New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences
Abstract
:1. Introduction
2. Materials and Methods
2.1. Genomes, Selection, and Filtering
2.2. Prediction of Proteins and Assembly
2.3. Functional Annotation and Definition of “Function;Family” Observation
2.4. “Function;Family” Observation-Based Ranking
2.5. Substrate Association Analysis Included in “Function;Family” Observation-Based Ranking
2.6. Definition of Redundancy Multiplication score
3. Results
3.1. Total CAZyme Cell Wall Polymer Degrading Capacity-All Observations Included
3.2. Redundant Observations Included: Fungal Hotspots of Degradation Capacity for Specific Substrates
3.3. Top 10 Fungal Species, Richest in Function Specificity Diversity-Unique Observations Only
3.4. Unique Observations, Listing Top Ranking Species on Specific Substrates
3.5. Substrate Association Analyses, Unique Observations
3.6. Substrate Association Analyses, Including Redundant Observations
3.7. Analysis of Variation of Biomass Degrading Capacity among Species of Same Genus
3.8. Redundancy Multiplication Score: Ratio of Redundant vs. Unique “Function;Family” Observations
3.9. Taxonomic Distribution of Fungal Phyla According to Enzyme Biomass Degrading Capacity
3.10. Biomass Degrading Capacity of Iconic Species and Life Forms
4. Discussion
4.1. Discussion and Conclusions
4.2. Applied Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, C.; Pang, A.-P.; Yang, H.; Lv, R.; Zhou, Z.; Wu, F.-G.; Lin, F. Tracking Localization and Secretion of Cellulase spatiotemporally and directly in living Trichoderma reesei. Biotechnol. Biofuels 2019, 12, 200. [Google Scholar] [CrossRef]
- Gupta, V.K.; Kubicek, C.P.; Berrin, J.-G.; Wilson, D.W.; Couturier, M.; Berlin, A.; Filho, E.X.F.; Ezeji, T. Fungal Enzymes for Bio-Products from Sustainable and Waste Biomass. Trends Biochem. Sci. 2016, 41, 633–645. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, C.O.G.; Vaz, R.P.; Filho, E.X.F. Bringing Plant Cell Wall-Degrading Enzymes into the Lignocellulosic Biorefinery Concept. Biofuels Bioprod. Bioref. 2018, 12, 277–289. [Google Scholar] [CrossRef]
- Berrin, J.-G.; Navarro, D.; Couturier, M.; Olivé, C.; Grisel, S.; Haon, M.; Taussac, S.; Lechat, C.; Courtecuisse, R.; Favel, A.; et al. Exploring the Natural Fungal Biodiversity of Tropical and Temperate Forests towards Improvement of Biomass Conversion. Appl. Environ. Microbiol. 2012, 78, 6483–6490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lange, L.; Agger, J.W.; Meyer, A.S. Unlocking the Full Potential of Fungi for a More Sustainable World. In Grand Challenges in Fungal Biotechnology; Nevalainen, H., Ed.; Springer: Berlin/Heidelberg, Germany, 2020; pp. 3–33. ISBN 978-3-030-29541. [Google Scholar] [CrossRef]
- Available online: Mycocosm.jgi.doe.gov (accessed on 1 February 2021).
- Lombard, V.; Golaconda, R.H.; Drula, E.; Coutinho, P.M.; Henrissat, B. The Carbohydrate-Active Enzymes Database (CAZy) in 2013. Nucleic Acids Res. 2014, 42, 490–495. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Zhang, H.; Zheng, J.; Dovoedo, P.; Yin, Y. eCAMI: Simultaneous Classification and Motif identification for Enzyme Annotation. Bioinformatics 2020, 36, 2068–2075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Yohe, T.; Huang, L.; Entwistle, S.; Wu, P.; Yang, Z.; Busk, P.K.; Xu, Y.; Yin, Y. DbCAN2: A Meta Server for Automated Carbohydrate-Active Enzyme Ennotation. Nucleic Acids Res. 2018, 46, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Jones, D.R.; Thomas, D.; Alger, N.; Ghavidel, A.; Douglas, I.G.; Wade, A.D. SACCHARIS: An Automated Pipeline to Streamline Discovery of Carbohydrate Active Enzyme Activities within Polyspecific Families and De Novo Sequence Datasets. Biotechnol. Biofuels 2018, 11, 27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, K.; Lange, L. Peptide-Based Classification and Functional Annotation of Carbohydrate-Active Enzymes Conserved Unique Peptide Patterns (CUPP). Biotechnol. Biofuels 2019, 12, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, K.; Hunt, C.J.; Lange, L.; Meyer, A.S. Conserved Unique Peptide Patterns (CUPP) Online Platform: Peptide-Based Functional Annotation of Carbohydrate Active Enzymes. Nucleic Acids Res. 2020, 48, W110–W115. [Google Scholar] [CrossRef] [PubMed]
