 2010, 102, 513–521. [Google Scholar] [CrossRef] [Green Version]
  56. Buchan, A.; Newell, S.Y.; Moreta, J.I.L.; Moran, M.A. Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microb. Ecol. 2002, 43, 329–340. [Google Scholar] [CrossRef] [PubMed]
  57. Buchan, A.; Newell, S.Y.; Butler, M.; Biers, E.J.; Hollibaugh, J.T.; Moran, M.A. Dynamics of bacterial and fungal communities on decaying salt marsh grass. Appl. Environ. Microbiol. 2003, 69, 6676–6687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  58. Walker, A.K. Marine Fungi of U.S. GULF of Mexico Barrier Island Beaches: Biodiversity and Sampling Strategy; The University of Southern Mississippi: Hattiesburg, MS, USA, 2012. [Google Scholar]
  59. Calado, M.d.L.; Carvalho, L.; Pang, K.L.; Barata, M. Diversity and ecological characterization of sporulating higher filamentous marine fungi associated with Spartina maritima (Curtis) Fernald in two Portuguese salt marshes. Microb. Ecol. 2015, 70, 612–633. [Google Scholar] [CrossRef]
  60. Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Eriksson, O.E. Fungi on Juncus roemerianus. 11. More new ascomycetes. Can. J. Bot. 1998, 76, 467–477. [Google Scholar] [CrossRef]
  61. Gessner, R.V.; Goos, R.D. Fungi from Spartina alterniflora in Rhode Island. Mycologia 1973, 65, 1296–1301. [Google Scholar] [CrossRef]
  62. Hansford, C.G. Australian Fungi. II. New species and revisions. Proc. Linn. Soc. N. S. W. 1954, 79, 97–141. [Google Scholar]
  63. Barata, M. Marine fungi from Mira River salt marsh in Portugal. Rev. Iberoam. Micol. 2006, 23, 179–184. [Google Scholar] [CrossRef]
  64. Peña, N.I.; Arambarri, A.M. Hongos marinos lignícolas de la laguna costera de Mar Chiquita (provincia de Buenos Aires, Argentina). L. Ascomycotina y Deuteromycotina sobre Spartina densiflora. Darwiniana 1998, 35, 61–67. [Google Scholar]
  65. Jones, E.B.G. Marine fungi. I. Trans. Br. Mycol. Soc. 1962, 45, 93–114. [Google Scholar] [CrossRef]
  66. Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Eriksson, O.E. Fungi on Juncus roemerianus. 8. New bitunicate ascomycetes. Can. J. Bot. 1996, 74, 1830–1840. [Google Scholar] [CrossRef]
  67. Johnson, T.W.; Hughes, G.C. Robillarda phragmitis Cunnell in estuarine waters. Trans. Br. Mycol. Soc. 1960, 43, 523–524. [Google Scholar] [CrossRef]
  68. Seymour, A.B. Host Index of the Fungi of North America; Harvard University Press: Cambridge, MA, USA, 1929. [Google Scholar]
  69. Saccardo, P.A. Fungi Gallici lecti a cl. viris P. Brunaud, Abb. Letendre, A. Malbranche, J. Therry, vel editi in Mycotheca Gallica C. Roumeguèri. Series II. Michelia 1880, 2, 39–135. [Google Scholar]
  70. Ahmad, S. Contributions to the fungi of West Pakistan. VI. Biol. Lahore 1967, 13, 15–42. [Google Scholar]
  71. Johnson, T.W.; Sparrow, F.K. Fungi in Oceans and Estuaries; Cramer: Weinheim, Germany, 1961. [Google Scholar]
  72. Jones, E.B.G. Marine fungi: II. Ascomycetes and deuteromycetes from submerged wood and drift Spartina. Trans. Br. Mycol. Soc. 1963, 46, 135–144. [Google Scholar] [CrossRef]
  73. Gessner, R.V. Seasonal occurrence and distribution of fungi associated with Spartina alterniflora from a Rhode Island estuary. Mycologia 1977, 69, 477–491. [Google Scholar] [CrossRef]
  74. Gessner, R.V. Degradative enzyme production by salt-marsh fungi. Bot. Mar. 1980, 23, 133–139. [Google Scholar] [CrossRef]
  75. Jaap, O. Weitere Beiträge zur Pilzflora der nordfriesischen Inseln. Schr. Des Nat. Ver. Für Schleswig-Holst. 1907, 14, 15–33. [Google Scholar]
  76. Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Eriksson, O.E. Fungi on Juncus roemerianus 9. New obligate and facultative marine ascomycotina. Bot. Mar. 1997, 40, 291–300. [Google Scholar] [CrossRef]
  77. Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Eriksson, O.E. Fungi on Juncus roemerianus. New marine and terrestrial ascomycetes. Mycol. Res. 1996, 100, 393–404. [Google Scholar] [CrossRef]
  78. Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Eriksson, O.E. Fungi on Juncus roemerianus 2. New dictyosporous Ascomycetes. Bot. Mar. 1995, 38, 165–174. [Google Scholar] [CrossRef]
  79. Devadatha, B.; Calabon, M.S.; Abeywickrama, P.D.; Hyde, K.D.; Jones, E.B.G. Molecular data reveals a new holomorphic marine fungus, Halobyssothecium estuariae, and the asexual morph of Keissleriella phragmiticola. Mycology 2020, 11, 167–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  80. Johnson, T.W. Marine Fungi. I. Leptosphaeria and Pleospora. Mycologia 1956, 48, 495–505. [Google Scholar] [CrossRef]
  81. Wagner, D. Ecological studies on Leptospheria discors, a graminicolous fungus of salt marshes. Nov. Hedwig. 1969, 18, 383–396. [Google Scholar]
  82. Webber, E.E. Marine ascomycetes from New England. Bull. Torrey Bot. Club 1970, 97, 119–120. [Google Scholar] [CrossRef]
  83. Dayarathne, M.C.; Wanasinghe, D.N.; Jones, E.B.G.; Chomnunti, P.; Hyde, K.D. A novel marine genus, Halobyssothecium (Lentitheciaceae) and epitypification of Halobyssothecium obiones comb. nov. Mycol. Prog. 2018, 17, 1161–1171. [Google Scholar] [CrossRef]
  84. Saccardo, P.A. Sylloge fungorum Omnium Hucusque Cognitorum; R. Friedländer & Sohn.: Berlin, Germany, 1883; Volume 2. [Google Scholar]
  85. Calabon, M.S.; Jones, E.B.G.; Hyde, K.D.; Boonmee, S.; Tibell, S.; Tibell, L.; Pang, K.L.; Phookamsak, R. Phylogenetic assessment and taxonomic revision of Halobyssothecium and Lentithecium (Lentitheciaceae, Pleosporales). Mycol. Prog. 2021, 20, 701–720. [Google Scholar] [CrossRef]
  86. Van Ryckegem, G.; Aptroot, A. A new Massarina and a new Wettsteinina (Ascomycota) from freshwater and tidal reeds. Nov. Hedwig. 2001, 73, 161–166. [Google Scholar] [CrossRef]
  87. Tibell, S.; Tibell, L.; Pang, K.L.; Calabon, M.S.; Jones, E.B.G. Marine fungi of the Baltic Sea. Mycology 2020, 11, 195–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  88. Li, G.J.; Hyde, K.D.; Zhao, R.L.; Hongsanan, S.; Abdel-Aziz, F.A.; Abdel-Wahab, M.A.; Alvarado, P.; Alves-Silva, G.; Ammirati, J.F.; Ariyawansa, H.A.; et al. Fungal diversity notes 253–366: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 78, 1–237. [Google Scholar] [CrossRef]
  89. Ellis, J.B.; Everhart, B.M. New Fungi. J. Mycol. 1885, 1, 42–44. [Google Scholar] [CrossRef]
  90. Ellis, J.B.; Everhart, B.M. The North American Pyrenomycetes. A Contribution to Mycologic Botany; Ellis & Everhart: Newfield, NJ, USA, 1892. [Google Scholar]
  91. Lucas, M.T. Culture studies on portuguese species of Leptosphaeria I. Trans. Br. Mycol. Soc. 1963, 46, 361–367. [Google Scholar] [CrossRef]
  92. Webber, E.E. Fungi from a Massachusetts salt marsh. Trans. Am. Microsc. Soc. 1966, 85, 556–558. [Google Scholar] [CrossRef]
  93. Dennis, R.W.G. British Ascomycetes; J. Cramer: Lehre, Germany, 1968. [Google Scholar]
  94. Poli, A.; Vizzini, A.; Prigione, V.; Varese, G.C. Basidiomycota isolated from the Mediterranean Sea—Phylogeny and putative ecological roles. Fungal Ecol. 2018. [Google Scholar] [CrossRef]
  95. Hansford, C.G. Australian fungi IV. New species and revisions (cont’d). Proc. Linn. Soc. N. S. W. 1957, 82, 209–229. [Google Scholar]
  96. Hyde, K.D.; Hongsanan, S.; Jeewon, R.; Bhat, D.J.; McKenzie, E.H.C.; Jones, E.B.G.; Phookamsak, R.; Ariyawansa, H.A.; Boonmee, S.; Zhao, Q.; et al. Fungal diversity notes 367–490: Taxonomic and phylogenetic contributions to fungal taxa. Fungal Divers. 2016, 80, 1–270. [Google Scholar] [CrossRef]
  97. Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Eriksson, O.E. Fungi on Juncus roemerianus. 4. New marine ascomycetes. Mycologia 1995, 87, 532–542. [Google Scholar] [CrossRef]
  98. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Fungi on Juncus roemerianus. 14. Three new coelomycetes, including Floricola, anam.-gen. nov. Bot. Mar. 2000, 43, 385–392. [Google Scholar] [CrossRef]
  99. Sydow, H. Mycotheca germanica. Fasc. XX–XXI. Ann. Mycol. 1911, 9, 554–558. [Google Scholar]
  100. Dayarathne, M.; Jones, E.; Maharachchikumbura, S.; Devadatha, B.; Sarma, V.; Khongphinitbunjong, K.; Chomnunti, P.; Hyde, K. Morpho-molecular characterization of microfungi associated with marine based habitats. Mycosphere 2020, 11, 1–188. [Google Scholar] [CrossRef]
  101. Hyde, K.D.; Chaiwan, N.; Norphanphoun, C.; Boonmee, S.; Camporesi, E.; Chethana, K.W.T.; Dayarathne, M.C.; de Silva, N.I.; Dissanayake, A.J.; Ekanayaka, A.H.; et al. Mycosphere notes 169–224. Mycosphere 2018, 9, 271–430. [Google Scholar] [CrossRef]
  102. Wanasinghe, D.N.; Hyde, K.D.; Jeewon, R.; Crous, P.W.; Wijayawardene, N.N.; Jones, E.B.G.; Bhat, D.J.; Phillips, A.J.L.; Groenewald, J.Z.; Dayarathne, M.C.; et al. Phylogenetic revision of Camarosporium (Pleosporineae, Dothideomycetes) and allied genera. Stud. Mycol. 2017, 87, 207–256. [Google Scholar] [CrossRef]
  103. Grove, W.B. British Stem- and Leaf-Fungi Vol. II; Cambridge University Press: Cambridge, UK, 1937. [Google Scholar]
  104. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Atrotorquata and Loratospora: New ascomycete genera on Juncus roemerianus. Syst. Ascomycetum 1993, 12, 7–22. [Google Scholar]
  105. Kohlmeyer, J.; Volkmann-Kohlmeyer, B.; Tsui, C.K.M. Fungi on Juncus roemerianus. 17. New ascomycetes and the hyphomycete genus Kolletes gen. nov. Bot. Mar. 2005, 48, 306–317. [Google Scholar] [CrossRef]
  106. Yusoff, M.; Moss, S.T.; Jones, E.B.G. Ascospore ultrastructure of Pleospora gaudefroyi (Pleosporaceae, Loculoascomycetes, Ascomycotina). Can. J. Bot. 1994, 72, 1–6. [Google Scholar] [CrossRef]
  107. Webster, J.; Lucas, M.T. Observations on British species of Pleospora. II. Trans. Br. Mycol. Soc. 1961, 44, 417–436. [Google Scholar] [CrossRef]
  108. Sutton, B.C.; Pirozynski, K.A. Notes on British microfungi. I. Trans. Br. Mycol. Soc. 1963, 46, 505–522. [Google Scholar] [CrossRef]
  109. Spegazzini, C. Mycetes Argentinenses. Series IV. An. del Mus. Nac. Hist. Nat. Buenos Aires. Ser. 3 1909, 12, 257–458. [Google Scholar]
