Aspergillus in Children and Young People with Cystic Fibrosis: A Narrative Review
Abstract
:1. Introduction
2. Antifungal Immunity in Cystic Fibrosis
2.1. Innate Immune Response
2.1.1. Pathogen Recognition
2.1.2. Epithelial Cells
2.1.3. Macrophages
2.1.4. Neutrophils
2.2. Adaptive Immune Response
T Cell Responses
3. Non-Allergic Aspergillus Infection
3.1. Clinical Epidemiology
Study Type | Population and Follow-Up | Definition of Aspergillus Colonization | Outcomes of Aspergillus Colonization |
---|---|---|---|
Bronchoalveolar lavage studies | |||
Begum 2022 [118]: Australasian CF BAL study (1999–2017) | n = 119 children with routine BAL at 5 years old Median age 5 years (IQR 5.0–5.1) followed up to 12.5 years (IQR 11.4–13.8) 20 (16.8%) Aspergillus positive | BAL positive culture for Aspergillus at 5 years old | Multivariable analyses showed no association of Aspergillus positive BAL at 5 years old with increased lung function decline to adolescence |
Breuer 2020 [20]: Australian respiratory early surveillance team for CF surveillance program (2010–2018) | n = 330 children with annual CT scans and BAL Median age 3.0 years (IQR 1.2–4.5) 115 children (34.9%) had ≥1 Aspergillus positive BAL (A. fumigatus accounted for 75% of Aspergillus species identified in BAL) | ≥1 BAL positive culture for Aspergillus | Aspergillus ever cultured from BAL during first 5 years of life associated with worse CT PRAGMA score in same year, following year, and at the end of the study at 5 or 6 years old (adjusted for pancreatic insufficiency, age, gender, CFTR genotype, and other infections; and baseline CT score for 1 year progression results) Aspergillus positive BAL significantly associated with BAL markers of neutrophil inflammation (p < 0.001) Aspergillus positive BAL significantly associated respiratory admissions risk in the subsequent year (p = 0.008) |
Harun 2019 [21] Australian CF data registry (2009–2018) | n = 156 Median age 5.05 years (IQR 4.99–5.13 years) 28 (17.9%) BAL positive at 5 years old for Aspergillus | BAL positive culture for Aspergillus at 5 years old | No association of Aspergillus positive BAL at 5 years old with lung function decline from 5 to 14 years old (measured by ppFEV1) Aspergillus positive BAL at 5 years old associated with air trapping on CT chest contemporaneously but no bronchiectasis |
Ramsey 2014 [9]: Australian respiratory early surveillance team for CF (2002–2011) | n = 56 routine chest CT followed by bronchoscopy at 3, 12, and 24 months old Age at first infant visit mean 0.98 years (0.09 SD) n = 7 with ≥1 routine BAL positive for Aspergillus | ≥1 BAL positive culture for Aspergillus | Aspergillus positive BAL was associated with reduced lung function two years later (mean −11.3% FEV0.75 (95% CI −18.9 to −3.1, p < 0.01)) (adjusted for height, gender, age, test type, and test center) |
Sputum studies | |||
Blomquist 2022 [101]: Swedish Registry-based case-control study (2014–2018) | n = 437, ABPA excluded Mean age of Aspergillus colonized group: 21.5 years (+/−12.8 years SD) Mean age of non-Aspergillus colonized group: 23.9 years (+/−13.4 years SD) 64 (14.6%) Aspergillus Colonization | ≥2 positive airway cultures in 12-month period | Aspergillus colonization was not associated with a more rapid lung function decline or increased use of IV antibiotics compared to the non-colonized group pwCF with Aspergillus colonization treated with antifungals had a greater lung function decline compared to not treated Aspergillus colonization was associated with increased hospital days, use of inhaled antibiotics, IgE levels, and eosinophil counts compared to the non-colonized group |
Al Shakirchi 2021 [98]: Retrospective observational cohort study (2000–2015) | n = 132 children and adults Mean age 24.7 years (range 6 to 66 years old) n = 77 (58%) colonized with A. fumigatus | A. fumigatus in sputum culture ≥1/year | A. fumigatus colonization 2 or 3 years in a row was associated with increased lung function decline after adjustment for age and gender and after exclusion of ABPA patients Eradication of Aspergillus fumigatus colonization, spontaneously or with treatment, was associated with improved pp FEV1 |
Hector 2016 [18]: Longitudinal 10-year retrospective study (1992–2012) | n = 770 children Mean age 9.4 years (+/−8.56 SD) at inclusion A. fumigatus colonization according to Leeds categories: 0: 88.6%, 1: 0%, 2: 4.8%, 3: 6.6% | A. fumigatus in sputum as per Leeds categories * | An association was shown between A. colonization Leeds criteria 1 to 3 versus Leeds criteria 0 and lower lung function (p < 0.0001) (adjusted for multiple testing) |
Noni 2015 [99]: Observational case-control study (1989–2013) | n = 80 children Median 14 years (IQR 12–15.75) 20 children with chronic A. fumigatus colonization, age, and sex-matched with 60 controls | Case: chronic ≥ 2 positive sputum cultures/year Control: ≥4 negative sputum cultures/year | Patients with chronic A. fumigatus colonization had 8.66% lower FEV1 (p = 0.02) during a 7-year period compared to those never colonized with Aspergillus (after adjustment for baseline FEV1) |
Fillaux 2012 [19]: Longitudinal study (1995–2007) | n = 251 children and adults Median age at end of study 16.3 years (IQR 9.8–23.6) 37 (18%) persistent Aspergillus colonization | Persistent A. fumigatus colonization ≥ 3 positive sputum cultures in 6-months taken at intervals of ≥1 month | Persistent A. fumigatus colonization associated with a larger decline in lung function compared to the control group (adjusted OR 10.7 (95% CI 3.0 to 18.3)) |
De Vrankrijker 2011 [97]: Longitudinal retrospective study (2002–2007) | n = 163 adults and children (ABPA excluded) in longitudinal study Age range 7 to 29 years Grouped according to Aspergillus cultures: Group 1: n = 115, median age 11 years (IQR 7–18) Group 2: n = 29, median age 14 years (IQR 10–19) Group 3: n = 19, median age 21 years (IQR 1–29) | Presence of Aspergillus in >50% of respiratory cultures that year: Group 1: ≤1 year colonization Group 2: 2–3 years colonization Group 3: ≥4 years colonization | No significant difference in adjusted longitudinal analysis in lung function decline between any of the groups |
Amin 2010 [17]: Retrospective cohort study (1999–2006) | n = 230 Age range 7 to 18 years Persistent Aspergillus group mean age 10.9 years Aspergillus negative group mean age 11.1 years 37 (16%) persistent Aspergillus colonization at baseline | Aspergillus colonization: Persistent: ≥2 positive sputum or BAL/year Transient: 1 positive sputum or BAL/year | Both types of colonization were associated with a greater decline in lung function, 3.61% lower ppFEV1 (p ≤ 0.0001) in persistent colonization group, and 2.14% lower ppFEV1 (p < 0.001) transient colonization group compared to non-colonized |
3.2. Diagnostic Tests
Non-Allergic Infection | Allergic Infection | |||
---|---|---|---|---|
Aspergillus Colonization | Aspergillus Bronchitis | Aspergillus Sensitization | ABPA | |
Clinical symptoms | None | Productive cough, thick sputum, breathlessness, chest pain refractory to antibiotic therapy | None or mild wheeze | Characteristics: wheeze, cough, exercise intolerance, exercise-induced asthma, decline in pulmonary function, chronic productive cough, increased sputum, breathlessness, pleuritic chest pain, hemoptysis |
Diagnostic tests | ||||
Aspergillus culture Aspergillus + PCR Total IgE Aspergillus sIgE Aspergillus sIgG Galactomannan Serum eosinophilia | + + Normal Normal Normal/Raised Normal No | + + Normal Normal Raised Raised No | − − Normal/raised Raised Normal Normal Normal/raised | +/− +/− Raised: ≥500 IU/mL * Raised: ≥0.35 kUA/L * Raised Raised Raised: ≥500 cells/µL * (could be historical) |
Imaging characteristics | ||||
CT scan | Bronchial wall thickening, low attenuation regions, some mucous plugs | Bronchiolitis pattern with centrilobular nodules, tree-in-bud, bronchial wall thickening, bronchiectasis, ground glass opacities, peribronchial consolidation | No change | Central bronchiectasis with mucous plugs and high-density mucus |
MRI scan | Low intensity regions, T2 hyperintense plugs | Bronchial wall thickening, T2 weighted imaging hyperintense peribronchial consolidation peripheral mucous plugs | No change | Bronchial wall thickening, T2 hyperintense mucous plugs (in 30% of cases inverted mucus sign, mucus with high T1WI and low T2WI signal) |
4. Allergic Aspergillus Infection
4.1. Clinical Epidemiology
4.2. Diagnostic Tests
5. Management of Aspergillus Disease in Children with CF
Study Type | Number and Age of CF Patients | Management | Outcomes |
---|---|---|---|
Aspergillus colonization | |||
Aaron 2012 [177]: RCT (2008–2010) | n = 35 children and adults Mean age 25.3 years (±10.5 SD) Persistent colonization with A. fumigatus (≥2 positive sputum cultures in last 12 months) | Oral itraconazole versus placebo | Therapeutic blood levels of itraconazole were not achieved in 43% of patients, therefore no conclusions were drawn about its effects |