- Mistry, J.; Finn, R.D.; Eddy, S.R.; Bateman, A.; Punta, M. Challenges in Homology Search: HMMER3 and Convergent Evolution of Coiled-Coil Regions. Nucleic Acids Res. 2013, 41, e121. [Google Scholar] [CrossRef] [Green Version]
- Barrett, K.; Jensen, K.; Meyer, A.S.; Frisvad, J.C.; Lange, L. Fungal Secretome Profile Categorization of CAZymes by Function and Family Corresponds to Fungal Phylogeny and Taxonomy: Example Aspergillus and Penicillium. Sci. Rep. 2020, 10, 5158. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.R.; Koren, S.; Sutton, G. Assembly Algorithms for Next-Generation Sequencing Data. Genomics 2010, 95, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Hoff, K.J.; Stanke, M. WebAUGUSTUS—A Web Service for Training AUGUSTUS and Predicting Genes in Eukaryotes. Nucleic Acids Res. 2013, 41, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Nachtweide, S.; Stanke, M. Multi-Genome Annotation with AUGUSTUS. Methods Mol. Biol. 2019, 1962, 139–160. [Google Scholar] [CrossRef]
- Spataphora, J.W.; Aime, M.C.; Grigoriev, I.V.; Martin, F.; Stajich, J.E.; Blackwell, M. The Fungal Tree of Life: From Molecular Systematics to Genome-Scale Phylogenies. Microbiol. Spectr. 2017, 5, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Steenwyk, J.L.; Chang, Y.; Wang, Y.; James, T.Y.; Stajich, J.E.; Spatafora, J.W.; Groenewald, M.; Dunn, C.W.; Hittinger, C.T.; et al. A Genome-Scale Phylogeny of Fungi; Insights into early Evolution, Radiations, and the Relationship between Taxonomy and Phylogeny. bioRxiv 2020. [Google Scholar] [CrossRef]
- James, T.Y.; Stajich, J.E.; Hittinger, C.T.; Rokas, A. Toward a Fully Resolved Fungal Tree of Life. Annu. Rev. Microbiol. 2020, 74, 291–313. [Google Scholar] [CrossRef]
- Lange, L.; Barrett, K.; Pilgaard, B.; Gleason, F.; Tsang, A. Enzymes of Early-Diverging, Zoosporic Fungi. Appl. Microbiol. Biotechnol. 2019, 103, 6885–6902. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, M.J.; Theodorou, M.K.; Brookman, J.L. Molecular Analysis of the Anaerobic Rumen Fungus Orpinomyces—Insights into an AT-Rich Genome. Microbiology 2005, 151, 121–133. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Youssef, N.H.; Couger, M.B.; Hanafy, R.A.; Elshahed, M.S.; Stajicha, J.E. Molecular Dating of the Emergence of Anaerobic Rumen Fungi and the Impact of Laterally Acquired Genes. mSystems 2019, 4, e00247-19. [Google Scholar] [CrossRef] [Green Version]
- Weitz, H.J.; Campbell, C.D.; Killham, K. Development of a Novel, Bioluminescence-Based, Fungal Bioassay for Toxicity Testing. Environ. Microbiol. 2002, 4, 375–431. [Google Scholar] [CrossRef]
- Leonard, M.; Kühn, A.; Harting, R.; Maurus, I.; Nagel, A.; Starke, J.; Kusch, H.; Valerius, O.; Feussner, K.; Feussner, I.; et al. Verticillium longisporum Elicits Media-Dependent Secretome Responses with Capacity to Distinguish Between Plant-Related Environments. Front. Microbiol. 2020, 11, 1876. [Google Scholar] [CrossRef]
- Damm, U.; Fourie, P.H.; Crous, P.W. Coniochaeta (Lecythophora), Collophora gen. nov. and Phaeomoniella species Associated with Wood Necroses of Prunus Trees. Persoonia 2010, 24, 60–80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiménez, J.V.; Wang, Y.; Chaib de Mares, M.; Cortes-Tolalpa, L.; Mertens, J.A.; Hector, R.E.; Lin, J.; Johnson, J.; Lipzen, A.; Barry, K. Defining the Eco-Enzymological Role of the Fungal Strain Coniochaeta sp. 2T2.1 in a Tripartite Lignocellulolytic Microbial Consortium. FEMS Microbiol. Ecol. 2020, 6, fiz186. [Google Scholar] [CrossRef]