  110. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Fungi on Juncus roemerianus. 6. Glomerobolus gen. nov., the first ballistic member of Agonomycetales. Mycologia 1996, 88, 328–337. [Google Scholar] [CrossRef]
  111. Cantrell, S.A.; Hanlin, R.T.; Newell, S.Y. A new species of Lachnum on Spartina alterniflora. Mycotaxon 1996, 57, 479–485. [Google Scholar]
  112. Ellis, J.B.; Everhart, B.M. New species of fungi from various localities. J. Mycol. 1888, 4, 121–124. [Google Scholar] [CrossRef] [Green Version]
  113. Kohlmeyer, J.; Baral, H.-O.; Volkmann-Kohlmeyer, B. Fungi on Juncus roemerianus. 10. A new Orbilia with ingoldian anamorph. Mycologia 1998, 90, 303–309. [Google Scholar] [CrossRef]
  114. Seaver, F.J. The North American Cup-Fungi (Inoperculates); Lancaster Press Inc.: Lancaster, PA, USA, 1951. [Google Scholar]
  115. Wong, M.K.M.; Goh, T.K.; Hyde, K.D. A new species of Phragmitensis (ascomycetes) from senescent culms of Phragmites australis. Fungal Divers. 1999, 2, 175–180. [Google Scholar]
  116. Kohlmeyer, J.; Volkmann Kohlmeyer, B.; Eriksson, O.E. Fungi on Juncus roemerianus. 3. New ascomycetes. Bot. Mar. 1995, 38, 175–186. [Google Scholar] [CrossRef]
  117. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Fungi on Juncus roemerianus. 16. More new coelomycetes, including Tetranacriella, gen. nov. Bot. Mar. 2001, 44, 147–156. [Google Scholar] [CrossRef]
  118. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Two new genera of Ascomycotina from saltmarsh Juncus. Syst. Ascomycetum 1993, 11, 95–106. [Google Scholar]
  119. Loveless, A.R.; Peach, J.M. Evidence from ascospores for host restriction in Claviceps purpurea. Trans. Br. Mycol. Soc. 1986, 86, 603–610. [Google Scholar] [CrossRef]
  120. Loveless, A.R. Conidial evidence for host restriction in Claviceps purpurea. Trans. Br. Mycol. Soc. 1971, 56, 419–434. [Google Scholar] [CrossRef]
  121. Sprague, R. Septoria disease of Gramineae in western United States. Oregon State Monogr. Stud. Bot. 1944, 6, 1–151. [Google Scholar]
  122. Spegazzini, C. Fungi Argentini additis nonnullis brasiliensibus montevidensibusque. An. la Soc. Cient. Argent. 1882, 13, 60–64. [Google Scholar]
  123. Peach, J.M.; Loveless, A.R. A comparison of two methods of inoculating Triticum aestivum with spore suspensions of Claviceps purpurea. Trans. Br. Mycol. Soc. 1975, 64, 328–331. [Google Scholar] [CrossRef]
  124. Eleuterius, L.N.; Meyers, S.P. Claviceps purpurea on Spartina in coastal marshes. Mycologia 1974, 66, 978–986. [Google Scholar] [CrossRef]
  125. Sprague, R. Diseases of Cereals and Grasses in North America: Fungi Except Smuts and Rusts; Ronald Press Company: New York, NY, USA, 1950. [Google Scholar]
  126. Mantle, P.G. Development of alkaloid production in vitro by a strain of Claviceps purpurea from Spartina townsendii. Trans. Br. Mycol. Soc. 1969, 52, 381–392. [Google Scholar] [CrossRef]
  127. Moberley, D.G. Taxonomy and distribution of the genus Spartina. Iowa State J. Sci. 1956, 30, 471–574. [Google Scholar]
  128. Saccardo, P.A. Sylloge Fungorum Omnium Hucusque Cognitorum; R. Friedländer & Sohn.: Berlin, Germany, 1886; Volume 4. [Google Scholar]
  129. Abdullah, S.K.; Abdulkadder, M.A.; Goos, R.D. Basramyces marinus nom.nov. (hyphomycete) from southern marshes of Iraq. Int. J. Mycol. Lichenol. 1989, 4, 181–186. [Google Scholar]
  130. Abdel-Wahab, M.A.; Pang, K.L.; Nagahama, T.; Abdel-Aziz, F.A.; Jones, E.B.G. Phylogenetic evaluation of anamorphic species of Cirrenalia and Cumulospora with the description of eight new genera and four new species. Mycol. Prog. 2010, 9, 537–558. [Google Scholar] [CrossRef]
  131. Johnson, T.W. Marine Fungi. IV. Lulworthia and Ceriosporopsis. Mycologia 1958, 50, 151–163. [Google Scholar] [CrossRef]
  132. Mounce, I.; Diehl, W.W. A new Ophiobolus on eelgrass. Can. J. Res. 1934, 11, 242–246. [Google Scholar] [CrossRef]
  133. Johnson, T.W. Marine fungi. II. Ascomycetes and Deuteromycetes from submerged wood. Mycologia 1956, 48, 841–851. [Google Scholar] [CrossRef]
  134. Lloyd, L.S.; Wilson, I.M. Development of the perithecium in Lulworthia medusa (Ell. & Ev.) Cribb & Cribb, a saprophyte on Spartina townsendii. Trans. Br. Mycol. Soc. 1962, 45, 359–372. [Google Scholar] [CrossRef]
  135. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Fungi on Juncus roemerianus. 1. Trichocladium medullare sp. nov. Mycotaxon 1995, 53, 349–353. [Google Scholar]
  136. Volkmann-Kohlmeyer, B.; Kohlmeyer, J. A new Aniptodera (Ascomycotina) from saltmarsh Juncus. Bot. Mar. 1994, 37, 109–114. [Google Scholar] [CrossRef]
  137. Gessner, R.V. Spartina alterniflora seed fungi. Can. J. Bot. 1978, 56, 2942–2947. [Google Scholar] [CrossRef]
  138. Kohlmeyer, J.; Kohlmeyer, E. Icones Fungorum Maris. Fasc. 1–9; J. Cramer: Weinheim/Lehre, Germany, 1967. [Google Scholar]
  139. Jones, E.B.G. Haligena spartinae sp. nov., a pyrenomycete on Spartina townsendii. Trans. Br. Mycol. Soc. 1962, 45, 245–248. [Google Scholar] [CrossRef]
  140. Liu, J.K.; Hyde, K.D.; Jones, E.B.G.; Ariyawansa, H.A.; Bhat, D.J.; Boonmee, S.; Maharachchikumbura, S.S.N.; McKenzie, E.H.C.; Phookamsak, R.; Phukhamsakda, C.; et al. Fungal diversity notes 1–110: Taxonomic and phylogenetic contributions to fungal species. Fungal Divers. 2015, 72, 1–197. [Google Scholar] [CrossRef]
  141. Orton, C.R. Graminicolous species of Phyllachora in North America. Mycologia 1944, 36, 18–53. [Google Scholar] [CrossRef]
  142. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Octopodotus stupendus gen. & sp. nov. and Phyllachora paludicola sp. nov., two marine fungi from Spartina alterniflora. Mycologia 2003, 95, 117–123. [Google Scholar] [CrossRef]
  143. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Aropsiclus nom. nov. (Ascomycotina) to replace Sulcospora Kohlm. & Volk.-Kohlm. Syst. Ascomycetum 1994, 13, 24. [Google Scholar]
  144. Spooner, B.M. New records and species of British microfungi. Trans. Br. Mycol. Soc. 1981, 76, 265–301. [Google Scholar] [CrossRef]
  145. Dayarathne, M.C.; Wanasinghe, D.N.; Devadatha, B.; Abeywickrama, P.; Gareth Jones, E.B.; Chomnunti, P.; Sarma, V.V.; Hyde, K.D.; Lumyong, S.; Mckenzie, E.H.C. Modern taxonomic approaches to identifying diatrypaceous fungi from marine habitats, with a novel genus Halocryptovalsa Dayarathne & K.D.Hyde, gen. Nov. Cryptogam. Mycol. 2020, 41, 21–67. [Google Scholar] [CrossRef]
  146. Johnson, T.W.J.; Gold, H.S. Didymosamarospora, a new genus of fungi from fresh and marine waters. J. Elisha Mitchell Sci. Soc. 1957, 73, 103–108. [Google Scholar]
  147. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Fungi on Juncus roemerianus: New coelomycetes with notes on Dwayaangam junci. Mycol. Res. 2001, 105, 500–505. [Google Scholar] [CrossRef]
  148. Kohlmeyer, J.; Volkmann-Kohlmeyer, B. Fungi on Juncus roemerianus. 13. Hyphopolynema juncatile sp. nov. Mycotaxon 1999, 70, 489–495. [Google Scholar]
  149. Kohlmeyer, J.; Kohlmeyer, E. Marine fungi from tropical America and Africa. Mycologia 1971, 63, 831–861. [Google Scholar] [CrossRef]
  150. Kohlmeyer, J.; Kohlmeyer, E. New marine fungi from mangroves and trees along eroding shorelines. Nov. Hedwig. 1965, 9, 89–104. [Google Scholar]
  151. Ellis, J.B.; Everhart, B.M. New species of North American fungi from various localities. Proc. Acad. Nat. Sci. Phila. 1893, 45, 128–172. [Google Scholar] [CrossRef]
  152. Cummins, G.B. The Rust Fungi of Cereals, Grasses and Bamboos; Springer: New York, NY, USA; Berlin/Heidelberg, Germany, 1971. [Google Scholar]
  153. Orton, C.R. Manual of the Rusts in United States and Canada; Purdue Research Foundation: Lafayette, IN, USA, 1934. [Google Scholar]
  154. von Thümen, F. Fungi Egyptiaci, Ser. III. Flora (Regensbg.) 1880, 63, 477–479. [Google Scholar]
  155. McAlpine, D. The Smuts of Australia, Their Structure, Life History, Treatment, and Classification; Department of Agriculture of Victoria, Melbourn, Australia: Melbourne, VIC, Australia, 1910. [Google Scholar]
  156. Bauer, R.; Lutz, M.; Piatek, M.; Vánky, K.; Oberwinkler, F. Flamingomyces and Parvulago, new genera of marine smut fungi (Ustilaginomycotina). Mycol. Res. 2007, 111, 1199–1206. [Google Scholar] [CrossRef] [PubMed]
  157. Dennis, R.W.G. Fungi of Ammophila arenaria in Europe. Rev. Biol. 1983, 12, 15–48. [Google Scholar]
  158. Treigienė, A. Fungi associated with Ammophila arenaria in Lithuania and taxonomical notes on some species. Bot. Lith. 2011, 17, 47–53. [Google Scholar]
  159. Rodríguez-Echeverría, S.; Hol, W.H.G.; Freitas, H.; Eason, W.R.; Cook, R. Arbuscular mycorrhizal fungi of Ammophila arenaria (L.) Link: Spore abundance and root colonisation in six locations of the European coast. Eur. J. Soil Biol. 2008, 44, 30–36. [Google Scholar] [CrossRef] [Green Version]
  160. Alva, P.; McKenzie, E.H.C.; Pointing, S.B.; Pena-Murala, R.; Hyde, K.D. Do sea grasses harbour endophytes? In Fungi in Marine Environments; Hyde, K.D., Ed.; Fungal Diversity Press: Hong Kong, China, 2002; pp. 167–178. [Google Scholar]
  161. Wagner, D.T. Developmental morphology of Leptosphaeria discors (Saccardo and Ellis) Saccardo and Ellis. Nov. Hedwig. 1965, 9, 45–61. [Google Scholar]
  162. Meyers, S.P.; Ahearn, D.G.; Alexander, S.K.; Cook, W.L. Pichia spartinae, a dominant yeast of the Spartina salt marsh. Dev. Ind. Microbiol. 1975, 16, 261–267. [Google Scholar]
  163. Jones, E.B.G.; Pang, K.L.; Abdel-Wahab, M.A.; Scholz, B.; Hyde, K.D.; Boekhout, T.; Ebel, R.; Rateb, M.E.; Henderson, L.; Sakayaroj, J.; et al. An online resource for marine fungi. Fungal Divers. 2019, 96, 347–433. [Google Scholar] [CrossRef]
  164. Mohamed, D.J.; Martiny, J.B.H. Patterns of fungal diversity and composition along a salinity gradient. ISME J. 2011, 5, 379–388. [Google Scholar] [CrossRef]
  165. Stoeck, T.; Epstein, S. Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen-depleted marine environments. Appl. Environ. Microbiol. 2003, 69, 2657–2663. [Google Scholar] [CrossRef] [Green Version]