Aspergillus colonization and Allergic bronchopulmonary aspergillosis | |||
Patel 2020 [173]: Single-center prospective non-randomized open-label observational study (2014–2018) | n = 14 children with 23 patient episodes (courses of prednisolone) Median age 13 years (range 3–17 years) 9 patient episodes for emerging or active ABPA 12 patient episodes for Aspergillus colonization (≥50% positive sputum samples over 6–12 months, excluding ABPA) | Oral posaconazole 3 months (13 courses oral suspension; 10 courses of tablets) 11 courses for ABPA 12 courses for Aspergillus colonization | Median 4–6% improvement in lung function with posaconazole in the whole cohort (p = 0.015) All ABPA patients and 7/12 colonized patients reported an improvement in cough Therapeutic plasma levels (>1 mg/L) were achieved in all receiving tablets, and 60% in those receiving suspension Posaconazole was well tolerated |
Allergic bronchopulmonary aspergillosis | |||
Gothe 2020 [174]: retrospective case-control (2007–2016) | n = 65 children and adults with CF and ABPA and n = 127 children and adults with CF without ABPA (sex-matched controls with similar FEV1 and Pseudomonas status) Median age 13.2 years (IQR 9.9–20.9) (controls) and 13.5 years (IQR 10.3–23.3) (ABPA group) | Oral short course of steroids (18 days) in combination with itraconazole for 12 months | Lung function was restored to pre-ABPA levels within 3 months of treatment (p value < 0.0001) when compared to pretreatment No differences in long-term FEV1 decline in treated ABPA patients versus controls Lower itraconazole levels were associated with ABPA relapses |
Thomson 2006 [187]: Case series (2000–2004) | n = 4 with severe ABPA (recurrent relapses or poor disease control on conventional therapy) Age range 19 months to 8 years | IV methylprednisolone 15–20 mg/Kg/day for 3 days and repeated every 4 weeks. Stopped when disease controlled or if not tolerated | Disease control achieved in 3 out of 4 children Multiple side effects of IV methylprednisolone were experienced (facial flushing, malaise, transient hyperglycemia) |
Cohen-Cymberknoh 2009 [186]: Case series (2002–2008) | n = 9 children and adults with first episode of ABPA Mean age 17.1 years (range 7–36 years) | High-dose pulsed IV methylprednisolone 10–15 mg/Kg/day for 3 days per month with itraconazole until resolution of ABPA (6 to 10 pulses) | All patients showed clinical and laboratory improvement comparing before and after pulsed IV methylprednisolone Minor adverse effects occurred which disappeared shortly after each IV pulse therapy (excessive weight gain, transient emotional instability) |
Abbotsford 2021 [191]: Single-center retrospective cohort study (2018–2020) | n = 16 children with ABPA Median age 12 years (range 5–16 years) | SUBA-itraconazole® 10 mg/kg/d (max 400 mg/day) median duration 6 weeks | 59% achieved therapeutic levels (1–2 mg/L for treatment). 81% ≥ 35% decline in IgE Well tolerated |
Hilliard 2005 [171]: retrospective case note review (2002–2004) | n = 21 of which 13 ABPA and 9 Aspergillus colonization (≥1 positive culture in preceding 12 months) Median age 11.3 years, range 5–16 years | Oral voriconazole for 1 to 50 weeks (median 22 weeks) | Voriconazole associated with improved lung function in those with ABPA compared to before voriconazole treatment 7 children (33%) had adverse events (photosensitivity, nausea) |
Glackin 2009 [172]: retrospective case series | n = 110, of which 10 had ABPA (of whom 1 died before completion of voriconazole course) Mean age of 9 surviving patients with ABPA 14.4 years (±0.2 SD) | Oral voriconazole in addition to oral steroids | Treatment with voriconazole was associated with reduced oral steroid requirement, reduced total IgE, and increased lung function One patient developed side effects of visual disturbance, photosensitivity |
Hassanzad 2019 [192]: case report (2016) | 12-year-old boy with CF and steroid-dependent ABPA due to Aspergillus terreus, unresponsive to corticosteroids and itraconazole | Oral voriconazole 3-month course | Clinical, serological, and mycological improvement after treatment course |
Proesmans 2010 [194]: case series (1998–2009) | 7 children and adults with CF and recurrent/difficult-to-treat ABPA with failure to taper systemic corticosteroids Age range 7 to 20 years old | Nebulized amphotericin alone or in combination with oral itraconazole or voriconazole | Nebulized amphotericin treatment was associated with withdrawal of steroid therapy without ABPA relapse in 12 months in 6 out of 7 patients (2 of these 5 patients also treated with voriconazole, though levels sub-therapeutic) and associated with improvement in lung function in 5 of the 6 patients |
Nové-Josserand 2017 [198]: Case series (2008–2012) | 21 adults and 11 children with CF and ABPA Median age 23 years (range 11–59 years) | Omalizumab once every 2–4 weeks | No significant improvement in lung function, BMI, or oral corticosteroid use when comparing before and after treatment |
Tanou 2014 [199]: Case series (1990–2013) | Synthesis of 8 case reports of 13 children with CF and ABPA from the literature, in whom 69.2% had experienced adverse effects due to long-term steroids Mean 13.3 years (±1.5 SD), range 11 to 16.3 years old | Omalizumab once every 2–4 weeks for 1.5–32 months | Omalizumab was associated with a significant increase in lung function (ppFEV1) and reduction in proportion of patients receiving corticosteroids compared to pretreatment Significantly fewer patients had recurrent respiratory exacerbations after treatment |
Perisson 2017 [196]: Case series | n = 18 children and adults with ABPA Mean age 17.1 years (±5.2 SD) | Omalizumab once every 2–4 weeks for up to 12 months | Omalizumab was associated with a stabilization of lung function decline and a significant decrease corticosteroid daily dose No serious side effects of omalizumab reported |
Aspergillus bronchitis | |||
Shoseyov 2006 [117]: case series (2002–2003) | 6 patients with Aspergillus bronchitis (AB) in CF refractory to broad-spectrum IV antibiotics. 4 children aged 10 to 15 years old and 2 adults | Oral itraconazole (1–3 months) unless otherwise specified. | 10, 13, and 15-year-olds with AB: oral itraconazole led to improved lung function back to baseline 12-year-old with AB: Failed treatment with oral itraconazole. IV amphotericin B (2 weeks) then oral voriconazole (4 months) associated with lung function returning to normal |
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Zolin, A.; Adamoli, A.; Bakkeheim, E.; van Rens, J. European CF Society Patient Registry Annual Report 2022. Available online: https://www.ecfs.eu/sites/default/files/Annual Report_2022_ECFSPR_20240603.pdf (accessed on 24 February 2025).
- Elborn, J.S. Cystic Fibrosis. Lancet 2016, 388, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Shteinberg, M.; Haq, I.J.; Polineni, D.; Davies, J.C. Cystic Fibrosis. Lancet 2021, 397, 2195–2211. [Google Scholar] [CrossRef]
- Edmondson, C.; Course, C.W.; Doull, I. Cystic Fibrosis Transmembrane Conductance Regulator Modulators for Cystic Fibrosis: A New Dawn? Arch. Dis. Child. 2021, 106, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Ong, T.; Ramsey, B.W. Cystic Fibrosis: A Review. JAMA 2023, 329, 1859–1871. [Google Scholar] [CrossRef]
- CF Trust UK Cystic Fibrosis Registry Annual Data Report 2023. Available online: https://www.cysticfibrosis.org.uk/about-us/uk-cf-registry/reporting-and-resources (accessed on 20 January 2025).
- ECFSPR 2023 Highlights Report. CF in Europe Facts and Figures. European CF Society Patient Registry. Available online: https://www.ecfs.eu/sites/default/files/250129_PR_Highlights.pdf (accessed on 20 February 2025).
- Rosenfeld, M.; Gibson, R.L.; McNamara, S.; Emerson, J.; Burns, J.L.; Castile, R.; Hiatt, P.; McCoy, K.; Wilson, C.B.; Inglis, A.; et al. Early Pulmonary Infection, Inflammation, and Clinical Outcomes in Infants with Cystic Fibrosis. Pediatr. Pulmonol. 2001, 32, 356–366. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, K.A.; Ranganathan, S.; Park, J.; Skoric, B.; Adams, A.M.; Simpson, S.J.; Robins-Browne, R.M.; Franklin, P.J.; De Klerk, N.H.; Sly, P.D.; et al. Early Respiratory Infection Is Associated with Reduced Spirometry in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2014, 190, 1111–1116. [Google Scholar] [CrossRef]
- Middleton, P.G.; Mall, M.A.; Dřevínek, P.; Lands, L.C.; McKone, E.F.; Polineni, D.; Ramsey, B.W.; Taylor-Cousar, J.L.; Tullis, E.; Vermeulen, F.; et al. Elexacaftor–Tezacaftor–Ivacaftor for Cystic Fibrosis with a Single Phe508del Allele. N. Engl. J. Med. 2019, 381, 1809–1819. [Google Scholar] [CrossRef]
- Kapouni, N.; Moustaki, M.; Douros, K.; Loukou, I. Efficacy and Safety of Elexacaftor-Tezacaftor-Ivacaftor in the Treatment of Cystic Fibrosis: A Systematic Review. Children 2023, 10, 554. [Google Scholar] [CrossRef]