- Lakornwong, W.; Kanokmedhakul, K.; Soytong, K.; Unartngam, A.; Tontapha, S.; Amornkitbamrung, V.; Kanokmedhakul, S. Types A and D Trichothecene Mycotoxins from the Fungus Myrothecium roridum. Planta Med. 2019, 85, 774–780. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knapp, D.G.; Németh, J.B.; Barry, K.; Hainaut, M.; Henrissat, B.; Johnson, J.; Kuo, A.; Lim, J.H.P.; Lipzen, A.; Nolan, M.; et al. Comparative Genomics Provides Insights into the Lifestyle and Reveals Functional Heterogeneity of Dark Septate Endophytic Fungi. Sci. Rep. 2018, 8, 6321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Knapp, D.G.; Pintye, A.; Kovacs, G.M. The Dark Side Is Not Fastidious—Dark Septate Endophytic Fungi of Native and Invasive Plants of Semiarid Sandy Areas. PLoS ONE 2012, 7, e32570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomes, R.R.; Glienke, C.; Videira, S.I.R.; Lombard, L.; Groenewald, J.Z.; Crous, P.W. Diaporthe: A Genus of Endophytic, Saprobic and Plant Pathogenic Fungi. Persoonia 2013, 31, 1–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, S.; Darwish, O.; Alkharouf, N.W. Analysis of the Genome Sequence of Phomopsis longicolla: A Fungal Pathogen causing Phomopsis Seed Decay in Soybean. BMC Genom. 2017, 18, 688. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.J.; Zhao, Q.; Wang, S.X.; Yang, Z.L. What is the Radicate Oudemansiella cultivated in China. Phytotaxa 2016, 286, 1. [Google Scholar] [CrossRef]
- Kanokmedhakul, S.; Lekphrom, R.; Kanokmedhakul, K.; Hahnvajanawong, C.; Bua-Art, S.; Saksirirat, W.; Prabpai, S.; Kongsaeree, P. Cytotoxic Sesquiterpenes from Luminescent Mushroom Neonothopanus nambi. Tetrahedron 2012, 68, 8261–8266. [Google Scholar] [CrossRef]
- Strack, R. Harnessing Fungal Bioluminescence. Nat. Methods 2019, 16, 140. [Google Scholar] [CrossRef]
- Summerbell, R.C.; Gueidan, C.; Schroers, H.J.; de Hoog, G.S.; Starink, M.; Rosete, Y.A.; Guarro, J.; Scott, J.A. Acremonium Phylogenetic Overview and Revision of Gliomastix, Sarocladium, and Trichothecium. Stud. Mycol. 2011, 68, 139–162. [Google Scholar] [CrossRef]
- Haridas, S.; Albert, R.; Binder, M.; Bloem, J.; LaButti, K.; Salamov, A.; Andreopoulos, B.; Baker, S.E.; Barry, K.; Bills, G.; et al. 101 Dothideomycetes Genomes: A Test Case for Predicting Lifestyles and Emergence of Pathogens. Stud. Mycol. 2020, 96, 141–153. [Google Scholar] [CrossRef]
- Soe, T.W.; Han, C.; Fudou, R.; Kaida, K.; Sawaki, Y.; Tomura, T.; Ojika, M. Clavariopsins C–I, Antifungal Cyclic Depsipeptides from the Aquatic Hyphomycete Clavariopsis aquatica. J. Nat. Prod. 2019, 82, 1971–1978. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Hyde, K.D.; Mckenzie, E.; Jiang, Y.-L.; Li, D.-W.; Zhao, D.-G. Overview of Stachybotrys (Memnoniella) and current species status. Fungal Divers. 2015, 71, 17–83. [Google Scholar] [CrossRef]
- Richard, F.; Bellanger, J.-M.; Clowez, P.; Hansen, K.; O’Donnell, K.; Urban, A.; Sauve, M.; Courtecuisse, R.; Moreau, P.-M. True morels (Morchella, Pezizales) of Europe and North America: Evolutionary Relationships Inferred from Multilocus Data and a Unified Taxonomy. Mycologia 2015, 107, 359–382. [Google Scholar] [CrossRef]
- Sun, Z.-B.; Li, S.-D.; Ren, Q.; Xu, J.-L.; Lu, X.; Sun, M.-H. Biology and applications of Clonostachys rosea. J. Appl. Microbiol. 2020, 129, 486–495. [Google Scholar] [CrossRef] [Green Version]
- Yuan, S.J.; Li, W.-Y.; Jian, T.-T.; Huang, Y. Anti-aging Activity of Xylaria striata in Drosophila melanogaster. South Asian J. Res. Microbiol. 2019, 3, 1–7. [Google Scholar] [CrossRef]