  166. Dini-Andreote, F.; Pylro, V.S.; Baldrian, P.; Van Elsas, J.D.; Salles, J.F. Ecological succession reveals potential signatures of marine-terrestrial transition in salt marsh fungal communities. ISME J. 2016, 10, 1984–1997. [Google Scholar] [CrossRef] [Green Version]
  167. D’entremont, T.W. Saltmarsh Sediment Fungal Communities and Arbuscular Mycorrhizal Fungi in Sporobolus Pumilus (Roth) (Poaceae) (Spartina Patens) of the Minas Basin, Nova Scotia; Identification, Abundance and Role in Restoration. Ph.D. Thesis, Acadia University, Wolfville, NS, Canada, 2019. [Google Scholar]
  168. Khalmuratova, I.; Kim, H.; Nam, Y.J.; Oh, Y.; Jeong, M.J.; Choi, H.R.; You, Y.H.; Choo, Y.S.; Lee, I.J.; Shin, J.H.; et al. Diversity and plant growth promoting capacity of endophytic fungi associated with halophytic plants from the west coast of Korea. Mycobiology 2015, 43, 373–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  169. You, Y.H.; Yoon, H.; Kang, S.M.; Shin, J.H.; Choo, Y.S.; Lee, I.J.; Lee, J.M.; Kim, J.G. Fungal diversity and plant growth promotion of endophytic fungi from six halophytes in Suncheon Bay. J. Microbiol. Biotechnol. 2012, 22, 1549–1556. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  170. Khalmuratova, I.; Choi, D.H.; Woo, J.R.; Jeong, M.J.; Oh, Y.; Kim, Y.G.; Lee, I.J.; Choo, Y.S.; Kim, J.G. Diversity and plant growth-promoting effects of fungal endophytes isolated from salt-tolerant plants. J. Microbiol. Biotechnol. 2020, 30, 1680–1687. [Google Scholar] [CrossRef] [PubMed]
  171. Kandalepas, D.; Blum, M.J.; Van Bael, S.A. Shifts in symbiotic endophyte communities of a foundational salt marsh grass following oil exposure from the deepwater horizon oil spill. PLoS ONE 2015, 10, e0122378. [Google Scholar] [CrossRef] [PubMed]
  172. Maciá-Vicente, J.G.; Jansson, H.B.; Abdullah, S.K.; Descals, E.; Salinas, J.; Lopez-Llorca, L.V. Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiol. Ecol. 2008, 64, 90–105. [Google Scholar] [CrossRef] [Green Version]
  173. You, Y.-H.; Yoon, H.-J.; Woo, J.-R.; Seo, Y.-G.; Kim, M.-A.; Lee, G.-M.; Kim, J.-G. Diversity of endophytic fungi from the roots of halophytes growing in Go-chang salt marsh. Korean J. Mycol. 2012, 40, 86–92. [Google Scholar] [CrossRef] [Green Version]
  174. Khalmuratova, I.; Choi, D.H.; Yoon, H.J.; Yoon, T.M.; Kim, J.G. Diversity and plant growth promotion of fungal endophytes in five halophytes from the Buan salt marsh. J. Microbiol. Biotechnol. 2021, 31, 408–418. [Google Scholar] [CrossRef]
  175. Kalyanasundaram, I.; Nagamuthu, J.; Muthukumaraswamy, S. Antimicrobial activity of endophytic fungi isolated and identified from salt marsh plant in Vellar Estuary. J. Microbiol. Biotechnol. 2015, 7, 13–20. [Google Scholar] [CrossRef] [Green Version]
  176. Elmer, W.H.; Marra, R.E. New species of Fusarium associated with dieback of Spartina alterniflora in Atlantic salt marshes. Mycologia 2011, 103, 806–819. [Google Scholar] [CrossRef] [Green Version]
  177. Alber, M.; Swenson, E.M.; Adamowicz, S.C.; Mendelssohn, I.A. Salt marsh dieback: An overview of recent events in the US. Estuar. Coast. Shelf Sci. 2008, 80, 1–11. [Google Scholar] [CrossRef]
  178. Elmer, W.H. Pathogenic microfungi associated with Spartina in salt marshes. In Biology of Microfungi; Li, D.-W., Ed.; Springer: New York, NY, USA; Cham: Switzerland, 2016; pp. 615–630. [Google Scholar]
  179. Govers, L.L.; in’T Veld, W.A.M.; Meffert, J.P.; Bouma, T.J.; van Rijswick, P.C.J.; Heusinkveld, J.H.T.; Orth, R.J.; van Katwijk, M.M.; van der Heide, T. Marine Phytophthora species can hamper conservation and restoration of vegetated coastal ecosystems. Proc. R. Soc. B Biol. Sci. 2016, 283, 20160812. [Google Scholar] [CrossRef] [PubMed]
  180. Fisher, A.J.; DiTomaso, J.M.; Gordon, T.R.; Aegerter, B.J.; Ayres, D.R. Salt marsh Claviceps purpurea in native and invaded Spartina marshes in Northern California. Plant Dis. 2007, 91, 380–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  181. Raybould, A.F.; Gray, A.J.; Clarke, R.T. The long-term epidemic of Claviceps purpurea on Spartina anglica in Poole Harbour: Pattern of infection, effects on seed production and the role of Fusarium Heterosporum. New Phytol. 1998, 138, 497–505. [Google Scholar] [CrossRef]
  182. Hyde, K.D.; Norphanphoun, C.; Chen, J.; Dissanayake, A.J.; Doilom, M.; Hongsanan, S.; Jayawardena, R.S.; Jeewon, R.; Perera, R.H.; Thongbai, B.; et al. Thailand’s amazing diversity: Up to 96% of fungi in northern Thailand may be novel. Fungal Divers. 2018, 93, 215–239. [Google Scholar] [CrossRef]
  183. Devadatha, B.; Jones, E.B.G.; Pang, K.L.; Abdel-Wahab, M.A.; Hyde, K.D.; Sakayaroj, J.; Bahkali, A.H.; Calabon, M.S.; Sarma, V.V.; Sutreong, S.; et al. Occurrence and geographical distribution of mangrove fungi. Fungal Divers. 2021, 106, 137–227. [Google Scholar] [CrossRef]
  184. Dong, W.; Wang, B.; Hyde, K.D.; McKenzie, E.H.C.; Raja, H.A.; Tanaka, K.; Abdel-Wahab, M.A.; Abdel-Aziz, F.A.; Doilom, M.; Phookamsak, R.; et al. Freshwater Dothideomycetes. Fungal Divers. 2020, 105, 319–575. [Google Scholar] [CrossRef]
  185. Luo, Z.L.; Hyde, K.D.; Liu, J.K.; Maharachchikumbura, S.S.N.; Jeewon, R.; Bao, D.F.; Bhat, D.J.; Lin, C.G.; Li, W.L.; Yang, J.; et al. Freshwater Sordariomycetes. Fungal Divers. 2019, 99, 451–660. [Google Scholar] [CrossRef] [Green Version]
  186. Hyde, K.D.; Chethana, K.W.T.; Jayawardena, R.S.; Luangharn, T.; Calabon, M.S.; Jones, E.B.G.; Hongsanan, S.; Lumyong, S. The rise of mycology in Asia. Sci. Asia 2020, 46, 1–11. [Google Scholar] [CrossRef]
  187. Calabon, M.S.; Jones, E.B.G.; Boonmee, S.; Doilom, M.; Lumyong, S.; Hyde, K.D. Five novel freshwater ascomycetes indicate high undiscovered diversity in lotic habitats in Thailand. J. Fungi 2021, 7, 1–27. [Google Scholar] [CrossRef]
  188. Saintilan, N. Biogeography of Australian saltmarsh plants. Austral Ecol. 2009, 34, 929–937. [Google Scholar] [CrossRef]
  189. Spencer, D.M.; Hickling, V.; Spencer, J.F.T. Yeasts from ponds, streams and salt marsh on the Gower Peninsula, Wales. In Advances in Biotechnology. Proceedings of the Fifth International Yeast Symposium Held in London, Canada, July 20–25; Stewart, G., Russell, I., Eds.; Elsevier: Amsterdam, The Netherlands, 1981; pp. 515–519. [Google Scholar]
  190. Kurtzman, C.P. Saturnospora ahearnii, a new salt marsh yeast from Louisiana. Antonie Van Leeuwenhoek 1991, 60, 31–34. [Google Scholar] [CrossRef] [PubMed]
Figure 1. Salt marsh ecosystems in UK (ad) and Thailand (ef). (bd) Tidal grasses, Spartina townsendii (Poaceae) and Phragmites (Poaceae), dominate the salt marsh in UK (50°49′55.4″ N 0°58′25.1″ W; 51°43′03.1″ N 5°10′24.8″ W); (e) Spartina (Poaceae) (12°22′4.0″ N 99°59′6.7″ E) (f) and Suaeda (Amaranthaceae) (12°10′19.6″ N 99°58′20.3″ E) in tidal marsh areas in southern Thailand.
Figure 1. Salt marsh ecosystems in UK (ad) and Thailand (ef). (bd) Tidal grasses, Spartina townsendii (Poaceae) and Phragmites (Poaceae), dominate the salt marsh in UK (50°49′55.4″ N 0°58′25.1″ W; 51°43′03.1″ N 5°10′24.8″ W); (e) Spartina (Poaceae) (12°22′4.0″ N 99°59′6.7″ E) (f) and Suaeda (Amaranthaceae) (12°10′19.6″ N 99°58′20.3″ E) in tidal marsh areas in southern Thailand.
Jof 07 00648 g001
Figure 2. Halophytes in salt marsh ecosystems: (a) flowering inflorescence of Spartina, (b) Phragmites, (c) Salicornia, (d) Typha, (e,f) Atriplex, and (g,h) Suaeda.
Figure 2. Halophytes in salt marsh ecosystems: (a) flowering inflorescence of Spartina, (b) Phragmites, (c) Salicornia, (d) Typha, (e,f) Atriplex, and (g,h) Suaeda.
Jof 07 00648 g002
Figure 3. The distribution of salt marsh fungi among three fungal phyla.
Figure 3. The distribution of salt marsh fungi among three fungal phyla.
Jof 07 00648 g003
Figure 4. Salt marsh fungi. (a,b) Halobyssothecium obiones from Atriplex portulacoides; (c,d) Halobyssothecium phragmites from culms of Phragmites sp.; (e,f) Buergenerula spartinae from culms of Spartina sp.; (g,h) Chaetomium sp. from stem of Typha sp.; (i,j) Alternaria sp. from culms of Spartina sp. Scale bars: (a,g) = 500 µm; (b,d,f,h,j) = 20 µm; (c,i) = 200 µm; (e) = 100 µm.
Figure 4. Salt marsh fungi. (a,b) Halobyssothecium obiones from Atriplex portulacoides; (c,d) Halobyssothecium phragmites from culms of Phragmites sp.; (e,f) Buergenerula spartinae from culms of Spartina sp.; (g,h) Chaetomium sp. from stem of Typha sp.; (i,j) Alternaria sp. from culms of Spartina sp. Scale bars: (a,g) = 500 µm; (b,d,f,h,j) = 20 µm; (c,i) = 200 µm; (e) = 100 µm.
Jof 07 00648 g004
Figure 5. The distribution of salt marsh fungi in different fungal classes.
Figure 5. The distribution of salt marsh fungi in different fungal classes.
Jof 07 00648 g005
Figure 6. The distribution of salt marsh fungi in major fungal orders.
Figure 6. The distribution of salt marsh fungi in major fungal orders.
Jof 07 00648 g006
Figure 7. The distribution of salt marsh fungi among major fungal families.
Figure 7. The distribution of salt marsh fungi among major fungal families.
Jof 07 00648 g007
Figure 8. The number of taxa observed from different hosts in salt marsh ecosystems.
Figure 8. The number of taxa observed from different hosts in salt marsh ecosystems.
Jof 07 00648 g008
Figure 9. The number of taxa observed from Amaranthaceae.
Figure 9. The number of taxa observed from Amaranthaceae.
Jof 07 00648 g009
Figure 10. The distribution of fungal taxa associated with Elymus pungens.
Figure 10. The distribution of fungal taxa associated with Elymus pungens.
Jof 07 00648 g010
Figure 11. The distribution of fungal taxa associated with Spartina.
Figure 11. The distribution of fungal taxa associated with Spartina.
Jof 07 00648 g011
Figure 12. The distribution of fungal taxa associated with Phragmites.
Figure 12. The distribution of fungal taxa associated with Phragmites.
Jof 07 00648 g012
Figure 13. The distribution of fungal taxa associated with Juncus.
Figure 13. The distribution of fungal taxa associated with Juncus.
Jof 07 00648 g013
Figure 14. The number of salt marsh fungi reported in the Pacific, Atlantic, and Indian Oceans.