- Goralski, J.L.; Hoppe, J.E.; Mall, M.A.; McColley, S.A.; McKone, E.; Ramsey, B.; Rayment, J.H.; Robinson, P.; Stehling, F.; Taylor-Cousar, J.L.; et al. Phase 3 Open-Label Clinical Trial of Elexacaftor/Tezacaftor/Ivacaftor in Children Aged 2–5 Years with Cystic Fibrosis and at Least One F508del Allele. Am. J. Respir. Crit. Care Med. 2023, 208, 59–67. [Google Scholar] [CrossRef]
- Balfour Lynn, I.M.; King, J.A. Mini-Symposium: CF in the Age of Modulators (Part I) CFTR Modulator Therapies—Effect on Life Expectancy in People with Cystic Fibrosis. Paediatr. Respir. Rev. 2022, 42, 3–8. [Google Scholar]
- McGarry, L.J.; Bhaiwala, Z.; Lopez, A.; Chandler, C.; Pelligra, C.G.; Rubin, J.L.; Liou, T.G. Calibration and Validation of Modeled 5-Year Survival Predictions among People with Cystic Fibrosis Treated with the Cystic Fibrosis Transmembrane Conductance Regulator Modulator Ivacaftor Using United States Registry Data. PLoS ONE 2023, 18, e0283479. [Google Scholar] [CrossRef] [PubMed]
- Armstead, J.; Morris, J.; Denning, D.W. Multi-Country Estimate of Different Manifestations of Aspergillosis in Cystic Fibrosis. PLoS ONE 2014, 9, e98502. [Google Scholar] [CrossRef] [PubMed]
- King, J.; Brunel, S.F.; Warris, A. Aspergillus Infections in Cystic Fibrosis. J. Infect. 2016, 72, S50–S55. [Google Scholar] [CrossRef]
- Amin, R.; Dupuis, A.; Aaron, S.D.; Ratjen, F. The Effect of Chronic Infection with Aspergillus Fumigatus on Lung Function and Hospitalization in Patients with Cystic Fibrosis. Chest 2010, 137, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Hector, A.; Kirn, T.; Ralhan, A.; Graepler-Mainka, U.; Berenbrinker, S.; Riethmueller, J.; Hogardt, M.; Wagner, M.; Pfleger, A.; Autenrieth, I.; et al. Microbial Colonization and Lung Function in Adolescents with Cystic Fibrosis. J. Cyst. Fibros. 2016, 15, 340–349. [Google Scholar] [CrossRef]
- Fillaux, J.; Brémont, F.; Murris, M.; Cassaing, S.; Rittié, J.L.; Tétu, L.; Segonds, C.; Abbal, M.; Bieth, E.; Berry, A.; et al. Assessment of Aspergillus Sensitization or Persistent Carriage as a Factor in Lung Function Impairment in Cystic Fibrosis Patients. Scand. J. Infect. Dis. 2012, 44, 842–847. [Google Scholar] [CrossRef]
- Breuer, O.; Schultz, A.; Garratt, L.W.; Turkovic, L.; Rosenow, T.; Murray, C.P.; Karpievitch, Y.V.; Akesson, L.; Dalton, S.; Sly, P.D.; et al. Aspergillus Infections and Progression of Structural Lung Disease in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2020, 201, 688–696. [Google Scholar] [CrossRef]
- Harun, S.N.; Wainwright, C.E.; Grimwood, K.; Hennig, S. Aspergillus and Progression of Lung Disease in Children with Cystic Fibrosis. Thorax 2019, 74, 125–131. [Google Scholar] [CrossRef]
- Fajac, I.; Sermet, I. Therapeutic Approaches for Patients with Cystic Fibrosis Not Eligible for Current CFTR Modulators. Cells 2021, 10, 2793. [Google Scholar] [CrossRef]
- Sanders, D.B.; Mayer-Hamblett, N.; Rosenfeld, M.; Polinieni, D.; Dasenbrook, E.; Szczesniak, R.; Cromwell, E.A. Characteristics of Individuals with Cystic Fibrosis in the United States Ineligible for Ivacaftor and Elexacaftor/Tezacaftor/Ivacaftor. J. Cyst. Fibros. 2024. [Google Scholar] [CrossRef]
- Downey, D.G.; Simmonds, N.J.; van-Koningsbruggen-Rietschel, S.; Bend, J.; Dunlevy, F.; Hill, K.; Dupont, L. Bridging the Gap: Challenging Lung Infections and Clinical Trial Development in Cystic Fibrosis. J. Cyst. Fibros. 2024, 24, 79–82. [Google Scholar] [CrossRef]
- Somerville, L.; Borish, L.; Imre, N.; Dana, A. Modulator-Refractory Cystic Fibrosis. Defining the Scope and Challenges of an Emerging at-Risk Population. Ther. Adv. Respir. Dis. 2024, 18, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Earle, K.; Valero, C.; Conn, D.P.; Vere, G.; Cook, P.C.; Bromley, M.J.; Bowyer, P.; Gago, S. Pathogenicity and Virulence of Aspergillus Fumigatus. Virulence 2023, 14, 2172264. [Google Scholar] [CrossRef] [PubMed]
- Hatinguais, R.; Willment, J.A.; Brown, G.D. PAMPs of the Fungal Cell Wall and Mammalian PRRs. Curr. Top. Microbiol. Immunol. 2020, 425, 187–223. [Google Scholar] [CrossRef]
- Griffiths, J.S.; Thompson, A.; Stott, M.; Benny, A.; Lewis, N.A.; Taylor, P.R.; Forton, J.; Herrick, S.; Orr, S.J.; McGreal, E.P. Differential Susceptibility of Dectin-1 Isoforms to Functional Inactivation by Neutrophil and Fungal Proteases. FASEB J. 2018, 32, 3385–3397. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, A.P.; Bellone, C.; Kauffman, H. Immunopathogenesis of Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. J. Cyst. Fibros. 2002, 1, 76–89. [Google Scholar] [CrossRef]
- Stevens, D.A.; Moss, R.B.; Kurup, V.P.; Knutsen, A.P.; Greenberger, P.; Judson, M.A.; Denning, D.W.; Crameri, R.; Brody, A.S.; Light, M.; et al. Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis—State of the Art: Cystic Fibrosis Foundation Consensus Conference. Clin. Infect. Dis. 2003, 37, 225–264. [Google Scholar] [CrossRef]
- Knutsen, A.P.; Hutchinson, P.S.; Albers, G.M.; Consolino, J.; Smick, J.; Kurup, V.P. Increased Sensitivity to IL-4 in Cystic Fibrosis Patients with Allergic Bronchopulmonary Aspergillosis. Allergy Eur. J. Allergy Clin. Immunol. 2004, 59, 81–87. [Google Scholar] [CrossRef]
- Pommerolle, L.; Beltramo, G.; Biziorek, L.; Truchi, M.; Dias, A.M.M.; Dondaine, L.; Tanguy, J.; Pernet, N.; Goncalves, V.; Bouchard, A.; et al. CD206 + Macrophages Are Relevant Non-Invasive Imaging Biomarkers and Therapeutic Targets in Experimental Lung Fibrosis. Thorax 2024, 79, 1124–1135. [Google Scholar] [CrossRef]
- Murphy, B.S.; Bush, H.M.; Sundareshan, V.; Davis, C.; Hagadone, J.; Cory, T.J.; Hoy, H.; Hayes, D.; Anstead, M.I.; Feola, D.J. Characterization of Macrophage Activation States in Patients with Cystic Fibrosis. J. Cyst. Fibros. 2010, 9, 314–322. [Google Scholar] [CrossRef]
- Wright, A.K.; Rao, S.; Range, S.; Eder, C.; Hofer, T.P.; Frankenberger, M.; Kobzik, L.; Brightling, C.; Grigg, J.; Ziegler-Heitbrock, L. Pivotal Advance: Expansion of Small Sputum Macrophages in CF: Failure to Express MARCO and Mannose Receptors. J. Leukoc. Biol. 2009, 86, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Postle, A.D.; Henderson, N.G.; Koster, G.; Clark, H.W.; Hunt, A.N. Analysis of Lung Surfactant Phosphatidylcholine Metabolism in Transgenic Mice Using Stable Isotopes. Chem. Phys. Lipids 2011, 164, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Griese, M.; Essl, R.; Schmidt, R.; Rietschel, E.; Ratjen, F.; Ballmann, M.; Paul, K. Pulmonary Surfactant, Lung Function, and Endobronchial Inflammation in Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2004, 170, 1000–1005. [Google Scholar] [CrossRef] [PubMed]
- Hull, J.; South, M.; Phelan, P.; Grimwood, K. Surfactant Composition in Infants and Young Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 1997, 156, 161–165. [Google Scholar] [CrossRef]
- Rubio, F.; Cooley, J.; Accurso, F.J.; Remold-O’Donnell, E. Linkage of Neutrophil Serine Proteases and Decreased Surfactant Protein-A (SP-A) Levels in Inflammatory Lung Disease. Thorax 2004, 59, 318–323. [Google Scholar] [CrossRef]
- Von Bredow, C.; Wiesener, A.; Griese, M. Proteolysis of Surfactant Protein D by Cystic Fibrosis Relevant Proteases. Lung 2003, 181, 79–88. [Google Scholar] [CrossRef] [PubMed]
- Mariencheck, W.I.; Alcorn, J.F.; Palmer, S.M.; Wright, J.R. Pseudomonas Aeruginosa Elastase Degrades Surfactant Proteins A and D. Am. J. Respir. Cell Mol. Biol. 2003, 28, 528–537. [Google Scholar] [CrossRef]
- Saxena, S.; Madan, T.; Shah, A.; Muralidhar, K.; Sarma, P.U. Association of Polymorphisms in the Collagen Region of SP-A2 with Increased Levels of Total IgE Antibodies and Eosinophilia in Patients with Allergic Bronchopulmonary Aspergillosis. J. Allergy Clin. Immunol. 2003, 111, 1001–1007. [Google Scholar] [CrossRef]
- John, G.; Yildirim, A.Ö.; Rubin, B.K.; Gruenert, D.C.; Henke, M.O. TLR-4-Mediated Innate Immunity Is Reduced in Cystic Fibrosis Airway Cells. Am. J. Respir. Cell Mol. Biol. 2010, 42, 424–431. [Google Scholar] [CrossRef]
- Hauber, H.P.; Tulic, M.K.; Tsicopoulos, A.; Wallaert, B.; Olivenstein, R.; Daigneault, P.; Hamid, Q. Toll-like Receptors 4 and 2 Expression in the Bronchial Mucosa of Patients with Cystic Fibrosis. Can. Respir. J. 2005, 12, 13–18. [Google Scholar] [CrossRef]
- Overton, N.L.D.; Denning, D.W.; Bowyer, P.; Simpson, A. Genetic Susceptibility to Allergic Bronchopulmonary Aspergillosis in Asthma: A Genetic Association Study. Allergy Asthma Clin. Immunol. 2016, 12, 47. [Google Scholar] [CrossRef] [PubMed]
- Hamon, Y.; Jaillon, S.; Person, C.; Giniès, J.L.; Garo, E.; Bottazzi, B.; Ghamrawi, S.; Urban, T.; Subra, J.F.; Bouchara, J.P.; et al. Proteolytic Cleavage of the Long Pentraxin PTX3 in the Airways of Cystic Fibrosis Patients. Innate Immun. 2013, 19, 611–622. [Google Scholar] [CrossRef]
- Bigot, J.; Guillot, L.; Guitard, J.; Ruffin, M.; Corvol, H.; Balloy, V.; Hennequin, C. Bronchial Epithelial Cells on the Front Line to Fight Lung Infection-Causing Aspergillus Fumigatus. Front. Immunol. 2020, 11, 1041–1042. [Google Scholar] [CrossRef] [PubMed]
