The Ecology of Non-Candida Yeasts and Dimorphic Fungi in Cetaceans: From Pathogenicity to Environmental and Global Health Implications
Abstract
:1. Introduction
2. Identified Species of Non-Candida Yeasts in Cetaceans
2.1. Cryptococcus spp.
2.2. Paracoccidioides ceti: The Etiologic Agent of Lacaziosis or Lobomycosis
Fungal Species | Cetacean Species | Colonization or Infection | Location | Isolation Origin | Captivity of Free-Living | Antifungal Resistance | Reference |
---|---|---|---|---|---|---|---|
Non-identified Cryptococcus spp. | Neophocaena asiaeorientalis sunameri Stenella coeruleoalba, Tursiops truncatus | Infection or colonization | China Western Australia | Lung, lymph nodes, stomach | Captive and free-living | No data | [23,26,30] |
C. neoformans | Eubalaena australis, Balaena mysticetus. Phocoena phocoena, Phocoenoides dalli | Infection | Alaska British Columbia South Africa | Skin, lung, lymph nodes | Free-living | No data | [17,25,27,29] |
C. gattii—VGI and VGIIa | Lagenorhynchus obliquidens, Stenella longirostris, T. truncatus, P. dalli, P. phocoena | Infection | Atlantic coast of Canada British Columbia California Hawaii South Africa Washington | Skin, lung, lymph nodes, stomach, adrenal gland, kidney, spleen, pleura, placenta, brain and meninges | Captive and free-living | One isolate in T. truncatus susceptible to itraconazole | [16,17,18,21,22,24] |
C. albidus | B.mysticetus | Probable infection | Alaska | Skin | Free-living | No data | [29] |
C. gastricus | B.mysticetus | Probable infection | Alaska | Skin | Free-living | No data | [29] |
C. luteolus | B.mysticetus | Probable infection | Alaska | Skin | Free-living | No data | [29] |
C. laurentii | B. mysticetus | Colonization | Alaska | Skin | Free-living | No data | [29] |
C. terreus | B.mysticetus | Colonization | Alaska | Skin | Free-living | No data | [29] |
C. uniguttulatus | B.mysticetus | Colonization | Alaska | Skin | Free-living | No data | [29] |
Paracoccidioides ceti | Orcaella heinsohni, P. dalli, Sotalia guianensis, Sousa plumbea, Stenella frontalis, T. truncatus, Tursiops aduncus | Infection | Australia Belize Brazil Colombia Costa Rica Ecuador Florida Japan Madagascar Mayotte Mexico Peru South Africa Surinam Venezuela | Skin | Captive and free-living | No data | [35,42,43,46,48,49,51,52,57,61,63] |
2.3. Other Dimorphic Fungi
2.3.1. Blastomyces spp.
2.3.2. Coccidioides spp.
2.3.3. Histoplasma spp.
Fungal Species | Cetacean Species | Colonization or Infection | Location | Isolation Origin | Captivity of Free-Living | Antifungal Resistance | Reference |
---|---|---|---|---|---|---|---|
Blastomyces dermatitidis | Tursiops truncatus | Infection | Gulf of Mexico | Skin, lung, kidney, lymph nodes, heart, spleen, liver, gastrointestinal tract, | Free-living | No data | [65] |
Coccidioides immitis | T. truncatus | Infection | California | Lung, lymph nodes, brain | Free-living | No data | [69] |
Coccidioides posadasii | Phocoena phocoena, Phocoenoides dalli | Unknown | Japan | Serological evidence | Free-living | No data | [53] |
Histoplasma capsulatum | T. truncatus | Infection | California | Lung | Captive | No data | [27,71] |