- Maya-Yescas, M.E.; Revah, S.; Le Borgne, S.; Valenzuela, J.; Palacios-González, E.; Terrés-Rojas, E.; Vigueras-Ramírez, G. Growth of Leucoagaricus gongylophorus Möller (Singer) and Production of Key Enzymes in Submerged and Solid-State Cultures with Lignocellulosic Substrates. Biotechnol. Lett. 2021. [Google Scholar] [CrossRef]
- Grigoriev, I.V.; Nikitin, R.; Haridas, S.; Kuo, A.; Ohm, R.; Otillar, R.; Riley, R.; Salamov, A.; Zhao, X.; Korzeniewski, F.; et al. MycoCosm Portal: Gearing up for 1000 Fungal Genomes. Nucleic Acids Res. 2014, 42, D699–D704. [Google Scholar] [CrossRef] [PubMed]
- Grigoriev, I.V.; Cullen, D.; Goodwin, S.B.; Hibbett, D.; Jeffries, T.W.; Kubicek, C.P.; Kuske, C.; Magnuson, J.K.; Spatafora, J.W.; Tsang, A.; et al. Fueling the Future with Fungal Genomics. Mycology 2011, 2, 192–209. [Google Scholar] [CrossRef]
- Vesth, T.C.; Nybo, J.L.; Theobald, S.; Frisvad, J.C.; Larsen, T.O.; Nielsen, K.F.; Hoof, J.B.; Brandl, J.; Salamov, A.; Riley, R.; et al. Investigation of Inter-and Intraspecies Variation through Genome Sequencing of Aspergillus Section Nigri. Nat. Genet. 2018, 50, 1688–1695. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, C.L.M.; Lacey, H.C.; Vuong, D.; Pitt, J.I.; Lange, L.; Lacey, E.; Pilgaard, B.; Chooi, Y.-H.; Piggott, A.M. Comprehensive Chemotaxonomic and Genomic Profiling of a Biosynthetically Talented Australian Fungus, Aspergillus burnettii sp. nov. Fungal Genet. Biol. 2020, 143, 103435. [Google Scholar] [CrossRef]
- Coleine, C.; Masonjones, S.; Selbmann, L.; Zucconi, L.; Onofri, S.; Pacelli, C.; Stajich, J. Draft Genome Sequences of the Antarctic Endolithic Fungi Rachicladosporium antarcticum CCFEE 5527 and Rachicladosporium sp. CCFEE 5018. Genome Announc. 2017, 5, e00397-17. [Google Scholar] [CrossRef] [Green Version]
- Haitjema, C.H.; Gilmore, S.P.; Henske, J.K.; Solomon, K.V.; de Groot, R.; Kuo, A.; Mondo, S.J.; Salamov, A.A.; LaButti, K.; Zhao, Z.; et al. A Parts List for Fungal Cellulosomes Revealed by Comparative Genomics. Nat. Microbiol. 2017, 2, 17087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elekwachi, C.O.; Wang, Z.; Wu, X.; Rabee, A.; Forster, R.J. Total rRNA-Seq Analysis Gives Insight into Bacterial, Fungal, Protozoal and Archaeal Communities in the Rumen Using an Optimized RNA Isolation Method. Front. Microbiol. 2017, 8, 1814. [Google Scholar] [CrossRef] [PubMed]
- Matthews, C.; Crispie, F.; Lewis, E.; Reid, M.; O’Toole, P.W.; Cotter, P.D. The Rumen Microbiome: A Crucial Consideration when Optimising Milk and Meat Production and Nitrogen Utilisation Efficiency. Gut Microbes 2019, 10, 115–132. [Google Scholar] [CrossRef]
- Benoit, I.; Culleton, H.; Zhou, M.; DiFalco, M.; Aguilar-Osorio, G.; Battaglia, E.; Bouzid, O.; Brouwer, C.P.J.M.; El-Bushari, H.B.O.; Coutinho, P.M. Closely Related Fungi Employ Diverse Enzymatic Strategies to Degrade Plant Biomass. Biotechnol. Biofuels 2015, 8, 107. [Google Scholar] [CrossRef]
- Gustafson, S. FAO SOFA Report 2019: New Insights into Food Loss and Waste October 22, 2019, IFPRI Blog. Available online: https://www.ifpri.org/blog/fao-sofa-report-2019-new-insights-food-loss-and-waste (accessed on 1 February 2021).
- Schilling, C.; Weiss, S. A Roadmap for Industry to Harness Biotechnology for a More Circular Economy. New Biotechnol. 2021, 60, 9–11. [Google Scholar] [CrossRef] [PubMed]
- Von Braun, J. Bioeconomy and Its Set of Innovations for Sustainability. Ind. Biotechnol. 2020, 16, 142–143. [Google Scholar] [CrossRef]
A Ranking: Total | Taxonomy | Target Substrate of Encoded CAZymes | |||||
---|---|---|---|---|---|---|---|
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total |
Pecoramyces ruminatium | Neocallimastigomycetes | Chytridiomycota | 248 | 85 | 208 | 0 | 541 |