- Gadsby, D.C.; Vergani, P.; Csanády, L. The ABC Protein Turned Chloride Channel Whose Failure Causes Cystic Fibrosis. Nature 2006, 440, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Kreda, S.M.; Davis, C.W.; Rose, M.C. CFTR, Mucins, and Mucous Obstruction in Cystic Fibrosis. Cold Spring Harb. Perspect. Med. 2012, 2, 1–32. [Google Scholar] [CrossRef]
- Illek, B.; Fischer, H.; Machen, T.E.; Hari, G.; Clemons, K.V.; Sass, G.; Ferreira, J.A.G.; Stevens, D.A. Protective Role of CFTR during Fungal Infection of Cystic Fibrosis Bronchial Epithelial Cells with Aspergillus Fumigatus. Front. Cell. Infect. Microbiol. 2023, 13, 1196581. [Google Scholar] [CrossRef]
- Chaudhary, N.; Datta, K.; Askin, F.B.; Staab, J.F.; Marr, K.A. Cystic Fibrosis Transmembrane Conductance Regulator Regulates Epithelial Cell Response to Aspergillus and Resultant Pulmonary Inflammation. Am. J. Respir. Crit. Care Med. 2012, 185, 301–310. [Google Scholar] [CrossRef]
- Teichgräber, V.; Ulrich, M.; Endlich, N.; Riethmüller, J.; Wilker, B.; De Oliveira-Munding, C.C.; Van Heeckeren, A.M.; Barr, M.L.; Von Kürthy, G.; Schmid, K.W.; et al. Ceramide Accumulation Mediates Inflammation, Cell Death and Infection Susceptibility in Cystic Fibrosis. Nat. Med. 2008, 14, 382–391. [Google Scholar] [CrossRef]
- Caretti, A.; Torelli, R.; Perdoni, F.; Falleni, M.; Tosi, D.; Zulueta, A.; Casas, J.; Sanguinetti, M.; Ghidoni, R.; Borghi, E.; et al. Inhibition of Ceramide de Novo Synthesis by Myriocin Produces the Double Effect of Reducing Pathological Inflammation and Exerting Antifungal Activity against A. Fumigatus Airways Infection. Biochim. Biophys. Acta Gen. Subj. 2016, 1860, 1089–1097. [Google Scholar] [CrossRef]
- Dunne, K.; Reece, E.; McClean, S.; Doyle, S.; Rogers, T.R.; Murphy, P.; Renwick, J. Aspergillus fumigatus Supernatants Disrupt Bronchial Epithelial Monolayers: Potential Role for Enhanced Invasion in Cystic Fibrosis. J. Fungi 2023, 9, 490. [Google Scholar] [CrossRef]
- Matthaiou, E.I.; Chiu, W.; Conrad, C.; Hsu, J. Macrophage Lysosomal Alkalinization Drives Invasive Aspergillosis in a Mouse Cystic Fibrosis Model of Airway Transplantation. J. Fungi 2022, 8, 751. [Google Scholar] [CrossRef] [PubMed]
- Badr, A.; Eltobgy, M.; Krause, K.; Hamilton, K.; Estfanous, S.; Daily, K.P.; Abu Khweek, A.; Hegazi, A.; Anne, M.N.K.; Carafice, C.; et al. CFTR Modulators Restore Acidification of Autophago-Lysosomes and Bacterial Clearance in Cystic Fibrosis Macrophages. Front. Cell. Infect. Microbiol. 2022, 12, 819554. [Google Scholar] [CrossRef]
- Barnaby, R.; Koeppen, K.; Nymon, A.; Hampton, T.H.; Berwin, B.; Ashare, A.; Stanton, B.A. Lumacaftor (VX-809) Restores the Ability of CF Macrophages to Phagocytose and Kill Pseudomonas Aeruginosa. Am. J. Physiol. Lung Cell. Mol. Physiol. 2018, 314, 432–438. [Google Scholar] [CrossRef] [PubMed]
- McKeon, S.; McClean, S.; Callaghan, M. Macrophage Responses to CF Pathogens: JNK MAP Kinase Signaling by Burkholderia cepacia Complex Lipopolysaccharide. FEMS Immunol. Med. Microbiol. 2010, 60, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Iannitti, R.G.; Napolioni, V.; Oikonomou, V.; De Luca, A.; Galosi, C.; Pariano, M.; Massi-Benedetti, C.; Borghi, M.; Puccetti, M.; Lucidi, V.; et al. IL-1 Receptor Antagonist Ameliorates Inflammasome-Dependent Inflammation in Murine and Human Cystic Fibrosis. Nat. Commun. 2016, 7, 10791. [Google Scholar] [CrossRef]
- Scambler, T.; Jarosz-griffiths, H.H.; Lara-reyna, S.; Pathak, S.; Wong, C.; Holbrook, J.; Martinon, F. ENaC-Mediated Sodium Influx Exacerbates NLRP3-Dependent Inflammation in Cystic Fibrosis. Elife 2019, 8, e49248. [Google Scholar] [CrossRef] [PubMed]
- Bonfield, T.L.; Panuska, J.R.; Konstan, M.W.; Hilliard, K.A.; Hilliard, J.B.; Ghnaim, H.; Berger, M. Inflammatory Cytokines in Cystic Fibrosis Lungs. Am. J. Respir. Crit. Care Med. 1995, 152, 2111–2118. [Google Scholar] [CrossRef]
- Osika, E.; Cavaillon, J.; Chadelat, K.; Boule, M.; Fitting, C.; Tournier, G.; Clement, A. Distinct Sputum Cytokine Profiles in Cystic Fibrosis and Other Chronic Inflammatory Airway Disease. Eur. Respir. J. 1999, 14, 339–346. [Google Scholar] [CrossRef]
- Ratjen, F.; Waters, V.; Klingel, M.; McDonald, N.; Dell, S.; Leahy, T.R.; Yau, Y.; Grasemann, H. Changes in Airway Inflammation during Pulmonary Exacerbations in Patients with Cystic Fibrosis and Primary Ciliary Dyskinesia. Eur. Respir. J. 2016, 47, 829–836. [Google Scholar] [CrossRef]
- Ringholz, F.C.; Buchanan, P.J.; Clarke, D.T.; Millar, R.G.; McDermott, M.; Linnane, B.; Harvey, B.J.; McNally, P.; Urbach, V. Reduced 15-Lipoxygenase 2 and Lipoxin A4/Leukotriene B4 Ratio in Children with Cystic Fibrosis. Eur. Respir. J. 2014, 44, 394–404. [Google Scholar] [CrossRef]
- Brennan, S.; Sly, P.D.; Gangell, C.L.; Sturges, N.; Winfield, K.; Wikstrom, M.; Gard, S.; Upham, J.W. Alveolar Macrophages and CC Chemokines Are Increased in Children with Cystic Fibrosis. Eur. Respir. J. 2009, 34, 655–661. [Google Scholar] [CrossRef]
- Bakalović, G.; Bokonjić, D.; Mihajlović, D.; Čolić, M.; Mališ, V.; Drakul, M.; Tomić, S.; Jojić, I.; Rakočević, S.; Popović, D.; et al. Dysfunctions of Neutrophils in the Peripheral Blood of Children with Cystic Fibrosis. Biomedicines 2023, 11, 1725. [Google Scholar] [CrossRef] [PubMed]
- Brunel, S.F.; Willment, J.A.; Brown, G.D.; Devereux, G.; Warris, A. Aspergillus-Induced Superoxide Production by Cystic Fibrosis Phagocytes Is Associated with Disease Severity. ERJ Open Res. 2018, 4, 00068–02017. [Google Scholar] [CrossRef] [PubMed]
- Manzenreiter, R.; Kienberger, F.; Marcos, V.; Schilcher, K.; Krautgartner, W.D.; Obermayer, A.; Huml, M.; Stoiber, W.; Hector, A.; Griese, M.; et al. Ultrastructural Characterization of Cystic Fibrosis Sputum Using Atomic Force and Scanning Electron Microscopy. J. Cyst. Fibros. 2012, 11, 84–92. [Google Scholar] [CrossRef]
- Tirouvanziam, R.; Gernez, Y.; Conrad, C.K.; Moss, R.B.; Schrijver, I.; Dunn, C.E.; Davies, Z.A.; Herzenberg, L.A.; Herzenberg, L.A. Profound Functional and Signaling Changes in Viable Inflammatory Neutrophils Homing to Cystic Fibrosis Airways. Proc. Natl. Acad. Sci. USA 2008, 105, 4335–4339. [Google Scholar] [CrossRef] [PubMed]
- Currie, A.J.; Main, E.T.; Wilson, H.M.; Armstrong-James, D.; Warris, A. CFTR Modulators Dampen Aspergillus-Induced Reactive Oxygen Species Production by Cystic Fibrosis Phagocytes. Front. Cell. Infect. Microbiol. 2020, 10, 372. [Google Scholar] [CrossRef] [PubMed]
- Pohl, K.; Hayes, E.; Keenan, J.; Henry, M.; Meleady, P.; Molloy, K.; Jundi, B.; Bergin, D.A.; McCarthy, C.; McElvaney, O.J.; et al. A Neutrophil Intrinsic Impairment Affecting Rab27a and Degranulation in Cystic Fibrosis Is Corrected by CFTR Potentiator Therapy. Blood 2014, 124, 999–1009. [Google Scholar] [CrossRef]
- Speakman, E.A.; Dambuza, I.M.; Salazar, F.; Brown, G.D. T Cell Antifungal Immunity and the Role of C-Type Lectin Receptors. Trends Immunol. 2020, 41, 61–76. [Google Scholar] [CrossRef]
- Knutsen, A.P.; Chauhan, B.; Slavin, R.G. Cell Mediated Immunity Bronchopulmonary Aspergillosis. Immunol. Allergy Clin. N. Am. 1998, 18, 575–599. [Google Scholar] [CrossRef]
- Knutsen, A.P.; Mueller, K.R.; Hutcheson, P.S.; Slavin, R.G. T- and B-Cell Dysregulation of IgE Synthesis in Cystic Fibrosis Patients with Allergic Bronchopulmonary Aspergillosis. Clin. Immunol. Immunopathol. 1990, 55, 129–138. [Google Scholar] [CrossRef]
- Knutsen, A.P.; Hutcheson, P.S.; Slavin, R.G.; Kurup, V.P. IgE Antibody to Aspergillus fumigatus Recombinant Allergens in Cystic Fibrosis Patients with Allergic Bronchopulmonary Aspergillosis. Allergy Eur. J. Allergy Clin. Immunol. 2004, 59, 198–203. [Google Scholar] [CrossRef]
- Dietschmann, A.; Schruefer, S.; Krappmann, S.; Voehringer, D. Th2 Cells Promote Eosinophil-Independent Pathology in a Murine Model of Allergic Bronchopulmonary Aspergillosis. Eur. J. Immunol. 2020, 50, 1044–1056. [Google Scholar] [CrossRef]
- Wang, Y.H.; Angkasekwinai, P.; Lu, N.; Voo, K.S.; Arima, K.; Hanabuchi, S.; Hippe, A.; Corrigan, C.J.; Dong, C.; Homey, B.; et al. IL-25 Augments Type 2 Immune Responses by Enhancing the Expansion and Functions of TSLP-DC-Activated Th2 Memory Cells. J. Exp. Med. 2007, 204, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- Muniz, V.S.; Silva, J.C.; Braga, Y.A.V.; Melo, R.C.N.; Ueki, S.; Takeda, M.; Hebisawa, A.; Asano, K.; Figueiredo, R.T.; Neves, J.S. Eosinophils Release Extracellular DNA Traps in Response to Aspergillus fumigatus. J. Allergy Clin. Immunol. 2018, 141, 571–585.e7. [Google Scholar] [CrossRef] [PubMed]
- Ueki, S.; Hebisawa, A.; Kitani, M.; Asano, K.; Neves, J.S. Allergic Bronchopulmonary Aspergillosis-A Luminal Hypereosinophilic Disease with Extracellular Trap Cell Death. Front. Immunol. 2018, 9, 2346. [Google Scholar] [CrossRef]
- Allard, J.B.; Poynter, M.E.; Marr, K.A.; Rincon, M.; Whittaker, L.A.; Cohn, L. Aspergillus fumigatus Generates an Enhanced Th2-Biased Transmembrane Conductance Regulator 1. J. Immunol. 2006, 177, 5186–5194. [Google Scholar] [CrossRef] [PubMed]