2.3.4. Trichosporon spp.
2.3.5. Rhodotorula spp.
2.3.6. Other Yeasts
Fungal Species | Cetacean Species | Colonization or Infection | Location | Isolation Origin | Captivity of Free-Living | Antifungal Resistance | Reference |
---|---|---|---|---|---|---|---|
Trichosporon asteroides | Tursiops truncatus | Infection | Japan | Skin | Free-living | No data | [62] |
T. beigelii | Balaena mysticetus | Colonization and infection | Alaska | Skin | Free-living | No data | [29,74] |
Cutaneotrichosporon cutaneum | T. truncatus | Colonization | Florida, South Carolina | Blowhole and faeces | Free-living | No data | [73] |
Rhodotorula glutinis | B. mysticetus | Colonization or infection | Alaska | Skin | Free-living | No data | [29] |
R. mucilaginosa | B. mysticetus | Colonization or infection | Alaska | Skin | Free-living | No data | [29] |
R. minuta -Cystobasidium minutum | B. mysticetus | Colonization or infection | Alaska | Skin | Free-living | No data | [29] |
Malassezia spp. | Neophocaena asiaeorientalis sunameri | Colonization | China | Gastronitestinal tract | Free living | No data | [30] |
Saccharomyces cerevisiae | B. mysticetus | Colonization | Alaska | Skin | Free-living | No data | [29] |
Metschnikowia spp. | Balaenoptera musculus | Colonization | California | Faeces | Free living | No data | [81] |
3. The Significance of Non-Candida Yeasts in Cetacean Health and Disease
4. Pathogenicity and Impact of Non-Candida Yeasts on Cetaceans
5. Environmental Influence and Health Implications of Non-Candida Yeasts in Cetaceans
6. Knowledge Gaps and Future Directions for Non-Candida Yeasts in Cetacean Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowen, W. Role of marine mammals in aquatic ecosystems. Mar. Ecol. Prog. Ser. 1997, 158, 267–274. [Google Scholar] [CrossRef]
- Fossi, M.C.; Casini, S.; Caliani, I.; Panti, C.; Marsili, L.; Viarengo, A.; Giangreco, R.; Notarbartolo di Sciara, G.; Serena, F.; Ouerghi, A.; et al. The role of large marine vertebrates in the assessment of the quality of pelagic marine ecosystems. Mar. Environ. Res. 2012, 77, 156–158. [Google Scholar] [CrossRef] [PubMed]
- Kiszka, J.J.; Woodstock, M.S.; Heithaus, M.R. Functional roles and ecological importance of small cetaceans in Aquatic Ecosystems. Front. Mar. Sci. 2022, 9, 803173. [Google Scholar] [CrossRef]
- Simeone, C.A.; Gulland, F.M.; Norris, T.; Rowles, T.K. A Systematic Review of Changes in Marine Mammal Health in North America, 1972–2012: The Need for a Novel Integrated Approach. PLoS ONE 2015, 10, e0142105. [Google Scholar] [CrossRef] [PubMed]
- Bossart, G.D. Marine mammals as sentinel species for oceans and human health. Vet. Pathol. 2011, 48, 676–690. [Google Scholar] [CrossRef]
- Van Bressem, M.F.; Raga, J.A.; Di Guardo, G.; Jepson, P.D.; Duignan, P.J.; Siebert, U.; Barrett, T.; Santos, M.C.; Moreno, I.B.; Siciliano, S.; et al. Emerging infectious diseases in cetaceans worldwide and the possible role of environmental stressors. Dis. Aquat. Organ. 2009, 86, 143–157. [Google Scholar] [CrossRef]
- Mouton, M.; Both, A. Cutaneous Lesions in Cetaceans: An Indicator of Ecosystem Status? In New Approaches to the Study of Marine Mammals; InTech: London, UK, 2012. [Google Scholar] [CrossRef]