Neocallimastix californiae | Neocallimastigomycetes | Chytridiomycota | 232 | 122 | 172 | 0 | 526 |
Mycena citricolor | Agaricomycetes | Basidiomycota | 91 | 204 | 50 | 149 | 494 |
Verticillium longisporum | Sordariomycetes | Ascomycota | 139 | 176 | 74 | 95 | 484 |
Coniochaeta sp. 2T2.1 | Sordariomycetes | Ascomycota | 117 | 102 | 108 | 98 | 425 |
Paramyrothecium roridum | Sordariomycetes | Ascomycota | 106 | 163 | 63 | 79 | 411 |
Cadophora sp. DSE1049 | Leotiomycetes | Ascomycota | 105 | 138 | 75 | 91 | 409 |
Diaporthe ampelina | Sordariomycetes | Ascomycota | 116 | 129 | 58 | 97 | 400 |
Diaporthe longicolla | Sordariomycetes | Ascomycota | 111 | 128 | 56 | 90 | 385 |
Diaporthe sp. NJD1 | Sordariomycetes | Ascomycota | 111 | 118 | 58 | 94 | 381 |
B Ranking: Cellulose | Taxonomy | Target Substrate of Encoded CAZymes | |||||
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total |
Pecoramyces ruminatium | Neocallimastigomycetes | Chytridiomycota | 248 | 85 | 208 | 0 | 541 |
Neocallimastix californiae | Neocallimastigomycetes | Chytridiomycota | 232 | 122 | 172 | 0 | 526 |
Verticillium longisporum | Sordariomycetes | Ascomycota | 139 | 176 | 74 | 95 | 484 |
Piromyces sp. E2 | Neocallimastigomycetes | Chytridiomycota | 128 | 47 | 117 | 0 | 292 |
Coniochaeta sp. 2T2.1 | Sordariomycetes | Ascomycota | 117 | 102 | 108 | 98 | 425 |
Diaporthe ampelina | Sordariomycetes | Ascomycota | 116 | 129 | 58 | 97 | 400 |
Diaporthe longicolla | Sordariomycetes | Ascomycota | 111 | 128 | 56 | 90 | 385 |
Diaporthe sp. NJD1 | Sordariomycetes | Ascomycota | 111 | 118 | 58 | 94 | 381 |
Diaporthe capsici | Sordariomycetes | Ascomycota | 107 | 118 | 58 | 93 | 376 |
Paramyrothecium roridum | Sordariomycetes | Ascomycota | 106 | 163 | 63 | 79 | 411 |
C Ranking: Xylan | Taxonomy | Target Substrate of Encoded CAZymes | |||||
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total |
Pecoramyces ruminatium | Neocallimastigomycetes | Chytridiomycota | 248 | 85 | 208 | 0 | 541 |
Neocallimastix californiae | Neocallimastigomycetes | Chytridiomycota | 232 | 122 | 172 | 0 | 526 |
Piromyces sp. E2 | Neocallimastigomycetes | Chytridiomycota | 128 | 47 | 117 | 0 | 292 |
Coniochaeta sp. 2T2.1 | Sordariomycetes | Ascomycota | 117 | 102 | 108 | 98 | 425 |
Cadophora sp. DSE1049 | Leotiomycetes | Ascomycota | 105 | 138 | 75 | 91 | 409 |
Verticillium longisporum | Sordariomycetes | Ascomycota | 139 | 176 | 74 | 95 | 484 |
Rachicladosporium antarcticum | Dothideomycetes | Ascomycota | 68 | 32 | 72 | 56 | 228 |
Piromyces finnis | Neocallimastigo | Chytridiomycota | 91 | 30 | 71 | 0 | 192 |
Exidia glandulosa | Agaricomycetes | Basidiomycota | 82 | 61 | 70 | 114 | 327 |
Chalara longipes | Leotiomycetes | Ascomycota | 94 | 82 | 69 | 79 | 324 |
D Ranking: Pectin | Taxonomy | Target Substrate of Encoded CAZymes | |||||
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total |
Mycena citricolor | Agaricomycetes | Basidiomycota | 91 | 204 | 50 | 149 | 494 |
Verticillium longisporum | Sordariomycetes | Ascomycota | 139 | 176 | 74 | 95 | 484 |
Paramyrothecium roridum | Sordariomycetes | Ascomycota | 106 | 163 | 63 | 79 | 411 |
Colletotrichum truncatum | Sordariomycetes | Ascomycota | 90 | 150 | 59 | 72 | 371 |
Colletotrichum camelliae | Sordariomycetes | Ascomycota | 90 | 139 | 65 | 77 | 371 |
Colletotrichum sp. COLG25 | Sordariomycetes | Ascomycota | 90 | 139 | 63 | 76 | 368 |
Colletotrichum karsti | Sordariomycetes | Ascomycota | 90 | 139 | 57 | 71 | 357 |
Colletotrichum tropicale | Sordariomycetes | Ascomycota | 89 | 139 | 63 | 77 | 368 |
Cadophora sp. DSE1049 | Leotiomycetes | Ascomycota | 105 | 138 | 75 | 91 | 409 |
Aspergillus latus | Eurotiomycetes | Ascomycota | 95 | 137 | 53 | 58 | 343 |