- Tiringer, K.; Treis, A.; Fucik, P.; Gona, M.; Gruber, S.; Renner, S.; Dehlink, E.; Nachbaur, E.; Horak, F.; Jaksch, P.; et al. A Th17-and Th2-Skewed Cytokine Profile in Cystic Fibrosis Lungs Represents a Potential Risk Factor for Pseudomonas aeruginosa Infection. Am. J. Respir. Crit. Care Med. 2013, 187, 621–629. [Google Scholar] [CrossRef]
- Schwarz, C.; Eschenhagen, P.; Schmidt, H.; Hohnstein, T.; Iwert, C.; Grehn, C.; Roehmel, J.; Steinke, E.; Stahl, M.; Lozza, L.; et al. Antigen Specificity and Cross-Reactivity Drive Functionally Diverse Anti—Aspergillus fumigatus T Cell Responses in Cystic Fibrosis. J. Clin. Investig. 2023, 133, e161593. [Google Scholar] [CrossRef]
- Eschenhagen, P.N.; Bacher, P.; Grehn, C.; Mainz, J.G.; Scheffold, A.; Schwarz, C. Proliferative Activity of Antigen-Specific CD154+ T Cells against Bacterial and Fungal Respiratory Pathogens in Cystic Fibrosis Decreases after Initiation of Highly Effective CFTR Modulator Therapy. Front. Pharmacol. 2023, 14, 1180826. [Google Scholar] [CrossRef]
- Kreindler, J.L.; Steele, C.; Nguyen, N.; Chan, Y.R.; Pilewski, J.M.; Alcorn, J.F.; Vyas, Y.M.; Aujla, S.J.; Finelli, P.; Blanchard, M.; et al. Vitamin D3 Attenuates Th2 Responses to Aspergillus fumigatus Mounted by CD4+ T Cells from Cystic Fibrosis Patients with Allergic Bronchopulmonary Aspergillosis. J. Clin. Investig. 2010, 120, 3242–3254. [Google Scholar] [CrossRef]
- Nguyen, N.L.H.; Chen, K.; Mcaleer, J.; Kolls, J.K. Vitamin D Regulation of OX40 Ligand in Immune Responses to Aspergillus fumigatus. Infect. Immun. 2013, 81, 1510–1519. [Google Scholar] [CrossRef] [PubMed]
- Moretti, S.; Renga, G.; Oikonomou, V.; Galosi, C.; Pariano, M.; Iannitti, R.G.; Borghi, M.; Puccetti, M.; De Zuani, M.; Pucillo, C.E.; et al. A Mast Cell-ILC2-Th9 Pathway Promotes Lung Inflammation in Cystic Fibrosis. Nat. Commun. 2017, 8, 14017. [Google Scholar] [CrossRef] [PubMed]
- Hauber, H.P.; Tsicopoulos, A.; Wallaert, B.; Griffin, S.; McElvaney, N.G.; Daigneault, P.; Mueller, Z.; Olivenstein, R.; Holroyd, K.J.; Levitt, R.C.; et al. Expression of HCLCA1 in Cystic Fibrosis Lungs Is Associated with Mucus Overproduction. Eur. Respir. J. 2004, 23, 846–850. [Google Scholar] [CrossRef]
- Mueller, C.; Braag, S.A.; Keeler, A.; Hodges, C.; Drumm, M.; Flotte, T.R. Lack of Cystic Fibrosis Transmembrane Conductance Regulator in CD3+ Lymphocytes Leads to Aberrant Cytokine Secretion and Hyperinflammatory Adaptive Immune Responses. Am. J. Respir. Cell Mol. Biol. 2011, 44, 922–929. [Google Scholar] [CrossRef] [PubMed]
- Crabtree, G.R.; Olson, E.N. NFAT Signaling: Choreographing the Social Lives of Cells. Cell 2002, 109, 67–79. [Google Scholar] [CrossRef]
- Iannitti, R.G.; Carvalho, A.; Cunha, C.; De Luca, A.; Giovannini, G.; Casagrande, A.; Zelante, T.; Vacca, C.; Fallarino, F.; Puccetti, P.; et al. Th17/Treg Imbalance in Murine Cystic Fibrosis Is Linked to Indoleamine 2,3-Dioxygenase Deficiency but Corrected by Kynurenines. Am. J. Respir. Crit. Care Med. 2013, 187, 609–620. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Kato, S.; Nesline, M.K.; Conroy, J.M.; DePietro, P.; Pabla, S.; Kurzrock, R. Indoleamine 2,3-Dioxygenase (IDO) Inhibitors and Cancer Immunotherapy. Cancer Treat. Rev. 2022, 110, 102461. [Google Scholar] [CrossRef]
- Hector, A.; Schäfer, H.; Pöschel, S.; Fischer, A.; Fritzsching, B.; Ralhan, A.; Carevic, M.; Öz, H.; Zundel, S.; Hogardt, M.; et al. Regulatory T-Cell Impairment in Cystic Fibrosis Patients with Chronic Pseudomonas Infection. Am. J. Respir. Crit. Care Med. 2015, 191, 914–923. [Google Scholar] [CrossRef]
- Anil, N.; Singh, M. CD4+CD25 High FOXP3+ Regulatory T Cells Correlate with FEV1 in North Indian Children with Cystic Fibrosis. Immunol. Investig. 2014, 43, 535–543. [Google Scholar] [CrossRef]
- Saadane, A.; Soltys, J.; Berger, M. Role of IL-10 Deficiency in Excessive Nuclear Factor-ΚB Activation and Lung Inflammation in Cystic Fibrosis Transmembrane Conductance Regulator Knockout Mice. J. Allergy Clin. Immunol. 2005, 115, 405–411. [Google Scholar] [CrossRef]
- Moss, R.B.; Hsu, Y.P.; Olds, L. Cytokine Dysregulation in Activated Cystic Fibrosis Peripheral Lymphocytes. Clin. Exp. Immunol. 2000, 120, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Westhölter, D.; Raspe, J.; Uebner, H.; Pipping, J.; Schmitz, M.; Straßburg, S.; Sutharsan, S.; Welsner, M.; Taube, C.; Reuter, S. Regulatory T Cell Enhancement in Adults with Cystic Fibrosis Receiving Elexacaftor/Tezacaftor/Ivacaftor Therapy. Front. Immunol. 2023, 14, 1107437. [Google Scholar] [CrossRef]
- Lee, T.W.R.; Brownlee, K.G.; Conway, S.P.; Denton, M.; Littlewood, J.M. Evaluation of a New Definition for Chronic Pseudomonas aeruginosa Infection in Cystic Fibrosis Patients. J. Cyst. Fibros. 2003, 2, 29–34. [Google Scholar] [CrossRef] [PubMed]
- De Vrankrijker, A.M.M.; van der Ent, C.K.; van Berkhout, F.T.; Stellato, R.K.; Willems, R.J.L.; Bonten, M.J.M.; Wolfs, T.F.W. Aspergillus fumigatus Colonization in Cystic Fibrosis: Implications for Lung Function? Clin. Microbiol. Infect. 2011, 17, 1381–1386. [Google Scholar] [CrossRef]
- Al Shakirchi, M.; Sorjonen, K.; Klingspor, L.; Bergman, P.; Hjelte, L.; de Monestrol, I. The Effects of Aspergillus fumigatus Colonization on Lung Function in Patients with Cystic Fibrosis. J. Fungi 2021, 7, 944. [Google Scholar] [CrossRef] [PubMed]
- Noni, M.; Katelari, A.; Dimopoulos, G.; Doudounakis, S.E.; Tzoumaka-Bakoula, C.; Spoulou, V. Aspergillus fumigatus Chronic Colonization and Lung Function Decline in Cystic Fibrosis May Have a Two-Way Relationship. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 2235–2241. [Google Scholar] [CrossRef]
- Hong, G.; Psoter, K.J.; Jennings, M.T.; Merlo, C.A.; Boyle, M.P.; Hadjiliadis, D.; Kawut, S.M.; Lechtzin, N. Risk Factors for Persistent Aspergillus Respiratory Isolation in Cystic Fibrosis. J Cyst Fibros 2018, 17, 624–630. [Google Scholar] [CrossRef]
- Blomquist, A.; Inghammar, M.; Shakirchi, M.A.; Ericson, P.; Krantz, C.; Svedberg, M.; Lindblad, A.; Påhlman, L.I. Persistent Aspergillus fumigatus Infection in Cystic Fibrosis: Impact on Lung Function and Role of Treatment of Asymptomatic Colonization- a Registry—Based Case- Control Study. BMC Pulm. Med. 2022, 22, 263. [Google Scholar] [CrossRef]
- Fainardi, V.; Sodini, C.; Deolmi, M.; Ciuni, A.; Skenderaj, K.; Stabile, M.B.; Neglia, C.; Zani, E.M.; Spaggiari, C.; Sverzellati, N.; et al. Clinical Impact of Aspergillus fumigatus in Children with Cystic Fibrosis. Microorganisms 2022, 10, 739. [Google Scholar] [CrossRef]
- Düesberg, U.; Wosniok, J.; Naehrlich, L.; Eschenhagen, P.; Schwarz, C. Risk Factors for Respiratory Aspergillus fumigatus in German Cystic Fibrosis Patients and Impact on Lung Function. Sci. Rep. 2020, 10, 18999. [Google Scholar] [CrossRef]
- Warris, A.; Bercusson, A.; Armstrong-James, D. Aspergillus Colonization and Antifungal Immunity in Cystic Fibrosis Patients. Med. Mycol. 2019, 57, S118–S126. [Google Scholar] [CrossRef] [PubMed]
- Breuer, O.; Schultz, A.; Turkovic, L.; De Klerk, N.; Keil, A.D.; Brennan, S.; Harrison, J.; Robertson, C.; Robinson, P.J.; Sly, P.D.; et al. Changing Prevalence of Lower Airway Infections in Young Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2019, 200, 590–599. [Google Scholar] [CrossRef]
- Wainwright, C.E.; Vidmar, S.; Armstrong, D.S.; Byrnes, C.A.; Carlin, J.B.; Cheney, J.; Cooper, P.J.; Grimwood, K.; Moodie, M.; Robertson, C.F.; et al. Effect of Bronchoalveolar Lavage-Directed Therapy on Pseudomonas aeruginosa Infection and Structural Lung Injury in Children with Cystic Fibrosis: A Randomized Trial. JAMA 2011, 306, 163–171. [Google Scholar] [CrossRef] [PubMed]
- Saunders, R.V.; Modha, D.E.; Claydon, A.; Gaillard, E.A. Chronic Aspergillus fumigatus Colonization of the Pediatric Cystic Fibrosis Airway Is Common and May Be Associated with a More Rapid Decline in Lung Function. Med. Mycol. 2016, 54, 537–543. [Google Scholar] [CrossRef]
- Forton, J.T.; Ronchetti, K.; Tame, J.-D.; Paisey, C.; Thia, L.P.; Doull, I.; Howe, R.; Mahenthiralingam, E. The CF-Sputum Induction Trial (CF-SpIT) to Assess Lower Airway Bacterial Sampling in Young Children with Cystic Fibrosis: A Prospective Internally Controlled Interventional Trial. Lancet 2018, 6, 461–471. [Google Scholar] [CrossRef]
- Jubin, V.; Ranque, S.; Le Bel, N.S.; Sarles, J.; Dubus, J.C. Risk Factors for Aspergillus Colonization and Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis. Pediatr. Pulmonol. 2010, 45, 764–771. [Google Scholar] [CrossRef]
- Heltshe, S.L.; Mayer-Hamblett, N.; Burns, J.L.; Khan, U.; Baines, A.; Ramsey, B.W.; Rowe, S.M. Pseudomonas aeruginosa in Cystic Fibrosis Patients with G551D-CFTR Treated with Ivacaftor. Clin. Infect. Dis. 2015, 60, 703–712. [Google Scholar] [CrossRef]
- Francis, N.; Warris, A.; Armstrong-James, D.; Horsley, A.J.A. 495 Identification of Airway Aspergillus fumigatus Infection–Use of Cough Swabs Is Not a Suitable Alternative to Fungal Sputum Culture. J. Cyst. Fibros. 2022, 21, S280. [Google Scholar] [CrossRef]
- UK Cystic Fibrosis Registry Annual Data Report 2019. Available online: https://www.cysticfibrosis.org.uk/about-us/uk-cf-registry/reporting-and-resources (accessed on 24 February 2025).