- Vendl, C.; Slavich, E.; Nelson, T.; Acevedo-Whitehouse, K.; Montgomery, K.; Ferrari, B.; Thomas, T.; Rogers, T. Does sociality drive diversity and composition of airway microbiota in cetaceans? Environ. Microbiol. Rep. 2020, 12, 324–333. [Google Scholar] [CrossRef]
- Soares-Castro, P.; Araújo-Rodrigues, H.; Godoy-Vitorino, F.; Ferreira, M.; Covelo, P.; López, A.; Vingada, J.; Eira, C.; Santos, P.M. Microbiota fingerprints within the oral cavity of cetaceans as indicators for population biomonitoring. Sci. Rep. 2019, 9, 13679. [Google Scholar] [CrossRef]
- Chiarello, M.; Villéger, S.; Bouvier, C.; Auguet, J.C.; Bouvier, T. Captive bottlenose dolphins and killer whales harbour a species-specific skin microbiota that varies among individuals. Sci. Rep. 2017, 7, 15269. [Google Scholar] [CrossRef]
- Robles-Malagamba, M.J.; Walsh, M.T.; Ahasan, M.S.; Thompson, P.; Wells, R.S.; Jobin, C.; Fodor, A.A.; Winglee, K.; Waltzek, T.B. Characterization of the bacterial microbiome among free-ranging bottlenose dolphins (Tursiops truncatus). Heliyon 2020, 6, e03944. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.C.; Meyer, W.; Sorrell, T.C. Cryptococcus gattii infections. Clin. Microbiol. Rev. 2014, 27, 980–1024. [Google Scholar] [CrossRef] [PubMed]
- Rathore, S.S.; Sathiyamoorthy, J.; Lalitha, C.; Ramakrishnan, J. A holistic review on Cryptococcus neoformans. Microb. Pathog. 2022, 166, 105521. [Google Scholar] [CrossRef] [PubMed]
- Danesi, P.; Falcaro, C.; Schmertmann, L.J.; de Miranda, L.H.M.; Krockenberger, M.; Malik, R. Cryptococcus in Wildlife and Free-Living Mammals. J. Fungi 2021, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Paul, K.; Kaur, S. Diverse species in the genus Cryptococcus: Pathogens and their non-pathogenic ancestors. IUBMB Life 2020, 72, 2303–2312. [Google Scholar] [CrossRef] [PubMed]
- Teman, S.J.; Gaydos, J.K.; Norman, S.A.; Huggins, J.L.; Lambourn, D.M.; Calambokidis, J.; Ford, J.K.B.; Hanson, M.B.; Haulena, M.; Zabek, E.; et al. Epizootiology of a Cryptococcus gattii outbreak in porpoises and dolphins from the Salish Sea. Dis. Aquat. Organ. 2021, 146, 129–143. [Google Scholar] [CrossRef] [PubMed]
- Stephen, C.; Lester, S.; Black, W.; Fyfe, M.; Raverty, S. Multispecies outbreak of cryptococcosis on southern Vancouver Island, British Columbia. Can. Vet. J. 2002, 43, 792–794. [Google Scholar]
- Kidd, S.E.; Hagen, F.; Tscharke, R.L.; Huynh, M.; Bartlett, K.H.; Fyfe, M.; Macdougall, L.; Boekhout, T.; Kwon-Chung, K.J.; Meyer, W. A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc. Natl. Acad. Sci. USA 2004, 101, 17258–17263. [Google Scholar] [CrossRef]
- Haulena, M.; Himsworth, C.; Anderson, C.; Akhurst, L.; Ivančić, M.; Malpas, D.A.; Pollock, J.S.; Raverty, S. Severe progressive meningoencephalitis due to Cryptococcus sp. in a live-stranded harbor porpoise (Phocoena phocoena) undergoing rehabilitation. In Proceedings of the Conference of the International Association for Aquatic Animal Medicine; 2012. [Google Scholar]
- Huckabone, S.E.; Gulland, F.M.; Johnson, S.M.; Colegrove, K.M.; Dodd, E.M.; Pappagianis, D.; Dunkin, R.C.; Casper, D.; Carlson, E.L.; Sykes, J.E.; et al. Coccidioidomycosis and other systemic mycoses of marine mammals stranding along the central California, USA coast: 1998–2012. J. Wildl. Dis. 2015, 51, 295–308. [Google Scholar] [CrossRef]