E Ranking: Lignin | Taxonomy | Target Substrate of Encoded CAZymes | |||||
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total |
Mycena citricolor | Agaricomycetes | Basidiomycota | 91 | 204 | 50 | 149 | 494 |
Exidia glandulosa | Agaricomycetes | Basidiomycota | 82 | 61 | 70 | 114 | 327 |
Hymenopellis chiangmaiae | Agaricomycetes | Basidiomycota | 77 | 70 | 44 | 104 | 295 |
Ganoderma boninense | Agaricomycetes | Basidiomycota | 77 | 36 | 44 | 104 | 261 |
Neonothopanus nambi | Agaricomycetes | Basidiomycota | 58 | 18 | 33 | 102 | 211 |
Coniochaeta sp. 2T2.1 | Sordariomycetes | Ascomycota | 117 | 102 | 108 | 98 | 425 |
Ganoderma sp. BRIUMSc | Agaricomycetes | Basidiomycota | 62 | 31 | 34 | 98 | 225 |
Diaporthe ampelina | Sordariomycetes | Ascomycota | 116 | 129 | 58 | 97 | 400 |
Hymenopellis radicata | Agaricomycetes | Basidiomycota | 58 | 55 | 34 | 96 | 243 |
Verticillium longisporum | Sordariomycetes | Ascomycota | 139 | 176 | 74 | 95 | 484 |
A Ranked: Total | Taxonomy | Target Substrate of Encoded CAZymes | |||||
---|---|---|---|---|---|---|---|
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total |
Colletotrichum sp. COLG25 | Sordariomycetes | Ascomycota | 17 | 53 | 24 | 18 | 112 |
Colletotrichum tropicale | Sordariomycetes | Ascomycota | 16 | 53 | 25 | 18 | 112 |
Colletotrichum aenigma | Sordariomycetes | Ascomycota | 16 | 53 | 25 | 18 | 112 |
Colletotrichum asianum | Sordariomycetes | Ascomycota | 16 | 53 | 24 | 18 | 111 |
Colletotrichum sp. COLG31 | Sordariomycetes | Ascomycota | 16 | 53 | 24 | 18 | 111 |
Colletotrichum siamense | Sordariomycetes | Ascomycota | 16 | 53 | 23 | 18 | 110 |
Paramyrothecium roridum | Sordariomycetes | Ascomycota | 18 | 49 | 25 | 17 | 109 * |
Colletotrichum viniferum | Sordariomycetes | Ascomycota | 16 | 51 | 23 | 19 | 109 * |
Colletotrichum fructicola | Sordariomycetes | Ascomycota | 15 | 52 | 24 | 18 | 109 * |
Colletotrichum gloeosporioides | Sordariomycetes | Ascomycota | 15 | 52 | 24 | 18 | 109 * |
B Ranked Cellulose | Taxonomy | Target substrate of encoded CAZymes | |||||
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total |
Paramyrothecium roridum | Sordariomycetes | Ascomycota | 18 | 49 | 25 | 17 | 109 |
Gliomastix tumulicola | Sordariomycetes | Ascomycota | 18 | 40 | 24 | 15 | 97 |
Hymenoscyphus herbarum | Leotiomycetes | Ascomycota | 18 | 43 | 22 | 19 | 102 |
Aaosphaeria arxii | Dothideomycetes | Ascomycota | 18 | 41 | 22 | 16 | 97 |
Memnoniella echinata | Sordariomycetes | Ascomycota | 18 | 41 | 21 | 17 | 97 |
Clavariopsis aquatica | Sordariomycetes | Ascomycota | 18 | 35 | 19 | 18 | 90 |
Xylaria striata | Sordariomycetes | Ascomycota | 17 * | 43 | 25 | 17 | 102 |
Colletotrichum sp. COLG25 | Sordariomycetes | Ascomycota | 17 * | 53 | 24 | 18 | 112 |
Paraphaeosphaeria sporulosa | Dothideomycetes | Ascomycota | 17 * | 41 | 24 | 17 | 99 |
Stagonosporopsis tanaceti | Dothideomycetes | Ascomycota | 17 * | 46 | 23 | 18 | 104 |
C Ranked: Xylan | Taxonomy | Target substrate of encoded CAZymes | |||||
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total |
Cadophora sp. DSE1049 | Leotiomycetes | Ascomycota | 16 | 45 | 26 | 16 | 103 |
Paramyrothecium roridum | Sordariomycetes | Ascomycota | 18 | 49 | 25 | 17 | 109 |
Xylaria striata | Sordariomycetes | Ascomycota | 17 | 43 | 25 | 17 | 102 |
Colletotrichum tropicale | Sordariomycetes | Ascomycota | 16 | 53 | 25 | 18 | 112 |
Colletotrichum aenigma | Sordariomycetes | Ascomycota | 16 | 53 | 25 | 18 | 112 |
Clonostachys rosea | Sordariomycetes | Ascomycota | 16 | 45 | 25 | 15 | 101 |
Pleosporales sp. UM 1110 2012 | Dothideomycetes | Ascomycota | 16 | 39 | 25 | 17 | 97 |
Gliomastix tumulicola | Sordariomycetes | Ascomycota | 18 | 40 | 24 * | 15 | 97 |
Colletotrichum sp. COLG25 | Sordariomycetes | Ascomycota | 17 | 53 | 24 * | 18 | 112 |