Figure 14. The number of salt marsh fungi reported in the Pacific, Atlantic, and Indian Oceans.
Jof 07 00648 g014
Figure 15. Map of countries showing the global distribution of fungal diversity studies in halophytes. The different color of each pie chart represents the hosts, and the angle measured the number of their fungal associates.
Figure 15. Map of countries showing the global distribution of fungal diversity studies in halophytes. The different color of each pie chart represents the hosts, and the angle measured the number of their fungal associates.
Jof 07 00648 g015
Figure 16. Map of the United States of America (USA) showing the distribution of fungal diversity studies of halophytes in different states. The different color of each pie chart represents the hosts, and the angle measured the number of their fungal associates.
Figure 16. Map of the United States of America (USA) showing the distribution of fungal diversity studies of halophytes in different states. The different color of each pie chart represents the hosts, and the angle measured the number of their fungal associates.
Jof 07 00648 g016
Figure 17. Venn diagram showing the association of salt marsh fungi from commonly studied halophytes.
Figure 17. Venn diagram showing the association of salt marsh fungi from commonly studied halophytes.
Jof 07 00648 g017
Table 1. Geographical distribution of salt marsh fungi recorded from various halophytes.
Table 1. Geographical distribution of salt marsh fungi recorded from various halophytes.
TaxonHost PartLife ModeHostsDistributionReferences
ASCOMYCOTA
DOTHIDEOMYCETES
Acrospermales
Acrospermaceae
Acrospermum graminum Lib.Elymus pungensUK[38]
Asterinales
Morenoinaceae
Morenoina phragmitis J.P. EllisLiving/decomposing leaf sheaths and stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Botryosphaeriales
Botryosphaeriaceae
Botryosphaeria festucae (Lib.) Arx and E. Müll.Living/decomposing leaf sheaths and stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Macrophomina sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Tiarosporella halmyra Kohlm. and Volkm.-Kohlm.Senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[42]
Phyllostictaceae
Guignardia spp.Senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Phyllosticta sp.PathogenicSpartina cynosuroidesUSA: Maryland[44]
Phyllosticta spartinae BrunaudSpartina maritimaFrance[45]
Phyllosticta suaedae LobikLeavesSuaeda maritimaRussia[46]
Capnodiales
Cladosporiaceae
Cladosporium algarum Cooke and MasseeSpergularia marina[35]
Suaeda maritima[35]
Cladosporium allicinum (Fr.) Bensch, U. Braun and CrousElymus pungensUK[38]
Cladosporium cladosporioides (Fresen.) G.A. de VriesLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Leaves and rootsSaprobicSpartina sp.Canada: Bay of Fundy[48]
Cladosporium herbarum (Pers.) LinkLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
StemSaprobicSpartina townsendiiUK: England[49]
Leaves, stems, and rootsSaprobicSpartina sp.Canada: Bay of Fundy[48]
Cladosporium macrocarpum PreussLeavesSaprobicSpartina sp.Canada: Bay of Fundy[48]
Cladosporium sphaerospermum Penz.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf sheaths and bladesSaprobicPhragmites australisNetherlands: Zeeland[39,41,50]
SaprobicSpartina patensUSA: Rhode Island[36]
SaprobicSpartina sp.Canada[36]
Capnodiales genera incertae sedis
Mucomycosphaerella eurypotami (Kohlm., Volkm.-Kohlm. and O.E. Erikss.) Quaedvl. and CrousSenescent leavesSaprobicJuncus roemerianusUSA: North Carolina[51]
Mycosphaerellaceae
Fulvia fulva (Cooke) Cif.Leaves and stemsSaprobicSpartina sp.Canada: Bay of Fundy[48]
Micronectriella agropyri Apinis and ChestersElymus pungensUK[38]
Puccinellia maritimaUK[38]
Spartina townsediiUK[38]
Mycosphaerella lineolata (Roberge ex Desm.) J. Schröt.Living/decomposing leaf sheaths and stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Elymus pungensUK[38]
Mycosphaerella salicorniae (Auersw.) LindauArthrocnemum subterminale[35]
Limonium sp.[35]
Sarcocornia perennis[35]
Salicornia fruticosa[35]
Salicornia procumbens[35]
Salicornia europaea[35]
Salicornia perennis[35]
Sarcocornia fruticosa[35]
Drying stalks and inflorescenceSaprobicSalicornia sp.India[52]
Dried inflorescencesSaprobicSalicornia virginicaBermuda[35,53]
SaprobicSpartina marítimaPortugal: Alentejo, Lisbon[54]
Suaeda vermiculata[35]
Drying stalks and inflorescenceSaprobicSuaeda sp.India[52]
Mycosphaerella spp.Elymus pungensUK[38]
Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida, Mississippi[43,55]
Decaying leaves, leaf bladesSaprobicSpartina alternifloraArgentina: Buenos Aires; USA: Alabama, California, Georgia, Mississippi[25,35,36,55,56,57,58]
Spartina cf. densifloraUSA: California[25,35]
Spartina cf. pectinata[35]
Spartina sp.Argentina: Buenos Aires; Canada[35,36]
Decaying leaf bladesSaprobicSpartina foliosaUSA: California[25]
Leaf sheaths and blades, stemSaprobicSpartina marítimaPortugal: Alentejo, Lisbon, Centro[54,59]
Mycosphaerella staticicola (Pat.) DiasArmeria pungens[35]
Mycosphaerella suaedae-australis Hansf.Suaeda australis[35]
Rivilata ius Kohlm., Volkm.-Kohlm. and O.E. Erikss.Tips of senescent, very old, and brittle leavesSaprobicJuncus roemerianusUSA: North Carolina[60]
Septoria spp.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Upper leaves, inflorescence, seedsSaprobicSpartina alternifloraUSA: Rhode Island[61]
Septoria suaedae-australis Hansf.Dead stemsSaprobicSuaeda australisSouth Australia[62]
Sphaerulina albispiculata Tubaki SheathSaprobicSpartina marítimaPortugal: Alentejo, Lisbon[54]
StemSaprobicSpartina marítimaPortugal: Alentejo[63]
Sphaerulina orae-maris LinderAmmophila arenaria[35]
Rhizome and rootSaprobicSpartina densifloraArgentina: Buenos Aires[64]
Leaf sheaths and blades, stemSaprobicSpartina marítimaPortugal: Alentejo, Lisbon, Algarve, Centro[31,54,59,63]
Sphaerulina pedicellata T.W. JohnsonSaprobicSpartina townsendii[65]
Attached culms, stemsSaprobic, parasiticSpartina alternifloraUSA: Rhode Island[20,61]
Sphaerulina sp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Dothideales
Saccotheciaceae
Aureobasidium sp.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Pseudoseptoria donacis (Pass.) B. SuttonLiving/decomposing leaf blades and sheathsSaprobicPhragmites australisNetherlands: Zeeland[39,50]
Selenophoma sp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Dothideaceae
Scirrhia annulata Kohlm., Volkm.-Kohlm. and O.E. Erikss.Senescent culms and leavesSaprobicJuncus roemerianusUSA: North Carolina[66]
Dothideomycetes families incertae sedis
Eriomycetaceae
Heleiosa barbatula Kohlm., Volkm.-Kohlm. and O.E. Erikss.Senescent leavesSaprobicJuncus roemerianusUSA: North Carolina[66]
Pseudorobillardaceae
Pseudorobillarda phragmitis (Cunnell) M. MoreletDecaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41,67]
Pseudorobillarda sp.Dead stemsSaprobicSpartina alternifloraCanada[36]
Dothideomycetes genera incertae sedis
Bactrodesmium atrum M.B. Ellis
Lautitia danica (Berl.) S. Schatz
Living/decomposing stemsSaprobicPhragmites australisNetherlands: Zeeland[40]
Elymus pungensUK[38]
Puccinellia maritimaUK[38]
Monodictys austrina TubakiSenescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Monodictys castaneae (Wallr.) S. HughesLeavesSaprobicSpartina sp.Canada: Bay of Fundy[48]
Neottiosporina australiensis B. Sutton and AlcornLiving/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50]
Neottiosporina sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Otthia sp.Senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Trichometasphaeria setulosa. (Sacc. and Roum.) Apinis and Chesters ined.Elymus pungensUK[38]
Trichometasphaeria sp.Elymus pungensUK[38]
Microthyriales
Microthyriaceae
Microthyrium microscopicum Desm. Spartina patens[68]
Microthyrium gramineum Sacc., E. Bommer and M. RousseauElymus pungensUK[38]
Muyocopronales
Muyocopronaceae
Ellisiodothis inquinans (Ellis and Everh.) Theiss.SaprobicSpartina alternifloraArgentina: Buenos Aires[36]
Mytilinidiales
Mytilinidiaceae
Septonema secedens CordaLiving, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Phaeotrichales
Phaeotrichaceae
Trichodelitschia bisporula (P. Crouan and H. Crouan) E. Müll. and ArxElymus pungensUK[38]
Spartina townsendiiUK[38]
Pleosporales
Amniculicolaceae
Neomassariosphaeria typhicola (P. Karst.) Y. Zhang ter, J. Fourn. and K.D. HydeJuncus roemerianus[35]
Decaying herbaceous stemsSaprobicSpartina densifloraArgentina: Buenos Aires[64]
SaprobicSpartina spp.Argentina: Buenos Aires[32,35,36]
SaprobicUnidentified saltmarsh plantsUSA: Mississippi[58]
Camarosporiaceae
Camarosporium feurichii Henn.Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Camarosporium palliatum Kohlm. and E. Kohlm.Sarcocornia perennis[35]
Salicornia sp.[35]
Salicornia virginica[35]
Saprobic or perthophyticSalt marsh plantsIndia: Maharashtra[52]
Suaeda vermiculata [35]
Camarosporium roumeguerei Sacc.Atripex halimus [35]
Atripex sp. [35]
Distichlis spicata [35]
TwigsSalicornia europaeaFrance[35,69]
Sarcocornia fruticosa [35]
Salicornia sp. [35]
Saprobic or perthophyticSalt marsh plantsIndia: Gujarat, Maharashtra, Tamil Nadu, Andhara Pradesh, West Bengal[52]
Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Algarve, Centro[59]
Suaeda maritima[35]
Camarosporium salicorniae Hansf.TwigsSarcocornia quinquefloraSouth Australia[62]
Camarosporium spp. Living/decomposing leaf sheaths and stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Camarosporium suaedae-fruticosae S. AhmadDead branchesSaprobicSuaeda vermiculataPakistan[70]
Coniothyriaceae
Coniothyrium obiones JaapAtriplex portulacoides[35]
SaprobicSalt marsh plantsIndia: Orissa[52]
Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Algarve[59]
Coniothyrium spp.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Cyclothyriellaceae
Massariosphaeria erucacea Kohlm., Volkm.-Kohlm. and O.E. Erikss.Senescent culms and leavesSaprobicJuncus roemerianusUSA: North Carolina[66]
Massariosphaeria scirpina (G. Winter) Leuchtm.SaprobicSpartina sp.USA: Florida, North Carolina[71]
Massariosphaeria sp.Living/decomposing stemsSaprobicPhragmites australisNetherlands: Zeeland[40]
Dictyosporiaceae
Dictyosporium oblongum (Fuckel) S. HughesLiving/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50]
Dictyosporium pelagicum (Linder) G.C. Hughes ex E.B.G. Jones Decomposing culmsSaprobicSpartina alternifloraUSA: Rhode Island[35,61]
Spartina spp.[32]
Leaf sheaths and blades, stemSaprobicSpartina marítimaPortugal: Alentejo, Lisbon, Algarve, Centro[54,59,63]
Jalapriya toruloides (Corda) M.J. D’souza, Hong Y. Su, Z.L. Luo and K.D. HydeStemsSaprobicSpartina sp.UK[72]
Didymellaceae
Ascochyta cf. arundinariae TassiLiving/decomposing leaf blades and sheathsSaprobicPhragmites australisNetherlands: Zeeland[39,50]
Ascochyta leptospora (Trail) HaraLiving/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Ascochyta salicorniae-patulae (Trotter) MelnikSaprobic, parasiticSalicornia spp.Canada, Denmark, Germany, India, UK, USA[52]
Ascochyta spp.Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
SheathSaprobicSpartina marítimaPortugal: Alentejo[54]
Chaetasbolisia sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Didymella glacialis RehmLiving/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50]
Didymella glomerata (Corda) Qian Chen and L. CaiRhizome and basal area SaprobicSpartina densifloraArgentina: Buenos Aires[64]
Didymella spp.Living/decomposing leaf blades and sheathsSaprobicPhragmites australisNetherlands: Zeeland[39,50]
PathogenicSpartina cynosuroidesUSA: Louisiana[44]
Epicoccum nigrum LinkLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Inflorescence, upper leaves, seedsSaprobic, parasiticSpartina alternifloraUSA: Rhode Island, Connecticut, Virginia, Florida, North Carolina[36,61,73,74]
Epicoccum sp.Spartina alterniflora[35]
Microsphaeropsis spp.Living/decomposing leaf blades and sheathsSaprobicPhragmites australisNetherlands: Zeeland[39,41,50]
Phoma herbarum Westend.LeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Phoma leveillei Boerema and G.J. BollenLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Phoma suaedae JaapTwigs, leaves, stemsSaprobicSuaeda maritima, Suaeda sp.Germany; India[75]