- Reece, E.; Segurado, R.; Jackson, A.; McClean, S.; Renwick, J.; Greally, P. Co-Colonisation with Aspergillus fumigatus and Pseudomonas aeruginosa Is Associated with Poorer Health in Cystic Fibrosis Patients: An Irish Registry Analysis. BMC Pulm. Med. 2017, 17, 70. [Google Scholar] [CrossRef]
- Brandt, C.; Roehmel, J.; Rickerts, V.; Melichar, V.; Niemann, N.; Schwarz, C. Aspergillus bronchitis in Patients with Cystic Fibrosis. Mycopathologia 2018, 183, 61–69. [Google Scholar] [CrossRef]
- Chesshyre, E.; Warren, F.C.; Shore, A.C.; Davies, J.C.; Armstrong-James, D.; Warris, A. Long-Term Outcomes of Allergic Bronchopulmonary Aspergillosis and Aspergillus Colonization in Children and Adolescents with Cystic Fibrosis. J. Fungi 2024, 10, 599. [Google Scholar] [CrossRef] [PubMed]
- Baxter, C.G.; Dunn, G.; Jones, A.M.; Webb, K.; Gore, R.; Richardson, M.D.; Denning, D.W. Novel Immunologic Classification of Aspergillosis in Adult Cystic Fibrosis. J. Allergy Clin. Immunol. 2013, 132, 560–567. [Google Scholar] [CrossRef]
- Shoseyov, D.; Brownlee, K.G.; Conway, S.P.; Kerem, E. Aspergillus bronchitis in Cystic Fibrosis. Chest 2006, 130, 222–226. [Google Scholar] [CrossRef] [PubMed]
- Begum, N.; Byrnes, C.A.; Cheney, J.; Cooper, P.J.; Fantino, E.; Gailer, N.; Grimwood, K.; GutierrezCardenas, D.; Massie, J.; Robertson, C.F.; et al. Factors in Childhood Associated with Lung Function Decline to Adolescence in Cystic Fibrosis. J. Cyst. Fibros. 2022, 21, 977–983. [Google Scholar] [CrossRef]
- Forton, J.T. Detecting Respiratory Infection in Children with Cystic Fibrosis: Cough Swab, Sputum Induction or Bronchoalveolar Lavage. Paediatr. Respir. Rev. 2019, 31, 28–31. [Google Scholar] [CrossRef] [PubMed]
- Vergidis, P.; Moore, C.B.; Novak-Frazer, L.; Rautemaa-Richardson, R.; Walker, A.; Denning, D.W.; Richardson, M.D. High-Volume Culture and Quantitative Real-Time PCR for the Detection of Aspergillus in Sputum. Clin. Microbiol. Infect. 2020, 26, 935–940. [Google Scholar] [CrossRef]
- Engel, T.G.P.; Tehupeiory-Kooreman, M.; Melchers, W.J.G.; Reijers, M.H.; Merkus, P.; Verweij, P.E. Evaluation of a New Culture Protocol for Enhancing Fungal Detection Rates in Respiratory Samples of Cystic Fibrosis Patients. J. Fungi 2020, 6, 82. [Google Scholar] [CrossRef]
- Chrdle, A.; Mustakim, S.; Bright-Thomas, R.J.; Baxter, C.G.; Felton, T.; Denning, D.W. Aspergillus bronchitis without Significant Immunocompromise. Ann. N. Y. Acad. Sci. 2012, 1272, 73–85. [Google Scholar] [CrossRef]
- Weiser, R.; Ronchetti, K.; Tame, J.D.; Hoehn, S.; Jurkowski, T.P.; Mahenthiralingam, E.; Forton, J.T. The Fungal Diversity in the Lungs of Children with Cystic Fibrosis Captured by Sputum-Induction and Bronchoalveolar Lavage. J. Cyst. Fibros. 2024. [Google Scholar] [CrossRef]
- Lv, Q.; Elders, B.B.L.J.; Warris, A.; Caudri, D.; Ciet, P.; Tiddens, H.A.W.M. Aspergillus-Related Lung Disease in People with Cystic Fibrosis: Can Imaging Help Us to Diagnose Disease? Eur. Respir. Rev. 2021, 30, 210103. [Google Scholar] [CrossRef]
- Mcmahon, M.A.; Chotirmall, S.H.; Mccullagh, B.; Branagan, P.; Mcelvaney, N.G.; Logan, P.M. Radiological Abnormalities Associated with Aspergillus Colonization in a Cystic Fibrosis Population. Eur. J. Radiol. 2012, 81, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Sehgal, I.S.; Muthu, V.; Denning, D.W.; Chakrabarti, A.; Soundappan, K.; Garg, M.; Rudramurthy, S.M.; Dhooria, S.; Armstrong-James, D.; et al. Revised ISHAM-ABPA Working Group Clinical Practice Guidelines for Diagnosing, Classifying and Treating Allergic Bronchopulmonary Aspergillosis/Mycoses. Eur. Respir. J. 2024, 63, 2400061. [Google Scholar] [CrossRef]
- Agarwal, R.; Chakrabarti, A.; Shah, A.; Gupta, D.; Meis, J.F.; Guleria, R.; Moss, R.; Denning, D.W. Allergic Bronchopulmonary Aspergillosis: Review of Literature and Proposal of New Diagnostic and Classification Criteria. Clin. Exp. Allergy 2013, 43, 850–873. [Google Scholar] [CrossRef] [PubMed]
- Maleki, M.; Mortezaee, V.; Hassanzad, M.; Mahdaviani, S.; Poorabdollah, M.; Mehrian, P.; Behnampour, N.; Mirenayat, M.; Abastabar, M.; Tavakoli, M.; et al. Prevalence of Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis Patients Using Two Different Diagnostic Criteria. Eur. Ann. Allergy Clin. Immunol. 2020, 52, 104–111. [Google Scholar] [CrossRef]
- Maturu, V.N.; Agarwal, R. Prevalence of Aspergillus Sensitization and Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis: Systematic Review and Meta-Analysis. Clin. Exp. Allergy 2015, 45, 1765–1778. [Google Scholar] [CrossRef] [PubMed]
- Geller, D.E.; Kaplowitz, H.; Light, M.J.; Colin, A.A. Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. Reported Prevalence, Regional Distribution, and Patient Characteristics. Chest 1999, 116, 639–646. [Google Scholar] [CrossRef]
- Thia, L.P.; Balfour Lynn, I.M. Diagnosing Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis. Paediatr. Respir. Rev. 2009, 10, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Sunman, B.; Ademhan Tural, D.; Ozsezen, B.; Emiralioglu, N.; Yalcin, E.; Özçelik, U. Current Approach in the Diagnosis and Management of Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis. Front. Pediatr. 2020, 8, 582964. [Google Scholar] [CrossRef]
- Mastella, G.; Rainisio, M.; Harms, H.K.; Hodson, M.E.; Koch, C.; Navarro, J.; Strandvik, B.; Mckenzie, S.G. Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. A European Epidemiological Study. Eur. Respir. J. 2000, 16, 464–471. [Google Scholar] [CrossRef]
- Bird, S.; O’Bren, C.; Moss, S. Risk Factors for Allergic Bronchopulmonary Aspergillosis in Patients with Cystic Fibrosis. Arch. Dis. Child. 2010, 95, A58–A61. [Google Scholar] [CrossRef]
- Noverr, M.C.; Noggle, R.M.; Toews, G.B.; Huffnagle, G.B. Role of Antibiotics and Fungal Microbiota in Driving Pulmonary Allergic Responses. Infect. Immun. 2004, 72, 4996–5003. [Google Scholar] [CrossRef]
- Kanj, A.N.; Kottom, T.J.; Schaefbauer, K.J.; Choudhury, M.; Limper, A.H.; Skalski, J.H. Dysbiosis of the Intestinal Fungal Microbiota Increases Lung Resident Group 2 Innate Lymphoid Cells and Is Associated with Enhanced Asthma Severity in Mice and Humans. Respir. Res. 2023, 24, 144. [Google Scholar] [CrossRef]
- Sey, E.A.; Warris, A. The Gut-Lung Axis: The Impact of the Gut Mycobiome on Pulmonary Diseases and Infections. Oxf. Open Immunol. 2024, 5, iqae008. [Google Scholar] [CrossRef]
- Livnat, G.; Bar-Yoseph, R.; Mory, A.; Dagan, E.; Elias, N.; Gershoni, R.; Bentur, L. Duplication in CHIT1 Gene and the Risk for Aspergillus Lung Disease in CF Patients. Pediatr. Pulmonol. 2014, 49, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Noni, M.; Katelari, A.; Poulou, M.; Ioannidis, D.; Kapasouri, E.M.; Tzetis, M.; Doudounakis, S.E.; Kanaka-Gantenbein, C.; Spoulou, V. Frequencies of Pathogenic CFTR Variants in Greek Cystic Fibrosis Patients with Allergic Bronchopulmonary Aspergillosis and Aspergillus fumigatus Chronic Colonization: A Retrospective Cohort Study. J. Med. Mycol. 2023, 33, 101326. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Khan, A.; Aggarwal, A.N.; Gupta, D. Link between CFTR Mutations and ABPA: A Systematic Review and Meta-Analysis. Mycoses 2012, 55, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Knutsen, A.P.; Slavin, R.G. Allergic Bronchopulmonary Aspergillosis in Asthma and Cystic Fibrosis. Clin. Dev. Immunol. 2011, 2011, 843763. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, B.; Santiago, L.; Hutcheson, P.S.; Schwartz, H.J.; Spitznagel, E.; Castro, M.; Slavin, R.G.; Bellone, C.J. Evidence for the Involvement of Two Different MHC Class II Regions in Susceptibility or Protection in Allergic Bronchopulmonary Aspergillosis. J. Allergy Clin. Immunol. 2000, 106, 723–729. [Google Scholar] [CrossRef]
- Brouard, J.; Knauer, N.; Boelle, P.-Y.; Corvol, H.; Henrion-Caude, A.; Flamant, C.; Ois Bremont, F.; Delaisi, B.; Duhamel, J.-F.; Marguet, C.; et al. Influence of Interleukin-10 on Aspergillus Fumigatus Infection in Patients with Cystic Fibrosis. J. Infect. Dis. 2005, 191, 1988–1991. [Google Scholar] [CrossRef]
- Ritz, N.; Ammann, R.A.; Casaulta Aebischer, C.; Schoeni-Affolter, F.; Schoeni, M.H. Risk Factors for Allergic Bronchopulmonary Aspergillosis and Sensitisation to Aspergillus fumigatus in Patients with Cystic Fibrosis. Eur. J. Pediatr. 2005, 164, 577–582. [Google Scholar] [CrossRef]