Paraphaeosphaeria sporulosa | Dothideomycetes | Ascomycota | 17 | 41 | 24 * | 17 | 99 |
D Ranked: Pectin | Taxonomy | Target substrate of encoded CAZymes | |||||
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total |
Colletotrichum tropicale | Sordariomycetes | Ascomycota | 16 | 53 | 25 | 18 | 112 |
Colletotrichum aenigma | Sordariomycetes | Ascomycota | 16 | 53 | 25 | 18 | 112 |
Colletotrichum sp. COLG25 | Sordariomycetes | Ascomycota | 17 | 53 | 24 | 18 | 112 |
Colletotrichum asianum | Sordariomycetes | Ascomycota | 16 | 53 | 24 | 18 | 111 |
Colletotrichum sp. COLG31 | Sordariomycetes | Ascomycota | 16 | 53 | 24 | 18 | 111 |
Colletotrichum siamense | Sordariomycetes | Ascomycota | 16 | 53 | 23 | 18 | 110 |
Colletotrichum fructicola | Sordariomycetes | Ascomycota | 15 | 52 | 24 | 18 | 109 |
Colletotrichum gloeosporioides | Sordariomycetes | Ascomycota | 15 | 52 | 24 | 18 | 109 |
Colletotrichum viniferum | Sordariomycetes | Ascomycota | 16 | 51 * | 23 | 19 | 109 |
Colletotrichum camelliae | Sordariomycetes | Ascomycota | 16 | 51 * | 23 | 18 | 108 |
E Ranked: Lignin | Taxonomy | Target substrate of encoded CAZymes | |||||
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total |
Colletotrichum viniferum | Sordariomycetes | Ascomycota | 16 | 51 | 23 | 19 * | 109 |
Colletotrichum musae | Sordariomycetes | Ascomycota | 16 | 47 | 22 | 19 * | 104 |
Fusarium oxysporum | Sordariomycetes | Ascomycota | 16 | 44 | 22 | 19 * | 101 |
Hymenoscyphus herbarum | Leotiomycetes | Ascomycota | 18 | 43 | 22 | 19 * | 102 |
Fusarium oxysporum | Sordariomycetes | Ascomycota | 15 | 42 | 21 | 19 * | 97 |
Eutypa lata | Sordariomycetes | Ascomycota | 16 | 39 | 21 | 19 * | 95 |
Auricularia subglabra | Agaricomycetes | Basidiomycota | 16 | 23 | 21 | 19 * | 79 |
Hymenoscyphus salicellus | Leotiomycetes | Ascomycota | 16 | 42 | 20 | 19 * | 97 |
Hymenoscyphus infarciens | Leotiomycetes | Ascomycota | 16 | 40 | 20 | 19 * | 95 |
Auricularia cornea | Agaricomycetes | Basidiomycota | 17 | 25 | 20 | 19 * | 81 |
Species | Class | Phylum | Cellulose | Pectin | Xylan | Lignin | Total | Pectin + Lignin |
---|---|---|---|---|---|---|---|---|
Mycena citricolor | Agaricomycetes | Basidiomycota | 91 | 204 | 50 | 149 | 494 | 353 |
Verticillium longisporum | Sordariomycetes | Ascomycota | 139 | 176 | 74 | 95 | 484 | 271 |
Paramyrothecium roridum | Sordariomycetes | Ascomycota | 106 | 163 | 63 | 79 | 411 | 242 |
Cadophora sp. DSE1049 | Leotiomycetes | Ascomycota | 105 | 138 | 75 | 91 | 409 | 229 |
Diaporthe ampelina | Sordariomycetes | Ascomycota | 116 | 129 | 58 | 97 | 400 | 226 |
Colletotrichum truncatum | Sordariomycetes | Ascomycota | 90 | 150 | 59 | 72 | 371 | 222 |
Lachnum nothofagi | Leotiomycetes | Ascomycota | 92 | 124 | 60 | 95 | 371 | 219 |
Diaporthe longicolla | Sordariomycetes | Ascomycota | 111 | 128 | 56 | 90 | 385 | 218 |
Colletotrichum camelliae | Sordariomycetes | Ascomycota | 90 | 139 | 65 | 77 | 371 | 217 |
Colletotrichum tropicale | Sordariomycetes | Ascomycota | 89 | 139 | 63 | 77 | 368 | 217 |
All Observations | Only Unique Observations | Redundancy Multiplication Score | |||
---|---|---|---|---|---|
TOTAL | |||||
Pecoramyces ruminatium | 208 | 16 | 13.0 * | ||
Neocallimastix californiae | 172 | 15 | 11.5 * | ||
Mycena citricolor | 117 | 15 | 7.8 | ||
Verticillium longisporum | 108 | 22 | 4.9 | ||
Coniochaeta sp. 2T2.1 | 75 | 26 | 2.9 | ||
Paramyrothecium roridum | 74 | 18 | 4.1 | ||
Cadophora sp. DSE1049 | 72 | 18 | 4.0 | ||
Diaporthe ampelina | 71 | 10 | 7.1 | ||
Diaporthe longicolla | 70 | 20 | 3.5 | ||
Diaporthe sp. NJDP1 | 69 | 23 | 3.0 | ||
Cellulose | |||||
Pecoramyces ruminatium | 204 | 24 | 8.5 * | ||
Neocallimastix californiae | 176 | 37 | 4.8 | ||