Suaeda maritima[35]
Phoma spp.Crithmum maritimum[35]
Atriplex portulacoides[35]
Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisChina: Hong Kong; Netherlands: Zeeland[39,40,41,50]
Salicornia europaea[35]
Spartina alternifloraUSA: North Carolina, Rhode Island[20,35,36,61,73,74]
SaprobicSpartina patensUSA: Rhode Island[36]
SaprobicSpartina sp.Argentina: Buenos Aires; Canada; USA: Maine, South Carolina[36,71]
Spartina townsendiiUK: England[35,49,65]
Leaf sheaths and blades, stemSaprobicSpartina marítimaPortugal: Alentejo, Lisbon, Algarve, Centro[54,59,63]
Paraboeremia putaminum (Speg.) Qian Chen and L. CaiLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Stagonosporopsis salicorniae (Magnus) Died.Salicornia europaea[35]
Salicornia patula[35]
Didymosphaeriaceae
Didymosphaeria lignomaris Strongman and J.D. Mill.Basal area of the sheathSaprobicSpartina densifloraArgentina: Buenos Aires[64]
Spartina spp.[32]
Julella herbatilis Kohlm., Volkm.-Kohlm. and O.E. Erikss.Senescent leavesSaprobicJuncus roemerianusUSA: North Carolina[76]
Paraphaeosphaeria apicicola Kohlm., Volkm.-Kohlm. and O.E. Erikss.Senescent leavesSaprobicJuncus roemerianusUSA: North Carolina[51]
Paraphaeosphaeria pilleata Kohlm., Volkm.-Kohlm. and O.E. Erikss.Senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[77]
Paraphaeosphaeria michotii (Westend.) O.E. Erikss.Elymus pungensUK[38]
Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Pseudopithomyces atro-olivaceus (Cooke and Harkn.) G. Guevara, K.C. Cunha and GenéSenescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Pseudopithomyces chartarum (Berk. and M.A. Curtis) Jun F. Li, Ariyaw. and K.D. HydeSenescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Pseudopithomyces maydicus (Sacc.) Jun F. Li, Ariyaw. and K.D. HydeSenescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Spegazzinia tessarthra (Berk. and M.A. Curtis) Sacc.Living leaves Juncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Tremateia halophila Kohlm., Volkm.-Kohlm. and O.E. Erikss.Lower and middle parts of senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[78]
SaprobicSpartina marítimaPortugal: Alentejo, Lisbon[54]
Lentitheciaceae
Halobyssothecium estuariae B. Devadatha, Calabon, K.D. Hyde and E.B.G. JonesDead culmSaprobicPhragmites australisUK: Pembrokeshire[79]
Halobyssothecium obiones (P. Crouan and H. Crouan) Dayarathne, E.B.G. Jones and K.D. HydeDrift stems, attached and dead culmsSaprobicSpartina alternifloraIndia: Maharashtra, Tamil Nadu, Andhara Pradesh; USA: Maine, Rhode Island, Connecticut, Massachusetts, New Jersey, Maryland, Virginia, North Carolina, South Carolina, Florida, Mississippi, Texas[20,35,52,61,71,74,80,81,82]
Spartina cynosuroides[35]
Pod and rhizomeSaprobicSpartina densifloraArgentina: Buenos Aires[64]
SaprobicSpartina patensUSA: Rhode Island[36]
CulmsSaprobicSpartina sp.UK: England, Hampshire[79,83]
StemSaprobicSpartina townsendiiUK: Hampshire, Wales[49,65]
SaprobicSpartina spp.USA: New Jersey, South Carolina; Mississippi, Argentina: Buenos Aires[32,35,36,58,84]
Stem, leaf sheaths, and bladesSaprobicSpartina marítimaPortugal: Alentejo, Lisbon, Algarve, Centro[31,54,59,63]
SaprobicUnidentified saltmarsh plantsUSA: Mississippi[55,58]
Elymus pungens[35]
Atriplex portulacoides[35]
Spartina townsendii[35]
Halobyssothecium phragmitis M.S. Calabon, E.B.G. Jones, S. Tibell and K.D. HydeDead culm and stemSaprobicPhragmites sp.Sweden: Gotland[85]
Halobyssothecium versicolor M.S. Calabon, E.B.G. Jones and K.D. HydeDead stemSaprobicAtriplex portulacoidesUK: Hampshire[85]
Keissleriella culmifida (P. Karst.) S.K. BoseElymus pungensUK[38]
Keissleriella linearis E. Müll. ex DennisLiving/decomposing stemsSaprobicPhragmites australisNetherlands: Zeeland[40]
Dead culmSaprobicPhragmites sp.Sweden: Gotland[85]
Keissleriella phragmiticola Wanas., E.B.G. Jones and K.D. HydeCulmsSaprobicPhragmites australisUK: Wales[79]
Keissleriella rara Kohlm., Volkm.-Kohlm. and O.E. Erikss.Senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[77]
Keissleriella spp.Senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Lentithecium fluviatile (Aptroot and Van Ryck.) K.D. Hyde, J. Fourn. and Ying ZhangDead leaf sheathsSaprobicPhragmites australisBelgium: East Flanders[86]
Living/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50]
Setoseptoria arundinacea (Sowerby) Kaz. Tanaka and K. Hiray.Elymus pungensUK[38]
Living/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50]
SaprobicSpartina sp.USA: North Carolina, Florida[71]
Setoseptoria phragmitis Quaedvl., Verkley and CrousCulmSaprobicPhragmites sp.Sweden: Södermanland[87]
Towyspora aestuari Wanas., E.B.G. Jones and K.D. HydePhragmites australisUK: Wales[88]
Leptosphaeriaceae
Leptosphaeria albopunctata (Westend.) Sacc.Juncus maritimus[35]
Phragmites australis[35]
Attached culms-Spartina alternifloraUSA: Rhode Island[35,36,61,71,73,80]
Spartina spp.Canada: Bay of Fundy; USA: New Jersey, South Carolina; Argentina: Buenos Aires[35,36,48,89,90]
StemSaprobicSpartina townsendii UK: Wales[35,65]
Leptosphaeria australiensis (Cribb and J.W. Cribb) G.C. HughesSenescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
PodSaprobicSpartina densifloraArgentina: Buenos Aires[64]
Spartina spp.[32]
Leptosphaeria culmifraga (Fr.) Ces. and De Not.Elymus pungensUK[38]
Leptosphaeria littoralis Sacc.Elymus pungensUK[38]
Leptosphaeria marina Ellis and Everh.Juncus roemerianus [35]
SaprobicSpartina alternifloraUSA: Maine, Rhode Island, Connecticut, New Jersey, Delaware, Virginia, North Carolina, South Carolina[35,36,71,73,80]
SaprobicSpartina spp.Canada; USA: New Jersey[32,35,36,65,89,90,91]
Spartina townsendii UK[35,38]
Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Algarve[31,59]
Leptosphaeria orae-maris LinderArundo donax[35]
SaprobicLysimachia maritimaUSA: Massachusetts[35,92]
SaprobicSpartina alternifloraUSA: Massachusetts, Rhode Island, North Carolina, Florida, Texas[36,71,80,92]
RhizomeSaprobicSpartina densifloraArgentina: Buenos Aires[64]
Spartina spp.[32]
SaprobicSpartina townsendii UK[35,65,93]
Leptosphaeria pelagica E.B.G. JonesElymus pungens UK[35,38]
Puccinellia maritimaUK[38]
Decaying herbaceous stems, dead culms, decaying leavesSaprobicSpartina alternifloraUSA: Connecticut, Mississippi, Rhode Island; India: Goa, Karanataka[20,36,52,55,73,94]
SaprobicSpartina densifloraArgentina: Buenos Aires[64]
SaprobicSpartina patensUSA: Rhode Island[36]
Spartina townsendiiUK[38]
Spartina spp.UK[32,65]
SheathSaprobicSpartina marítimaPortugal: Alentejo, Lisbon[54]
StemSaprobicSpartina marítimaPortugal: Alentejo[63]
Leptosphaeria peruvianae Speg.Decaying stemsSaprobicSarcocornia perennisArgentina: Buenos Aires; in temperate marine waters[52]
Leptosphaeria spp.Decaying leavesSaprobicJuncus roemerianusUSA: Mississippi[55]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Spartina alternifloraUSA: Rhode Island[74]
Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Centro[59]
Leptosphaeria suaedae Hansf.Dead twigsSaprobicSuaeda australisSouth Australia[95]
Lindgomycetaceae
Arundellina typhae Wanas., E.B.G. Jones and K.D. HydeDead stemSaprobicTypha sp.UK: England[96]
Lophiostomataceae
Lophiostoma semiliberum (Desm.) Ces. and De Not.Living/decomposing stemsSaprobicPhragmites australisNetherlands: Zeeland[40]
Lophiostoma sp.Elymus pungensUK[38]
Sigarispora arundinis (Pers.) Thambug., Qing Tian, Kaz. Tanaka and K.D. HydeLiving/decomposing stemsSaprobicPhragmites australisNetherlands: Zeeland[40]
Massarinaceae
Helminthosporium sp.Decaying leaf bladesSaprobicSpartina alternifloraUSA: Georgia[56]
Massarina carolinensis Kohlm., Volkm.-Kohlm. and O.E. Erikss.Senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[77]
Massarina igniaria (C. Booth) AptrootDecaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Massarina phragmiticola Poon and K.D. HydeDecaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Massarina ricifera Kohlm., Volkm.-Kohlm. and O.E. Erikss.Lower parts of senescent culms, decaying leavesSaprobicJuncus roemerianusUSA: Alabama, Mississippi, North Carolina[55,58,97]
Massarina spp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Stagonospora abundata Kohlm. and Volkm.-Kohlm.Senescent leaves and bractsSaprobicJuncus roemerianusUSA: Florida, Georgia, North Carolina[98]
Stagonospora cylindrica GunnellLiving/decomposing stemsSaprobicPhragmites australisNetherlands: Zeeland[40]
Stagonospora elegans (Berk.) Sacc. and TraversoLiving/decomposing leaf sheaths, stems, culmsSaprobicPhragmites australisAustralis; Netherlands: Zeeland[39,40,95]
Stagonospora epicalamia (Cooke) Sacc.Phragmites australisAustralia[95]
Stagonospora haliclysta Kohlm.Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Algarve[59]
Stagonospora spp.Living and senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisChina: Hong Kong; Netherlands: Zeeland[39,40,41,50]
Senescent and dead leaves/inflorescence, living and dead seeds, decaying leaf bladesSaprobic, pathogenicSpartina alternifloraCanada; USA: Maine, Rhode Island, Georgia, Connecticut, New Jersey, Virginia, Florida, North Carolina; Argentina: Buenos Aires[35,36,56,73,74]
PathogenicSpartina cynosuroidesUSA: Maryland[44]
SaprobicSpartina patensUSA: Rhode Island[35,36]
SaprobicSpartina spp.Canada[35,36]
Leaf sheaths and blades, stem, limbSaprobicSpartina marítimaPortugal: Alentejo, Lisbon, Algarve, Centro[31,54,59]
Stagonospora suaedae Syd. and P. Syd.LeavesSuaeda marítimaGermany[99]
Melanommataceae
Aposphaeria spp.Living/decomposing leaf sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Bicrouania maritima (P. Crouan and H. Crouan) Kohlm. and Volkm.-Kohlm.Dead stemsSaprobicAtriplex portulacoidesIndia[35,52]
Morosphaeriaceae
Helicascus kanaloanus Kohlm.Spartina spp.[32]
Neocamarosporiaceae
Neocamarosporium artemisiae Dayarathne and E.B.G. JonesSaprobicArtemisia maritimaSweden: Bohuslän[100]
Neocamarosporium maritimae Dayarathne and E.B.G. JonesSaprobicArtemisia maritimaSweden: Bohuslän[100]
Neocamarosporium obiones (Jaap) Wanas. and K.D. HydeAtriplex portulacoides[35]
Neocamarosporium phragmitis D.N. Wanasinghe, E.B.G. Jones and K.D. HydeDecaying culmsSaprobicPhragmites australisUK[101]
Neocamarosporium salicorniicola Dayar., E.B.G. Jones and K.D. HydeDead stemsSaprobicSalicornia sp.Thailand[102]
Periconiaceae
Periconia cookei E.W. Mason and M.B. EllisSenescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf blades and sheathsSaprobicPhragmites australisNetherlands: Zeeland[39,50]
Periconia digitata (Cooke) Sacc.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Periconia digitata (Cooke) Sacc.Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Periconia echinochloae (Bat.) M.B. EllisSenescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Periconia minutissima CordaLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Periconia sp.SaprobicUnidentifed saltmarsh plantsUSA: Mississippi[58]
Phaeosphaeriaceae
Amarenomyces ammophilae (Lasch) O.E. Erikss.Ammophila arenaria[35]
× Ammocalamagrostis baltica[35]
Uniola paniculata[35]
Amphisphaeria culmicola Sacc. Stem Spartina townsendiiUK: England[49]
Camarosporioides phragmitis W.J. Li and K.D. HydeDead stemSaprobicPhragmites australisGermany [96]
Hendersonia culmiseda Sacc.Living/decomposing leaf bladesSaprobicPhragmites australisNetherlands: Zeeland[50]
Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Spartina townsendiiUK[103]
Hendersonia spp.Living/decomposing leaf blades and sheathsSaprobicPhragmites australisNetherlands: Zeeland; USA: Florida[39,43,50]
Loratospora aestuarii Kohlm. and Volkm.-Kohlm.Senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[104]
Loratospora aestuarii Kohlm. and Volkm.-Kohlm.SaprobicUnidentified saltmarsh plantsUSA: Mississippi[58]
Ophiobolus littoralis (P. Crouan and H. Crouan) Sacc.Elymus pungensUK[38]
Phaeoseptoria sp.Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Phaeosphaeria anchiala Kohlm., Volkm.-Kohlm. and C.K.M. TsuiSenescent leavesSaprobicJuncus roemerianusUSA: Florida, Georgia, Maryland, North Carolina, Virginia[105]
Phaeosphaeria caricinella (P. Karst.) O.E. Erikss.Spartina sp.USA: Florida, North Carolina[71]