- Tracy, M.C.; Moss, R.B.R.; Tracey, M.; Moss, R.B.R. The Myriad Challenges of Respiratory Fungal Infection in Cystic Fibrosis. Pediatr. Pulmonol. 2018, 53, S75–S85. [Google Scholar] [CrossRef] [PubMed]
- Chotirmall, S.H.; Branagan, P.; Gunaratnam, C.; McElvaney, N.G. Aspergillus/Allergic Bronchopulmonary Aspergillosis in an Irish Cystic Fibrosis Population: A Diagnostically Challenging Entity. Respir. Care 2008, 53, 1035–1041. [Google Scholar]
- Kraemer, R.; Deloséa, N.; Ballinari, P.; Gallati, S.; Crameri, R. Effect of Allergic Bronchopulmonary Aspergillosis on Lung Function in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 2006, 174, 1211–1220. [Google Scholar] [CrossRef] [PubMed]
- De Baets, F.; De Keyzer, L.; Van Daele, S.; Schelstraete, P.; Van Biervliet, S.; Van Braeckel, E.; Thomas, M.; Wanyama, S.S. Risk Factors and Impact of Allergic Bronchopulmonary Aspergillosis in Pseudomonas aeruginosa-Negative CF Patients. Pediatr. Allergy Immunol. 2018, 29, 726–731. [Google Scholar] [CrossRef]
- Kaditis, A.G.; Miligkos, M.; Bossi, A.; Colombo, C.; Hatziagorou, E.; Kashirskaya, N.; De Monestrol, I.; Thomas, M.; Mei-Zahav, M.; Chrousos, G.; et al. Effect of Allergic Bronchopulmonary Aspergillosis on FEV1 in Children and Adolescents with Cystic Fibrosis: A European Cystic Fibrosis Society Patient Registry Analysis. Arch. Dis. Child. 2017, 102, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Wojnarowski, C.; Eichler, I.; Gartner, C.; Götz, M.; Renner, S.; Koller, D.Y.; Frischer, T. Sensitization to Aspergillus fumigatus and Lung Function in Children with Cystic Fibrosis. Am. J. Respir. Crit. Care Med. 1997, 155, 1902–1907. [Google Scholar] [CrossRef]
- Eickmeier, O.; Zissler, U.M.; Wittschorek, J.; Unger, F.; Schmitt-Grohé, S.; Schubert, R.; Herrmann, E.; Zielen, S. Clinical Relevance of Aspergillus fumigatus Sensitization in Cystic Fibrosis. Clin. Exp. Allergy 2020, 50, 325–333. [Google Scholar] [CrossRef]
- Lattanzi, C.; Messina, G.; Fainardi, V.; Tripodi, M.C.; Pisi, G.; Esposito, S. Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis: An Update on the Newest Diagnostic Tools and Therapeutic Approaches. Pathogens 2020, 9, 716. [Google Scholar] [CrossRef]
- Carsin, A.; Romain, T.; Ranque, S.; Reynaud-Gaubert, M.; Dubus, J.-C.; Mège, J.-L.; Vitte, J. Aspergillus Fumigatus in Cystic Fibrosis: An Update on Immune Interactions and Molecular Diagnostics in Allergic Bronchopulmonary Aspergillosis. Allergy 2017, 72, 1632–1642. [Google Scholar] [CrossRef]
- Denning, D.W.; Pashley, C.; Hartl, D.; Wardlaw, A.; Godet, C.; Del Giacco, S.; Delhaes, L.; Sergejeva, S. Fungal Allergy in Asthma-State of the Art and Research Needs. Clin. Transl. Allergy 2014, 4, 14. [Google Scholar] [CrossRef]
- Saxena, P. Which Are the Optimal Criteria for the Diagnosis of Allergic Bronchopulmonary Aspergillosis? A Latent Class Analysis. J. Allergy Clin. Immunol. Pract. 2021, 9, 328–335.e1. [Google Scholar] [CrossRef] [PubMed]
- Kurup, V.P.; Knutsen, A.P.; Moss, R.B.; Bansal, N.K. Specific Antibodies to Recombinant Allergens of Aspergillus fumigatus in Cystic Fibrosis Patients with ABPA. Clin. Mol. Allergy 2006, 4, 14. [Google Scholar] [CrossRef]
- Muthu, V.; Sehgal, I.S.; Dhooria, S.; Aggarwal, A.N.; Agarwal, R. Utility of Recombinant Aspergillus fumigatus Antigens in the Diagnosis of Allergic Bronchopulmonary Aspergillosis: A Systematic Review and Diagnostic Test Accuracy Meta-Analysis. Clin. Exp. Allergy 2018, 48, 1107–1136. [Google Scholar] [CrossRef]
- Sehgal, I.S.; Dhooria, S.; Prasad, K.T.; Muthu, V.; Aggarwal, A.N.; Agarwal, R. Comparative Diagnostic Accuracy of Immunoprecipitation versus Immunoassay Methods for Detecting Aspergillus fumigatus-Specific IgG in Allergic Bronchopulmonary Aspergillosis: A Systematic Review and Meta-Analysis. Mycoses 2022, 65, 866–876. [Google Scholar] [CrossRef] [PubMed]
- Hunter, E.S.; Page, I.D.; Richardson, M.D.W. Evaluation of the LDBio Aspergillus ICT Lateral Flow Assay for Serodiagnosis of Allergic Bronchopulmonary Aspergillosis. PLoS ONE 2020, 15, e0238855. [Google Scholar] [CrossRef] [PubMed]
- Piarroux, R.P.; Romain, T.; Martin, A.; Vainqueur, D.; Vitte, J.; Lachaud, L.; Gangneux, J.P.; Gabriel, F.; Fillaux, J.; Ranque, S. Multicenter Evaluation of a Novel Immunochromatographic Test for Anti-Aspergillus IgG Detection. Front. Cell. Infect. Microbiol. 2019, 9, 12. [Google Scholar] [CrossRef]
- Agarwal, R.N.; Muthu, V.; Sehgal, I.S.; Dhooria, S.; Prasad, K.T.; Soundappan, K.; Rudramurthy, S.M.; Aggarwal, A.N.; Chakrabarti, A. Aspergillus Sensitization and Allergic Bronchopulmonary Aspergillosis in Asthmatic Children: A Systematic Review and Meta-Analysis. Diagnostics 2023, 13, 922. [Google Scholar] [CrossRef]
- Keown, K.; Abbott, S.; Kuzeljevic, B.; Rayment, J.H.; Chilvers, M.A.; Yang, C.L. An Investigation into Biomarkers for the Diagnosis of ABPA and Aspergillus Disease in Cystic Fibrosis. Pediatr. Pulmonol. 2019, 54, 1787–1793. [Google Scholar] [CrossRef]
- Delhaes, L.; Frealle, E.; Pinel, C. Serum Markers for Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis: State of the Art and Further Challenges. Med. Mycol. 2010, 48, 77–87. [Google Scholar] [CrossRef]
- Latzin, P.; Hartl, D.; Regamey, N.; Frey, U.; Schoeni, M.H.; Casaulta, C. Comparison of Serum Markers for Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. Eur. Respir. J. 2008, 31, 36–42. [Google Scholar] [CrossRef]
- Michel, M.; Gomez, C.; Sereme, Y.; Gouitaa, M.; Chartier, C.; Blanchard, P.; Pinchemel, S.; Cassagne, C.; Ranque, S.; Mège, J.L.; et al. Evaluation of Cellular Responses for the Diagnosis of Allergic Bronchopulmonary Mycosis: A Preliminary Study in Cystic Fibrosis Patients. Front. Immunol. 2020, 10, 31–49. [Google Scholar] [CrossRef] [PubMed]
- Gernez, Y.; Walters, J.; Mirkoviæ, B.; Lavelle, G.M.; Colleen, D.E.; Davies, Z.A.; Everson, C.; Tirouvanziam, R.; Silver, E.; Wallenstein, S.; et al. Blood Basophil Activation Is a Reliable Biomarker of Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. Eur. Respir. J. 2016, 47, 177–185. [Google Scholar] [CrossRef] [PubMed]
- Rowbotham, N.J.; Smith, S.; Prayle, A.P.; Robinson, K.A.; Smyth, A.R. Gaps in the Evidence for Treatment Decisions in Cystic Fibrosis: A Systematic Review. Thorax 2018, 74, 229–236. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.; Moore, J.E.; Whitehouse, J.L.; Bilton, D.; Downey, D.G. The Diagnosis and Management of Respiratory Tract Fungal Infection in Cystic Fibrosis: A UK Survey of Current Practice. Med. Mycol. 2019, 57, 155–160. [Google Scholar] [CrossRef]
- Elphick, H.E.; Southern, K.W. Antifungal Therapies for Allergic Bronchopulmonary Aspergillosis in People with Cystic Fibrosis. Cochrane Database Syst. Rev. 2016, 2016, CD002204. [Google Scholar] [CrossRef]
- Jat, K.R.; Walia, D.K.; Khairwa, A. AntiIgE Therapy for Allergic Bronchopulmonary Aspergillosis in People with Cystic Fibrosis (Review). Cochrane Database Syst. Rev. 2018, 3, CD010288, Erratum in Cochrane Database Syst. Rev. 2021, 9, CD010288. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hilliard, T.; Edwards, S.; Buchdahl, R.; Francis, J.; Rosenthal, M.; Balfour-Lynn, I.; Bush, A.; Davies, J. Voriconazole Therapy in Children with Cystic Fibrosis. J. Cyst. Fibros. 2005, 4, 215–220. [Google Scholar] [CrossRef]
- Glackin, L.; Leen, G.; Elnazir, B.; Greally, P. Voriconazole in the Treatment Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. Ir. Med. J. 2009, 102, 29. [Google Scholar]
- Patel, D.; Popple, S.; Claydon, A.; Modha, D.E.; Gaillard, E.A. Posaconazole Therapy in Children with Cystic Fibrosis and Aspergillus-Related Lung Disease. Med. Mycol. 2020, 58, 11–21. [Google Scholar] [CrossRef]
- Gothe, F.; Schmautz, A.; Häusler, K.; Tran, N.B.; Kappler, M.; Griese, M. Treating Allergic Bronchopulmonary Aspergillosis with Short-Term Prednisone and Itraconazole in Cystic Fibrosis. J. Allergy Clin. Immunol. Pract. 2020, 8, 2608–2614.e3. [Google Scholar] [CrossRef]
- Royal Brompton Hospital Clinical Guidelines. Care of Children with CF. Available online: https://www.rbht.nhs.uk/childrencf (accessed on 20 January 2025).