Verticillium longisporum | 163 | 49 | 3.3 | ||
Piromyces sp. E2 | 150 | 45 | 3.3 | ||
Coniochaeta sp. 2T2.1 | 139 | 51 | 2.7¤ | ||
Diaporthe ampelina | 139 | 53 | 2.6¤ | ||
Diaporthe longicola | 139 | 49 | 2.8¤ | ||
Diaporthe sp. NJD1 | 139 | 53 | 2.6¤ | ||
Diaporthe capsici | 138 | 45 | 3.1 | ||
Paramyrothecium roridum | 137 | 39 | 3.5 | ||
Xylan | |||||
Pecoramyces ruminatium | 149 | 18 | 8.3 * | ||
Neocallimastix californiae | 114 | 16 | 7.1 | ||
Piromyces sp. E2 | 104 | 17 | 6.1 | ||
Coniochaeta sp. 2T2.1 | 104 | 15 | 6.9 | ||
Cadophora sp. DSE1049 | 102 | 16 | 6.4 | ||
Verticillium longisporum | 98 | 13 | 7.5 | ||
Rachicladosporium antarcticum | 98 | 14 | 7.0 | ||
Piromyces finnis | 97 | 18 | 5.4 | ||
Exidia glandulosa | 96 | 19 | 5.1 | ||
Chalara longipes | 95 | 18 | 5.3 | ||
Pectin | |||||
Mycena citricolor | 204 | 24 | 8.5 * | ||
Verticillium longisporum | 176 | 37 | 4.8 | ||
Paramyrothecium roridum | 163 | 49 | 3.3 | ||
Colletotrichum truncatum | 150 | 45 | 3.3 | ||
Colletotrichum camelliae | 139 | 51 | 2.7¤ | ||
Colletotrichum sp. COLG25 | 139 | 53 | 2.6¤ | ||
Colletotrichum karsti | 139 | 49 | 2.8¤ | ||
Colletotrichum tropicale | 139 | 53 | 2.6¤ | ||
Cadophora sp. DSE1049 | 138 | 45 | 3.1 | ||
Aspergillus latus | 137 | 39 | 3.5 | ||
Lignin | |||||
Mycena citricolor | 149 | 18 | 8.3 * | ||
Exidia glandulosa | 114 | 16 | 7.1 | ||
Hymenopellis chiangmaiae | 104 | 17 | 6.1 | ||
Ganoderma boninense | 104 | 15 | 6.9 | ||
Neonothopanus nambi | 102 | 16 | 6.4 | ||
Coniochaeta sp. 2T2.1 | 98 | 13 | 7.5 | ||
Ganoderma sp. BRIUMSc | 98 | 14 | 7.0 | ||
Diaporthe ampelina | 97 | 18 | 5.4 | ||
Hymenopellis radicata | 96 | 19 | 5.1 | ||
Verticillium longisporum | 95 | 18 | 5.3 |
Total Carbohydrate Biomass Degrading Capacity | |||||
---|---|---|---|---|---|
Target Substrate of Encoded CAZymes | |||||
Verticillium longisporum | Ascomycota | Cellulose | Xylan | Lignin | Pectin |
Coniochaeta sp. | Ascomycota | Cellulose | Xylan | Lignin | |
Pecaromyces ruminatum | Neocallimastigo | Cellulose | Xylan | ||
Neocallimastix california | Neocallimastigo | Cellulose | Xylan | ||
Mycena citricolor | Basidiomycota | Pectin | Lignin | ||
Paramyrothecium roridum | Ascomycota | Cellulose | Xylan | ||
Cadophora sp. | Ascomycota | Xylan | Pectin | ||
Diaporthe ampelina | Ascomycota | Cellulose | Lignin | ||
Exidia glandulosa | Basidiomycota | Xylan | Lignin | ||
Function specificity diversity | |||||
Target substrate of encoded CAZymes | |||||
Colletotricum COLG25 | Ascomycota | Cellulose | Xylan | Pectin | |
Paramyrothecium roridum | Ascomycota | Cellulose | Xylan | ||
Gliomastix tumulicola | Ascomycota | Cellulose | Xylan | ||
Colletotrichum viniferum | Ascomycota | Pectin | Lignin | ||
Colletotrichum tropicale | Ascomycota | Xylan | Lignin | ||
Colletotrichum aenigma | Ascomycota | Xylan | Pectin | ||
Hymenoschuphus herbarum | Ascomycota | Cellulose | Lignin | ||
Xylaria stricta | Ascomycota | Cellulose | Xylan | ||
Paraphaerosphaeria sporulosa | Ascomycota | Cellulose | Xylan |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lange, L.; Barrett, K.; Meyer, A.S. New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences. J. Fungi 2021, 7, 207. https://doi.org/10.3390/jof7030207
Lange L, Barrett K, Meyer AS. New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences. Journal of Fungi. 2021; 7(3):207. https://doi.org/10.3390/jof7030207
Chicago/Turabian StyleLange, Lene, Kristian Barrett, and Anne S. Meyer. 2021. "New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences" Journal of Fungi 7, no. 3: 207. https://doi.org/10.3390/jof7030207
APA StyleLange, L., Barrett, K., & Meyer, A. S. (2021). New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences. Journal of Fungi, 7(3), 207. https://doi.org/10.3390/jof7030207