Phaeosphaeria culmorum (Auersw.) Leuchtm.Living/decomposing leaf blades and sheathsSaprobicPhragmites australisNetherlands: Zeeland[39,50]
Phaeosphaeria eustoma (Fuckel) L. HolmLiving/decomposing leaf blades and sheaths, stems, culmsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50,95]
Phaeosphaeria fuckelii (Niessl) L. HolmElymus pungensUK[38]
Phaeosphaeria gessneri Shoemaker and C.E. Babc.Spartina spp.[32]
Phaeosphaeria halima (T.W. Johnson) Shoemaker and C.E. Babc.Dead culms; Decaying leaves, leaf bladesSaprobicSpartina alternifloraIndia: Kerala; USA: California, Georgia, Mississippi, Vancouver, North Carolina[25,35,52,55,56,57,58,71,80]
Decaying leaf bladesSaprobicSpartina densifloraUSA: California[25]
Spartina spp. [32]
Decaying leavesSaprobicSpartina foliosaUSA: California[25]
Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Algarve, Centro[31]
Phaeosphaeria herpotrichoides (De Not.) L. HolmSpartina patensUSA: North Carolina, Florida[71]
Phaeosphaeria juncina (Auersw.) L. HolmSaprobicJuncus roemerianusUSA: Florida[43]
Phaeosphaeria luctuosa (Niessl ex Sacc.) Y. Otani and MikawaLiving/decomposing leaf sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Elymus pungensUK[38]
Phaeosphaeria macrosporidium (E.B.G. Jones) Shoemaker and C.E. Babc.Decaying stems SaprobicSpartina spUK: Wales, England[65]
StemSaprobicSpartina marítimaPortugal: Lisbon[54,63]
Phaeosphaeria microscopica (P. Karst.) O.E. Erikss.Elymus pungensUK[38]
Phaeosphaeria neomaritima (R.V. Gessner and Kohlm.) Shoemaker and C.E. Babc.Juncus maritimus[35]
Juncus roemerianus[35]
SaprobicJuncus sp.Canada; India: Maharashtra, Karnataka; USA: Virginia, North Carolina[36,52,71,80]
Spartina alterniflora[35]
SaprobicSpartina spp.Canada; USA: North Carolina, Virginia[32,71,80]
Spartina townsendii UK[35,93]
StemSaprobicSpartina marítimaPortugal: Alentejo[63]
Phaeosphaeria nigrans (Roberge ex Desm.) L. HolmElymus pungensUK[38]
Phaeosphaeria olivacea Kohlm., Volkm.-Kohlm. and O.E. Erikss.Senescent leavesSaprobicJuncus roemerianusUSA: North Carolina, Mississippi[58,76]
Phaeosphaeria pontiformis (Fuckel) Leuchtm.Elymus pungensUK[38]
Living/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50]
Phaeosphaeria roemeriani Kohlm., Volkm.-Kohlm. and O.E. Erikss.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Mississippi, North Carolina[55,58,60]
Phaeosphaeria spartinae (Ellis and Everh.) Shoemaker and C.E. Babc.SaprobicSpartina spp.India: Kerala[32,52]
Decaying herbaceous stems and podSaprobicSpartina densifloraArgentina: Buenos Aires[64]
SaprobicSpartina marítimaPortugal: Lisbon[54]
Phaeosphaeria spartinicola Leuchtm.SaprobicJuncus sp.India[52]
Dead leaves, decaying leaf bladesSaprobicSpartina alternifloraMexico; USA: Alabama, California, Georgia, Mississippi; Canada: Nova Scotia, New Brunswick[25,36,55,56,57,58]
Pod, leaf bladesSaprobicSpartina densifloraArgentina: Buenos Aires; USA: California[25,64]
Spartina spp.[32]
Leaf bladesSaprobicSpartina foliosaUSA: California[25]
Leaf sheaths and blades, stem, limbSaprobicSpartina marítimaPortugal: Alentejo, Lisbon, Algarve, Centro[31,54,59,63]
Phaeosphaeria spp.Living/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50]
SaprobicSpartina alternifloraUSA: Rhode Island[74]
Sclerostagonospora sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Septoriella phragmitis Oudem.Living/decomposing leaf sheaths and stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Septoriella spp.Decaying stems and leaf sheaths and blades, stemsSaprobicPhragmites australisChina: Hong Kong; Netherlands: Zeeland[39,40,41,50]
Septoriella thalassica (Speg.) Nag RajDistichlis spicata[35]
Distichlis spicata [35]
Septoriella unigalerita Kohlm. and Volkm.-Kohlm.Senescent leavesSaprobicJuncus roemerianusUSA: North Carolina[98]
Septoriella vagans (Niessl) Y. Marín and CrousElymus pungensUK[38]
Puccinellia maritimaUK[38]
SaprobicSpartina alternifloraUSA: Rhode Island[74]
Pleomassariaceae
Splanchnonema sp.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Pleosporaceae
Alternaria alternata (Fr.) Keissl.LeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,41,50]
SaprobicSpartina alternifloraUSA: North Carolina[74]
Leaves, stems, and rootsSaprobicSpartina sp.Canada: Bay of Fundy[48]
Alternaria infectoria E.G. SimmonsElymus pungensUK[38]
Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Alternaria longissima Deighton and MacGarvieLiving, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Alternaria maritima G.K. Sutherl.StemSaprobic, pathogenicSpartina townsendiiUK: England[49]
Alternaria spp.Atriplex portulacoides[35]
Juncus roemerianus[35]
Salsola kali[35]
Inflorescence and upper leavesSaprobic, parasiticSpartina alternifloraUSA: Rhode Island[35,61]
CulmsSaprobicSpartina sp.ThailandThis study
Spartina townsendii[35]
Bipolaris cynodontis (Marignoni) ShoemakerLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Curvularia hawaiiensis (Bugnic. ex M.B. Ellis) Manamgoda, L. Cai and K.D. HydeLiving and senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Curvularia protuberata R.R. Nelson and HodgesLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Curvularia spp.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
SaprobicSpartina altrernifloraUSA: North Carolina[74]
Curvularia tuberculata B.L. JainSenescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decorospora gaudefroyi (Pat.) Inderb., Kohlm. and Volkm.-Kohlm.StemsSaprobicAtriplex sp.UK: Portsmouth[106]
Atriplex portulacoides[35]
Sarcocornia perennis[35]
Sarcoconia fructicosa[35]
Salicornia europaea[35]
Salicornia sp.[35]
Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Algarve[59]
Suaeda maritima[35]
Drechslera sp.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Exserohilum rostratum (Drechsler) K.J. Leonard and SuggsDistichlis spicata[35]
Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Senescent and dead leavesSaprobicSpartina alternifloraUSA: Rhode Island, North Carolina, Florida[35,36,73]
Spartina spp.[32]
Paradendryphiella arenariae (Nicot) Woudenb. and CrousDecomposing culmsSaprobicSpartina alternifloraUSA: Rhode Island[35,61]
Spartina spp.[32]
Paradendryphiella salina (G.K. Sutherl.) Woudenb. and CrousAtriplex portulacoides[35]
Decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Puccinellia maritima[35]
Salicornia europaea[35]
Decomposing culmsSaprobicSpartina alternifloraUSA: Rhode Island[35,61]
Spartina spp.[32]
Spartina townsendii[35]
Leaves and stemsSaprobicSpartina sp.Canada: Bay of Fundy[48]
Suaeda maritima[35]
Pleospora abscondita Sacc. and Roum.Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Pleospora pelagica T.W. JohnsonDecomposing culms; decaying leaf bladesSaprobicSpartina alternifloraIndia: Maharashtra, Kerala; USA: Georgia, Rhode Island, North Carolina, Florida[35,36,52,56,71,73,74,80]
Decaying leaf bladesSaprobicSpartina densifloraUSA: California[25]
SaprobicSpartina spp.USA: South Carolina[32,36]
Typha sp. [35]
Pleospora pelvetiae G.K. Sutherl.SaprobicUnidentifed saltmarsh plantsUSA: Mississippi[58]
Pleospora spp.Salicornia virginica[35]
Dead leaves/culmsSaprobicSpartina alternifloraUSA: Rhode Island[61]
Pleospora spartinae (J. Webster and M.T. Lucas) Apinis and ChestersDecaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Decaying leaf bladesSaprobicSpartina alternifloraUSA: Georgia[56]
StemSaprobicSpartina spp.Canada: Bay of Fundy[32,48]
Spartina townsendii UK[35,38,107]
Pleospora straminis Sacc. and Speg.Elymus pungensUK[38]
Pleospora vagans Niessl var. vagansLiving/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Dead culmsSaprobicSpartina alternifloraUSA: Rhode Island[73]
Pyrenophora tritici-repentis (Died.) DrechslerElymus pungensUK[38]
Stemphylium botryosum Wallr.LeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Stemphylium lycopersici (Enjoji) W. Yamam.Living leavesJuncus roemerianusUSA: Florida[43]
Stemphylium maritimum T.W. JohnsonSaprobicSpartina sp.UK[65]
Stemphylium spp.Salsola kali[35]
LeavesSaprobicSpartina spp. Canada: Bay of Fundy[35,48]
Stemphylium vesicarium (Wallr.) E.G. SimmonsElymus pungensUK[38]
Living, senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
SaprobicLysimachia maritimaUSA: Massachusetts[92]
SaprobicSpartina alternifloraUSA: Rhode Island[61]
Glumes, rachisSpartina townsendiiUK: England[38,49]
Spartina sp.UK[65]
Stemphylium triglochinicola B. Sutton and Piroz.Triglochin maritimaSweden: Västergötland[35,87]
Dead leaves and inflorescencesSaprobicTriglochin sp.India: Kerala; UK[52,108]
Typhicola typharum (Desm.) CrousSenescent and dead leavesSaprobic, pathogenicSpartina alternifloraCanada; USA: Maine, Rhode Island, Connecticut, New Jersey, Virginia, North Carolina, Florida[35,36,61,73,74]
SaprobicSpartina patensUSA: Rhode Island[36]
Spartina townsendiiUK[38]
SaprobicSpartina spp.Argentina: Buenos Aires; Canada; USA: Maine[35,36]
StemsSaprobicSpartina townsendii UK: England[35,49,65]
Pleosporales genera incertae sedis
Phialophorophoma litoralis LinderStem and sheathSaprobicSpartina marítimaPortugal: Alentejo, Lisbon[54,63]
Phialophorophoma spp.Living/decomposing leaf sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Pyrenochaeta sp.Living leavesSaprobicJuncus roemerianusUSA: Florida[43]
Scolecobasidium humicola G.L. Barron and L.V. BuschLiving, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Roussoellaceae
Cytoplea sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Sporormiaceae
Preussia funiculata (Preuss) FuckelSpartina townsendiiUK[38]
Preussia terricola CainElymus pungensUK[38]
Sporormia longipes Massee and E.S. SalmonElymus pungensUK[38]
Sporormia sp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Sporormiella intermedia (Auersw.) S.I. Ahmed and Cain ex KobayasiElymus pungensUK[38]
Sporormiella lageniformis (Fuckel) S.I. Ahmed and CainSpartina townsendiiUK[38]
Sporormiella minima (Auersw.) S.I. Ahmed and CainElymus pungensUK[38]
Spartina townsendiiUK[38]
Teichosporaceae
Teichospora striata (Kohlm. and Volkm.-Kohlm.) Jaklitsch and VoglmayrSenescent leaves and inflorescencesSaprobicJuncus roemerianusUSA: North Carolina, Virginia[98]
Teichospora suaedae Speg.Dead branchesSaprobicSuaeda divaricataArgentina: Mendoza[109]
Testudinaceae
Verruculina enalia (Kohlm.) Kohlm. and Volkm.-Kohlm.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Tetraplosphaeriaceae
Tetraploa aristata Berk. and BroomeLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Torulaceae
Torula herbarum (Pers.) LinkDecaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Trematosphaeriaceae
Halomassarina thalassiae (Kohlm. and Volkm.-Kohlm.) Suetrong, Sakay., E.B.G. Jones, Kohlm., Volkm.-Kohlm. and C.L. SchochDecaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
EUROTIOMYCETES
Chaetothyriales
Herpotrichiellaceae
Rhinocladiella spp.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Veronaea sp.Decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Eurotiales
Aspergillaceae
Aspergillus fumigatus Fresen.Elymus pungensUK[38]
Aspergillus nidulans (Eidam) G. WinterElymus pungensUK[38]
Spartina townsendiiUK[38]
Aspergillus niger Tiegh.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Aspergillus spp.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Spartina townsendiiUK: England[49]
Monascus purpureus WentElymus pungensUK[38]
Penicillium aurantiogriseum DierckxLeavesSaprobicSpartina sp.Canada: Bay of Fundy[48]
Penicillium brevicompactum DierckxRootsSaprobicSpartina sp.Canada: Bay of Fundy[48]
Penicillium chrysogenum ThomRootsSaprobicSpartina sp.Canada: Bay of Fundy[48]
Penicillium lividum WestlingLeaves and stemsSaprobicSpartina sp.Canada: Bay of Fundy[48]
Penicillium spp.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Spartina townsendiiUK: England[49]
Thermoascaceae
Thermoascus crustaceus (Apinis and Chesters) StolkElymus pungensUK[38]
Paecilomyces spp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
SaprobicSalt marsh plantsIndia: Goa[52]
Trichocomaceae
Thermomyces dupontii (Griffon and Maubl.) Houbraken and SamsonElymus pungensUK[38]
Onygenales
Onygenaceae
Amauroascus albicans (Apinis) ArxElymus pungensUK[38]
Amauroascus albicans (Apinis) ArxSpartina townsendiiUK[38]
LECANOROMYCETES
Ostropales
Stictidaceae
Glomerobolus gelineus Kohlm. and Volkm.-Kohlm.