- Hong, G.; Desai, S.; Moss, R.B.; Eschenhagen, P.; Quon, B.S.; Schwarz, C. Clinician Variability in the Diagnosis and Treatment of Aspergillus fumigatus-Related Conditions in Cystic Fibrosis: An International Survey. J. Cyst. Fibros. 2022, 21, 136–142. [Google Scholar] [CrossRef]
- Aaron, S.D.; Vandemheen, K.L.; Freitag, A.; Pedder, L.; Cameron, W.; Lavoie, A.; Paterson, N.; Wilcox, P.; Rabin, H.; Tullis, E.; et al. Treatment of Aspergillus fumigatus in Patients with Cystic Fibrosis: A Randomized, Placebo-Controlled Pilot Study. PLoS ONE 2012, 7, e36077. [Google Scholar] [CrossRef] [PubMed]
- Chesshyre, E.L.D.; Bradbury, J.D.; Cook, H.; Rocchi, F.; Roes, K.; Turner, M.A.; Brüggemann, R.; Warris, A. The Impact of the COVID-19 Pandemic and the Changing Landscape of CF on the CASPerCF Trial: A Real-World Experience. Trials 2024, 245, 645. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Aggarwal, A.N.; Dhooria, S.; Sehgal, I.S.; Garg, M.; Saikia, B.; Behera, D.; Chakrabarti, A. A Randomised Trial of Glucocorticoids in Acute-Stage Allergic Bronchopulmonary Aspergillosis Complicating Asthma. Eur. Respir. J. 2016, 47, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Dhooria, S.; Sehgal, I.S.; Aggarwal, A.N.; Garg, M.; Saikia, B.; Chakrabarti, A. A Randomised Trial of Voriconazole and Prednisolone Monotherapy in Acute-Stage Allergic Bronchopulmonary Aspergillosis Complicating Asthma. Eur. Respir. J. 2018, 52, 1801159. [Google Scholar] [CrossRef]
- Agarwal, R.; Muthu, V.; Sehgal, I.S.; Dhooria, S.; Prasad, K.T.; Garg, M.; Aggarwal, A.N.; Chakrabarti, A. A Randomised Trial of Prednisolone versus Prednisolone and Itraconazole in Acute-Stage Allergic Bronchopulmonary Aspergillosis Complicating Asthma. Eur. Respir. J. 2021, 59, 2101787. [Google Scholar] [CrossRef]
- Agarwal, R.; Dhooria, S.; Singh Sehgal, I.; Aggarwal, A.N.; Garg, M.; Saikia, B.; Behera, D.; Chakrabarti, A. A Randomized Trial of Itraconazole vs Prednisolone in Acute-Stage Allergic Bronchopulmonary Aspergillosis Complicating Asthma. Chest 2018, 153, 656–664. [Google Scholar] [CrossRef]
- Wang, J.L.; Patterson, R.; Roberts, M.; Ghory, A.C. The Management of Allergic Bronchopulmonary Aspergillosis. Am. Rev. Resp. Dis. 1979, 120, 87. [Google Scholar] [CrossRef]
- Moss, R.B. Treating Allergic Bronchopulmonary Aspergillosis: The Way Forward. Eur. Respir. J. 2016, 47, 385–387. [Google Scholar] [CrossRef]
- Patterson, T.F.; Thompson, G.R.; Denning, D.W.; Fishman, J.A.; Hadley, S.; Herbrecht, R.; Kontoyiannis, D.P.; Marr, K.A.; Morrison, V.A.; Nguyen, M.H.; et al. Practice Guidelines for the Diagnosis and Management of Aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2016, 63, e1–e60. [Google Scholar] [CrossRef]
- Cohen-Cymberknoh, M.; Blau, H.; Shoseyov, D.; Mei-Zahav, M.; Efrati, O.; Armoni, S.; Kerem, E. Intravenous Monthly Pulse Methylprednisolone Treatment for ABPA in Patients with Cystic Fibrosis. J. Cyst. Fibros. 2009, 8, 253–257. [Google Scholar] [CrossRef]
- Thomson, J.M.; Wesley, A.; Byrnes, C.A.; Nixon, G.M. Pulse Intravenous Methylprednisolone for Resistant Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. Pediatr. Pulmonol. 2006, 41, 164–170. [Google Scholar] [CrossRef] [PubMed]
- Vertex Pharmaceuticals Trikafta Product Monograph. Available online: https://pi.vrtx.com/files/Canadapm_trikafta_en.pdf (accessed on 20 January 2025).
- Jansen, A.M.E.; Eggermont, M.N.; Wilms, E.B.; Aziz, S.; Reijers, M.; Roukema, J.; Warris, A.; Brüggemann, R.J.M.; van der Meer, R. Evaluation of the Drug–Drug Interaction between Triazole Antifungals and Cystic Fibrosis Transmembrane Conductance Regulator Modulators in a Real-Life Cohort. Med. Mycol. 2024, 62, myae020. [Google Scholar] [CrossRef]
- Bentley, S.; Gupta, A.; Balfour-Lynn, I.M. Subtherapeutic Itraconazole and Voriconazole Levels in Children with Cystic Fibrosis. J. Cyst. Fibros. 2013, 12, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Abbotsford, J.; A Foley, D.; Goff, Z.; Bowen, A.C.; Blyth, C.C.; Yeoh, D.K. Clinical Experience with SUBA-Itraconazole at a Tertiary Paediatric Hospital. J. Antimicrob. Chemother. 2021, 76, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Hassanzad, M.; Mortezaee, V.; Bongomin, F.; Poorabdollah, M.; Sharifynia, S.; Maleki, M.; Hedayati, N.; Velayati, A.A.; Hedayati, M.T. Successful Control of Exacerbation of Allergic Bronchopulmonary Aspergillosis Due to Aspergillus terreus in a Cystic Fibrosis Patient with Short-Term Adjunctive Therapy with Voriconazole: A Case Report. J. Mycol. Med. 2019, 29, 189–192. [Google Scholar] [CrossRef]
- Periselneris, J.; Nwankwo, L.; Schelenz, S.; Shah, A.; Armstrong-James, D. Posaconazole for the Treatment of Allergic Bronchopulmonary Aspergillosis in Patients with Cystic Fibrosis. J. Antimicrob. Chemother. 2019, 74, 1701–1703. [Google Scholar] [CrossRef]
- Proesmans, M.; Vermeulen, F.; Vreys, M.; De Boeck, K. Use of Nebulized Amphotericin B in the Treatment of Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis. Int. J. Pediatr. 2010, 2010, 376287. [Google Scholar] [CrossRef]
- Koutsokera, A.; Corriveau, S.; Sykes, J.; Coriati, A.; Cortes, D.; Vadas, P.; Chaparro, C.; McIntyre, K.; Tullis, E.; Stephenson, A.L. Omalizumab for Asthma and Allergic Bronchopulmonary Aspergillosis in Adults with Cystic Fibrosis. J. Cyst. Fibros. 2020, 19, 119–124. [Google Scholar] [CrossRef]
- Perisson, C.; Destruys, L.; Grenet, D.; Bassinet, L.; Derelle, J.; Sermet-Gaudelus, I.; Thumerelle, C.; Prevotat, A.; Rosner, V.; Clement, A.; et al. Omalizumab Treatment for Allergic Bronchopulmonary Aspergillosis in Young Patients with Cystic Fibrosis. Respir. Med. 2017, 133, 12–15. [Google Scholar] [CrossRef]
- Ashkenazi, M.; Sity, S.; Sarouk, I.; El, B.; Aluma, B.; Dagan, A.; Bezalel, Y.; Bentur, L.; De Boeck, K.; Efrati, O. Omalizumab in Allergic Bronchopulmonary Aspergillosis in Patients with Cystic Fibrosis. J. Asthma Allergy 2018, 11, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Nové-Josserand, R.; Grard, S.; Auzou, L.; Reix, P.; Murris-Espin, M.; Brémont, F.; Mammar, B.; Mely, L.; Hubert, D.; Durieu, I.; et al. Case Series of Omalizumab for Allergic Bronchopulmonary Aspergillosis in Cystic Fibrosis Patients. Pediatr. Pulmonol. 2017, 52, 190–197. [Google Scholar] [CrossRef]
- Tanou, K.; Zintzaras, E.; Kaditis, A.G. Omalizumab Therapy for Allergic Bronchopulmonary Aspergillosis in Children with Cystic Fibrosis: A Synthesis of Published Evidence. Pediatr. Pulmonol. 2014, 49, 503–507. [Google Scholar] [CrossRef]
- Novartis An Exploratory Study to Assess Multiple Doses of Omalizumab in Patients with CF Complicated by Allergic Bronchopulmonary Aspergillosis (ABPA) (Clinical Trials.Gov ID NCT00787917). Available online: https://clinicaltrials.gov/study/NCT00787917 (accessed on 2nd January 2025).
- Zhang, L.; Borish, L.; Smith, A.; Somerville, L.; Albon, D. Use of Mepolizumab in Adult Patients with Cystic Fibrosis and an Eosinophilic Phenotype: Case Series. Allergy Asthma Clin. Immunol. 2020, 16, 3. [Google Scholar] [CrossRef] [PubMed]
- Boyle, M.; Mulrennan, S.; Morey, S.; Vekaria, S.; Popowicz, N.; Tai, A. Mepolizumab Use in Cystic Fibrosis-Associated Allergic Bronchopulmonary Aspergillosis. Respirol. Case Rep. 2021, 9, e00696. [Google Scholar] [CrossRef]
- Eraso, I.C.; Sangiovanni, S.; Morales, E.I.; Fernández-Trujillo, L. Use of Monoclonal Antibodies for Allergic Bronchopulmonary Aspergillosis in Patients with Asthma and Cystic Fibrosis: Literature Review. Ther. Adv. Respir. Dis. 2020, 14, 1753466620961648. [Google Scholar] [CrossRef]
- Frost, F.J.; Nazareth, D.S.; Charman, S.C.; Winstanley, C.; Walshaw, M.J. Ivacaftor Is Associated with Reduced Lung Infection by Key Cystic Fibrosis Pathogens A Cohort Study Using National Registry Data. Ann. Am. Thorac. Soc. 2019, 16, 1375–1382. [Google Scholar] [CrossRef]
- Chesnay, A.; Bailly, É.; Cosson, L.; Flament, T.; Desoubeaux, G. Advent of Elexacaftor/Tezacaftor/Ivacaftor for Cystic Fibrosis Treatment: What Consequences on Aspergillus-Related Diseases? Preliminary Insights. J. Cyst. Fibros. 2022, 21, 1084–1085. [Google Scholar] [CrossRef] [PubMed]
- Castellani, C.; Duff, J.A.; Bell, S.C.; Heijerman, H.G.M.; Munck, A.; Ratjen, F.; Sermet-Gaudelus, I.; Southern, K.W.; Barben, J.; Flume, P.A.; et al. ECFS Best Practice Guidelines: The 2018 Revision. J. Cyst. Fibros. 2018, 17, 153–178. [Google Scholar] [CrossRef]
- Bower, J.K.; Volkova, N.; Ahluwalia, N.; Sahota, G.; Xuan, F.; Chin, A.; Weinstock, T.G.; Ostrenga, J.; Elbert, A. Real-World Safety and Effectiveness of Elexacaftor/Tezacaftor/Ivacaftor in People with Cystic Fibrosis: Interim Results of a Long-Term Registry-Based Study. J. Cyst. Fibros. 2023, 22, 730–737. [Google Scholar] [CrossRef]
- McNally, P.; Lester, K.; Stone, G.; Elnazir, B.; Williamson, M.; Cox, D.; Linnane, B.; Kirwan, L.; Rea, D.; O’Regan, P.; et al. Improvement in Lung Clearance Index and Chest CT Scores with Elexacaftor/Tezacaftor/Ivacaftor Treatment in People with Cystic Fibrosis Aged 12 Years and Older—The RECOVER Study. Am. J. Resp. Crit. Care Med. 2023, 208, 917–929. [Google Scholar] [CrossRef] [PubMed]
- Romani, L.; Oikonomou, V.; Moretti, S.; Iannitti, R.G.; D’Adamo, M.C.; Villella, V.R.; Pariano, M.; Sforna, L.; Borghi, M.; Bellet, M.M.; et al. Thymosin A1 Represents a Potential Potent Single-Molecule-Based Therapy for Cystic Fibrosis. Nat. Med. 2017, 23, 590–600. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chesshyre, E.; Wooding, E.; Sey, E.; Warris, A. Aspergillus in Children and Young People with Cystic Fibrosis: A Narrative Review. J. Fungi 2025, 11, 210. https://doi.org/10.3390/jof11030210
Chesshyre E, Wooding E, Sey E, Warris A. Aspergillus in Children and Young People with Cystic Fibrosis: A Narrative Review. Journal of Fungi. 2025; 11(3):210. https://doi.org/10.3390/jof11030210
Chicago/Turabian StyleChesshyre, Emily, Eva Wooding, Emily Sey, and Adilia Warris. 2025. "Aspergillus in Children and Young People with Cystic Fibrosis: A Narrative Review" Journal of Fungi 11, no. 3: 210. https://doi.org/10.3390/jof11030210
APA StyleChesshyre, E., Wooding, E., Sey, E., & Warris, A. (2025). Aspergillus in Children and Young People with Cystic Fibrosis: A Narrative Review. Journal of Fungi, 11(3), 210. https://doi.org/10.3390/jof11030210