Stictis sp.
Senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[110]
Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
LEOTIOMYCETES
Helotiales
Amorphothecaceae
Amorphotheca resinae ParberyRootsSaprobicSpartina sp.Canada: Bay of Fundy[48]
Calloriaceae
Cistella fugiens (W. Phillips) MatheisLiving/decomposing stemsSaprobicPhragmites australisNetherlands: Zeeland[40]
Helotiaceae
Cyathicula culmicola (Desm.) De Not.Elymus pungensUK[38]
Helotium sp.Elymus pungensUK[38]
Lachnaceae
Brunnipila palearum (Desm.) BaralElymus pungensUK[38]
Spartina townsendiiUK[38]
Lachnum controversum (Cooke) RehmElymus pungensUK[38]
Lachnum spartinae S.A. CantrellDecaying leaf sheathsSaprobicSpartina alternifloraUSA: Georgia[56,111]
Spartina spp.[32]
Mollisiaceae
Belonopsis atriella (Cooke) LindauSpartina cynosuroidesUSA: Louisiana[68,90,112]
Mollisia hydrophila (P. Karst.) Sacc.Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Mollisia palustris (P. Karst.) P. Karst.Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Trichobelonium kneiffii (Wallr.) J. Schröt.Living/decomposing leaf sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Ploettnerulaceae
Cadophora melinii Nannf.LeavesSaprobicSpartina sp.Canada: Bay of Fundy[48]
Sclerotiniaceae
Botrytis cinerea Pers.Stem Spartina townsendiiUK: England[49]
LeavesSaprobicSpartina sp.Canada: Bay of Fundy[48]
Monilia sp.Decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Solenopeziaceae
Halenospora varia (Anastasiou) E.B.G. JonesSenescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Basal area of the sheathSaprobicSpartina densifloraArgentina: Buenos Aires[64]
Spartina spp.[32]
Helotiales genera incertae sedis
Cejpia hystrix (De Not.) BaralElymus pungensUK[38]
Dactylaria sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Crocicreas gramineum (Fr.) Fr.Elymus pungensUK[38]
Leotiales
Leotiales genera incertae sedis
Flagellospora sp.Living leavesJuncus roemerianusUSA: Florida[43]
Rhytismatales
Rhytismataceae
Lophodermium arundinaceum (Schrad.) Chevall.Elymus pungensUK[38]
Living/decomposing leaf sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Thelebolales
Thelebolaceae
Thelebolus crustaceus (Fuckel) Kimbr.Elymus pungensUK[38]
Puccinellia maritimaUK[38]
Spartina townsendiiUK[38]
ORBILIOMYCETES
Orbiliales
Orbiliaceae
Arthrobotrys conoides DrechslerDecaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Arthrobotrys sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Orbilia junci Kohlm., Baral and Volkm.-Kohlm.Tips of senescent leavesJuncus roemerianusUSA: North Carolina[113]
PEZIZOMYCETES
Pezizales
Pezizaceae
Belonium heteromorphum (Ellis and Everh.) SeaverSpartina cynosuroidesUSA: Louisiana[68,114]
SACCHAROMYCETES
Saccharomycetales
Debaryomycetaceae
Debaryomyces hansenii (Zopf) Lodder and Kreger-van RijDecaying leaf bladesSaprobicSpartina alternifloraUSA: Louisiana[56]
Scheffersomyces spartinae (Ahearn, Yarrow and Meyers) Kurtzman and M. SuzukiDecaying leaf bladesSaprobicSpartina alternifloraUSA: Louisiana[56]
Saccharomycetaceae
Kluyveromyces lactis (Stell.-Dekk.) Van der WaltDecaying leaf bladesSaprobicSpartina alternifloraUSA: Louisiana[56]
SORDARIOMYCETES
Amphisphaeriales
Amphisphaeriaceae
Massariella sp.Spartina townsendiiUK[38]
Ommatomyces coronatus Kohlm., Volkm.-Kohlm. and O.E. Erikss.Lower parts of senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[97]
Pestalotia sp.Living, senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Apiosporaceae
Arthrinium arundinis (Corda) Dyko and B. SuttonLiving/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Dead culmsSaprobicPhragmites sp.South Australia[62]
Arthrinium phaeospermum (Corda) M.B. EllisLiving/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50]
SaprobicSpartina patensUSA: Rhode Island[61]
Inflorescence and upper leavesSaprobicSpartina alternifloraUSA: Rhode Island[36]
Arthrinium spp.Living leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Nigrospora oryzae (Berk. and Broome) PetchLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Beltraniaceae
Beltrania querna Harkn.Decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Hyponectriaceae
Phragmitensis ellipsoidea M.K.M. Wong, Goh and K.D. HydeIntertidal to aerial culmsSaprobicPhragmites australisChina: Hong Kong[115]
Phragmitensis marina M.K.M. Wong, Poon and K.D. HydeDecaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Physalospora citogerminans Kohlm., Volkm.-Kohlm. and O.E. Erikss.Lower and upper parts of senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[116]
Sporocadaceae
Discostroma sp.Living/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Pestalotiopsis juncestris Kohlm. and Volkm.-Kohlm.Senescent involucral leaves and culmsSaprobicJuncus roemerianusUSA: North Carolina[117]
Pestalotiopsis planimi (Vize) SteyaertSpartina alternifloraUSA: Rhode Island[61]
Pestalotiopsis sp. Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Coronophorales
Ceratostomataceae
Melanospora sp.Decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Microthecium fimicola (E.C. Hansen) Y. Marín, Stchigel, Guarro and CanoElymus pungensUK[38]
Microthecium levitum Udagawa and CainDead leaves/culmsSaprobicSpartina alternifloraUSA: Rhode Island[61]
Coronophorales genera incertae sedis
Papulaspora halima AnastasiouLiving and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Papulosa amerospora Kohlm. and Volkm.-Kohlm.Senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[118]
Diaporthales
Diaporthaceae
Phomopsis spp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Spartina sp.[71]
Gnomoniaceae
Gnomonia salina E.B.G. Jones (probably a nomen dubiumand possibly a Halosarpheia species)SaprobicSpartina alternifloraUSA: Connecticut[36]
Spartina spp. [32,35]
Spartina townsendii UK[35,65]
Diaporthales incertae sedis
Botryodiplodia sp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Glomerellales
Glomerellaceae
Colletotrichum sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Plectosphaerellaceae
Stachylidium bicolor LinkSenescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Hypocreales
Bionectriaceae
Acremonium spp.LeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Clonostachys rosea (Link) Schroers, Samuels, Seifert and W. GamsLeavesSaprobicSpartina sp.Canada: Bay of Fundy[48]
Fusariella obstipa (Pollack) S. HughesDecaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Gliomastix spp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Hydropisphaera arenula (Berk. and Broome) Rossman and SamuelsLiving/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Hydropisphaera erubescens (Roberge ex Desm.) Rossman and SamuelsDecaying leaf bladesSaprobicSpartina alternifloraUSA: Georgia[56]
Spartina spp.[32]
Clavicipitaceae
Atkinsonella hypoxylon (Peck) DiehlSpartina cynosuroides[68]
Claviceps purpurea (Fr.) Tul.SaprobicPhragmites australisUK: England (Southampton Hampshire, Sussex, Oxon)[119,120]
Replaced seeds in the inflorescence, ovaries of the flowersSaprobic, parasiticSpartina alternifloraUSA: Rhode Island; Argentina[36,61,68,73,121,122]
PathogenicSpartina anglicaUK[123]
Saprobic, parasiticSpartina cynosuroidesUSA: New York, Florida, Mississippi[44,68,121,124]
Spartina patensUSA: Maryland, Mississippi[44,68,124,125]
Spartina townsendiiUK: England[120,126]
Spartina sp.Argentina[122]
Claviceps sp.Spartina foliosaUSA: California[127]
Metarhizium anisopliae (Metschn.) SorokīnLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Hypocreaceae
Cladobotryum sp.Decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Gliocladium sp.Senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Trichoderma citrinum (Pers.) Jaklitsch, W. Gams and VoglmayrLeavesSaprobicSpartina sp.Canada: Bay of Fundy[48]
Trichoderma sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Trichoderma viride Pers.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Nectriaceae
Calonectria sp.Elymus pungensUK[38]
Fusarium fujikuroi NirenbergSaprobicSuaeda australisSouth Australia[62]
Fusarium graminearum SchwabeLiving/decomposing leaf sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Fusarium heterosporum Nees and T. NeesSpartina maritima[128]
Fusarium incarnatum (Desm.) Sacc. LeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Fusarium oxysporum Schltdl.LeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Leaves and rootsSaprobicSpartina sp.Canada: Bay of Fundy[48]
Fusarium poae (Peck) Wollenw. LeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Fusarium solani (Mart.) Sacc.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Fusarium spp.LeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf sheaths, stemsSaprobicPhragmites australisChina: Hong Kong; Netherlands: Zeeland[39,40,41]
Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Algarve[59]
Gibberella sp.SaprobicSpartina alternifloraArgentina: Buenos Aires[36]
Nectria sp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Tubercularia pulverulenta Speg.Sarcocornia perennis[35]
Salicornia europaea[35]
SaprobicUnidentified saltmarsh plantsUSA: Mississippi[58]
Sarcocornia fruticosa[35]
Tubercularia sp.Decaying leaf bladesSaprobicSpartina alternifloraUSA: Georgia[56]
Volutella ciliata (Alb. and Schwein.) Fr.LeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Sarocladiaceae
Sarocladium implicatum (J.C. Gilman and E.V. Abbott) A. Giraldo, Gené and GuarroLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Sarocladium sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Stachybotryaceae
Albifimbria verrucaria (Alb. and Schwein.) L. Lombard and CrousLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Paramyrothecium roridum (Tode) L. Lombard and CrousLiving, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Stachybotrys chartarum (Ehrenb.) S. HughesSenescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Stachybotrys cylindrosporus C.N. JensenDecaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Stachybotrys echinatus (Rivolta) G. Sm.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Stachybotrys kampalensis Hansf.Senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Stachybotrys nephrosporus Hansf.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Stachybotrys spp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Decaying leaf bladesSaprobicSpartina alternifloraUSA: Georgia[56]
Striaticonidium cinctum (Corda) L. Lombard and CrousLiving/decomposing leaf sheathsSaprobicPhragmites australisNetherlands: Zeeland[39]
Xepicula jollymannii (N.C. Preston) L. Lombard and CrousSenescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Hypocreales genera incertae sedis
Cephalosporium spp.Dead leaves/culmsSaprobicSpartina alternifloraUSA: Rhode Island[61]
Lulworthiales
Lulworthiaceae
Cumulospora marina I. SchmidtDead culmSaprobicPhragmites australisIraq, Egypt, Germany, Thailand[129]
Spartina spp.[32]
Halazoon fuscus (I. Schmidt) Abdel-Wahab, K.L. Pang, Nagah., Abdel-Aziz and E.B.G. Jones Decaying rhizomesSaprobicPhragmites australis France, Germany, Japan[35,130]
Rhizomes and culmsSaprobicPhragmites sp.Sweden[87]
Halazoon melhae Abdel-Aziz, Abdel-Wahab and NagahamaDecaying stemSaprobicPhragmites australisEgypt: Port Said[130]
Lulworthia floridana MeyersSaprobicSpartina alternifloraUSA: North Carolina, Rhode Island[20,131]
Lulworthia medusa (Ellis and Everh.) Cribb and J.W. CribbElymus pungensUK[38]
SaprobicSpartina cynosuroidesUSA: New Jersey[89,132]
Spartina spp.USA: New Jersey[32,89]
StemsSaprobicSpartina townsendiiUK: England (Wales); USA: Virginia, North Carolina, South Carolina, Florida, Texas[38,49,71,72,89,132,133,134]
Lulworthia spp.Elymus pungens[35]
Juncus roemerianus[35,36]
Dead culmsSaprobicSpartina alternifloraArgentina: Buenos Aires; USA: Rhode Island, North Carolina[35,36,61,73,74]
Spartina cynosuroides[35]
SaprobicSpartina sp.Argentina: Buenos Aires; Canada; USA: Maine, North Carolina[36]
Spartina townsendii[35]
Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Alentejo, Lisbon, Algarve, Centro[31,54,59,63]
Moleospora maritima Abdel-Wahab, Abdel-Aziz and Nagah.Decayed stemsSaprobicPhragmites australisEgypt: Port Said[130]
Magnaporthales
Ceratosphaeriaceae
Ceratosphaeria sp.Senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Magnaporthaceae
Buergenerula spartinae Kohlm. and R.V. GessnerLower stem and leaf sheath during the growth phase of the plant/living and dead; decaying leaf bladesSaprobic, parasiticSpartina alternifloraUSA: Alabama, Rhode Island, Maine, New Hampshire, Connecticut, Mississippi, New Jersey, Virginia, North Carolina, Florida, Georgia[20,35,36,55,56,58,61,73,74,82,92]
LeavesSaprobicSpartina spp.Canada: Bay of Fundy; USA: South Carolina; UK[32,35,36,48,65] this study
Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Alentejo, Lisbon, Algarve, Centro[31,54,59]
Gaeumannomyces sp.Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Kohlmeyeriopsis medullaris (Kohlm., Volkm.-Kohlm. and O.E. Erikss.) Klaubauf, M.-H. Lebrun and CrousLower parts of senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[97,135]
Utrechtiana roumeguerei (Cavara) Videira and CrousLiving/decomposing leaf blades and sheathsSaprobicPhragmites australisNetherlands: Zeeland[39,50]
Pseudohalonectriaceae
Pseudohalonectria falcata ShearerDecaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Pseudohalonectria halophila Kohlm. and Volkm.-Kohlm.Fragments of leaves and culms in the wrackSaprobicJuncus roemerianusUSA: North Carolina[105]
Meliolales
Meliolaceae
Meliola arundinis Pat.Phragmites australisAustralia: Queensland[62]
Microascales
Halosphaeriaceae
Aniptodera chesapeakensis Shearer and M.A. Mill.Dead leavesSaprobicJuncus roemerianus USA: North Carolina[35]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Spartina alterniflora[35]
Spartina spp.[32]
Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Alentejo, Algarve, Centro[59,63]
Aniptodera juncicola Volkm.-Kohlm. and Kohlm.Dead standing culms ofSaprobicJuncus roemerianusIndia: Kerala, West Bengal, Tamil Nadu; USA: North Carolina[52,136]
Aniptodera phragmiticola O. K. Poon et K. D. HydeDecaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Ceriosporopsis halima LindeArundo donax[35]
Submerged seedsSaprobicSpartina alternifloraUSA[137]
Spartina spp.[32]
Spartina townsendii UK[35,38]
StemSaprobicSpartina maritimaPortugal: Alentejo[63]
Cirrenalia macrocephala (Kohlm.) Meyers and R.T. MooreAmmophila arenaria[35]
Decaying culmsSaprobicJuncus roemerianusUSA: Florida[43]
Decomposing culms, submerged seedsSaprobicSpartina alternifloraUSA: Rhode Island[35,61,137]
Spartina spp.[32]
StemSaprobicSpartina maritimaPortugal: Alentejo[63]
Cirrenalia pseudomacrocephala Kohlm.Senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Corollospora maritima Werderm.Submerged seeds, decomposing culmsSaprobicSpartina alternifloraUSA: Rhode Island[20,35,61,137]
Spartina spp.[32]
StemSaprobicSpartina maritimaPortugal: Alentejo[63]
SaprobicUnidentified saltmarsh plantsUSA: Mississippi[58]
Corollospora ramulosa (Meyers and Kohlm.) E.B.G. Jones and Abdel-WahabSaprobicUnidentified saltmarsh plantsUSA: Mississippi[58]
SaprobicZostera marinaUSA: North Carolina[74]
Haligena elaterophora Kohlm.Spartina alterniflora[35]
Spartina tonwsendiiUK[38]
Spartina spp.[32]
Halosarpheia culmiperda Kohlm., Volkm.-Kohlm. and O.E. Erikss.Lower parts of senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[97]
Halosarpheia sp.StemSaprobicSpartina maritimaPortugal: Alentejo[63]
Halosarpheia viscosa I. Schmidt ex Shearer and J.L. CraneDecaying leaf bladesSaprobicSpartina alternifloraUSA: Georgia[56]
SaprobicSpartina maritimaPortugal: Lisbon[54]
Halosphaeria appendiculata LinderArundo donax[35]
Halosphaeria sp.Submerged seedsSaprobicSpartina alternifloraUSA[137]
Lautisporopsis circumvestita (Kohlm.) E.B.G. Jones, Yusoff and S.T. MossArundo donax[35]
Lignincola laevis HöhnkElymus pungens[35]
SaprobicSpartina spp.USA: North Carolina[32,138]
Spartina townsendii[35]
StemSaprobicSpartina maritimaPortugal: Alentejo[63]
Magnisphaera spartinae (E.B.G. Jones) J. Campb., J.L. Anderson and ShearerElymus farctus[35]
Elymus pungens[35]
Living/decomposing stemsSaprobicPhragmites australisNetherlands: Zeeland[40]
SaprobicSpartina alternifloraUSA: Rhode Island[20,35,61]
Spartina spp. [32]
SaprobicSpartina patensUSA: Rhode Island[36]
StemSaprobicSpartina townsendii UK: Wales[35,139]
Typha sp. [35]
Nais inornata Kohlm.Decomposing culmsSaprobicSpartina alternifloraUSA: Rhode Island[20,35,61]
Spartina spp. [32]
Natantispora unipolaris K.L. Pang, S.Y. Guo and E.B.G. JonesDead stemSaprobicPhragmites australisTaiwan: Nankunshen[140]
Natantispora retorquens (Shearer and J.L. Crane) J. Campb., J.L. Anderson and ShearerLeaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Alentejo, Lisbon, Algarve, Centro[31,54,59,63]
Oceanitis unicaudata (E.B.G. Jones and Camp.-Als.) J. Dupont and E.B.G. JonesDecaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
StemSaprobicSpartina maritimaPortugal: Alentejo[63]
Panorbis viscosus (I. Schmidt) J. Campb., J.L. Anderson and ShearerLeaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Alentejo, Algarve[59,63]
Remispora hamata (Höhnk) Kohlm.Elymus pungens UK[35,38]
Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50]
SaprobicPhragmites sp.Sweden[87]
Dead leavesSaprobicSpartina alternifloraUSA: Rhode Island, Maine, Florida[20,35,36,61,73]
SaprobicSpartina patensUSA: Rhode Island[36]
SaprobicSpartina sp.USA: North Carolina; Argentina: Buenos Aires[36,138]
Spartina townsendii[35]
Typha sp.[35]
Remispora trullifera Kohlm.Leaf sheaths and blades, stemSaprobicSpartina maritimaPortugal: Centro[59]
Tirispora unicaudata E.B.G. Jones and VrijmoedStemSaprobicSpartina maritimaPortugal: Alentejo[63]
Microascaceae
Scopulariopsis spp.Living, senescent, and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Myrmecridiales
Myrmecridiaceae
Myrmecridium schulzeri (Sacc.) Arzanlou, W. Gams and CrousLeavesSaprobicDistichlis spicataArgentina: Buenos Aires[47]
Ophiostomatales
Ophiostomataceae
Sporothrix sp.Senescent leavesSaprobicJuncus roemerianusUSA: Florida[43]
Phomatosporales
Phomatosporaceae
Phomatospora bellaminuta Kohlm., Volkm.-Kohlm. and O.E. Erikss.Lower parts of senescent culmsSaprobicJuncus roemerianusUSA: North Carolina[116]
Phomatospora berkeleyi Sacc.Living/decomposing leaf blades and sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40,50]
Phomatospora dinemasporium J. WebsterDecaying stems and leaf sheaths, stemsSaprobicPhragmites australisChina: Hong Kong; Netherlands: Zeeland[40,41]
Dead leavesSaprobicPhragmites sp.South Australia[62]
Spartina townsendiiUK[38]
Phomatospora phragmiticola Poon and K.D. HydeDecaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Phomatospora spp.Senescent and decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Living/decomposing leaf sheaths, stemsSaprobicPhragmites australisNetherlands: Zeeland[39,40]
Phyllachorales
Phyllachoraceae
Phyllachora graminis (Pers.) FuckelElymus pungensUK[38]
Saprobic, pathogenicSpartina alternifloraUSA: Massachusetts[44]
Spartina cynosuroides[68]
Phyllachora cynodontis Niessl.Saprobic, pathogenicSpartina alternifloraUSA[68]
Saprobic, pathogenicSpartina foliosaUSA: California[44,112,141]
Phyllachora paludicola Kohlm. and Volkm.-Kohlm.Dead leaves (lower half of standing culms)SaprobicSpartina alternifloraUSA: Florida, Georgia, North Carolina, Maryland, Delaware[142]
Phyllachora sylvatica Sacc. and Speg.SaprobicSpartina patensUSA: South Carolina[141]
Savoryellales
Savoryellaceae
Savoryella paucispora (Cribb and J.W. Cribb) J. KochElymus pungens[35]
Juncus roemerianus[35]
Spartina alterniflora[35]
Spartina sp.[35]
Spartina townsendii[35]
Sordariales
Chaetomiaceae
Achaetomium sp.Decaying leavesSaprobicJuncus roemerianusUSA: Florida[43]
Chaetomium elatum KunzeElymus pungensUK[38]
Puccinellia maritimaUK[38]
Spartina townsendiiUK[38]
Chaetomium globosum KunzeElymus pungensUK[38]
Decaying stems and leaf sheathsSaprobicPhragmites australisChina: Hong Kong[41]
Puccinellia maritimaUK[38]
Spartina townsendiiUK[38]
Chaetomium spirale ZopfElymus pungensUK[38]
Chaetomium thermophilum La ToucheElymus pungensUK[