- Miller, W.G.; Padhye, A.A.; van Bonn, W.; Jensen, E.; Brandt, M.E.; Ridgway, S.H. Cryptococcosis in a bottlenose dolphin (Tursiops truncatus) caused by Cryptococcus neoformans var. gattii. J. Clin. Microbiol. 2002, 40, 721–724. [Google Scholar] [CrossRef]
- Rotstein, D.S.; West, K.; Levine, G.; Lockhart, S.R.; Raverty, S.; Morshed, M.G.; Rowles, T. Cryptococcus gattii VGI in a spinner dolphin (Stenella longirostris) from Hawaii. J. Zoo. Wildl. Med. 2010, 41, 181–183. [Google Scholar] [CrossRef]
- Gales, N.; Wallace, G.; Dickson, J. Pulmonary cryptococcosis in a striped dolphin (Stenella coeruleoalba). J. Wildl. Dis. 1985, 21, 443–446. [Google Scholar] [CrossRef] [PubMed]
- Norman, S.A.; Raverty, S.; Zabek, E.; Etheridge, S.; Ford, J.K.; Hoang, L.M.; Morshed, M. Maternal-fetal transmission of Cryptococcus gattii in harbor porpoise. Emerg. Infect. Dis. 2011, 17, 304–305. [Google Scholar] [CrossRef] [PubMed]
- Mouton, M.; Reeb, D.; Botha, A.; Best, P. Yeast infection in a beached southern right whale (Eubalaena australis) neonate. J. Wildl. Dis. 2009, 45, 692–699. [Google Scholar] [CrossRef]
- Migaki, G.; Gunnels, R.D.; Casey, H.W. Pulmonary cryptococcosis in an Atlantic bottlenosed dolphin (Tursiops truncatus). Lab. Anim. Sci. 1978, 28, 603–606. [Google Scholar] [PubMed]
- Venn-Watson, S.; Daniels, R.; Smith, C. Thirty year retrospective evaluation of pneumonia in a bottlenose dolphin Tursiops truncatus population. Dis. Aquat. Organ. 2012, 99, 237–242. [Google Scholar] [CrossRef] [PubMed]
- Fenton, H.; Daoust, P.Y.; Forzán, M.J.; Vanderstichel, R.V.; Ford, J.K.; Spaven, L.; Lair, S.; Raverty, S. Causes of mortality of harbor porpoises Phocoena phocoena along the Atlantic and Pacific coasts of Canada. Dis. Aquat. Organ. 2017, 122, 171–183. [Google Scholar] [CrossRef]
- Shotts, E.B., Jr.; Albert, T.F.; Wooley, R.E.; Brown, J. Microflora associated with the skin of the bowhead whale (Balaena mysticetus). J. Wildl. Dis. 1990, 26, 351–359. [Google Scholar] [CrossRef]
- Wan, X.L.; McLaughlin, R.W.; Zheng, J.S.; Hao, Y.J.; Fan, F.; Tian, R.M.; Wang, D. Microbial communities in different regions of the gastrointestinal tract in East Asian finless porpoises (Neophocaena asiaeorientalis sunameri). Sci. Rep. 2018, 8, 14142. [Google Scholar] [CrossRef]
- Lobo, J. Um caso de blastomicose produzido por uma espécie nova, encontrada em Recife. Rev. Med. 1931, 1, 763–765. [Google Scholar]
- Migaki, G.; Valerio, M.G.; Irvine, B.; Garner, F.M. Lobo’s disease in an Atlantic bottlenosed dolphin. J. Am. Vet. Med. Assoc. 1971, 159, 578–582. [Google Scholar] [PubMed]
- Vilela, R.; Huebner, M.; Vilela, C.; Vilela, G.; Pettersen, B.; Oliveira, C.; Mendoza, L. The taxonomy of two uncultivated fungal mammalian pathogens is revealed through phylogeny and population genetic analyses. Sci. Rep. 2021, 11, 18119. [Google Scholar] [CrossRef]
- Vilela, R.; de Hoog, S.; Bensch, K.; Bagagli, E.; Mendoza, L. A taxonomic review of the genus Paracoccidioides, with focus on the uncultivable species. PLoS Negl. Trop. Dis. 2023, 17, e0011220. [Google Scholar] [CrossRef]
- Symmers, W.S. A possible case of Lôbo’s disease acquired in Europe from a bottle-nosed dolphin (Tursiops truncatus). Bull. Soc. Pathol. Exot. Fil. 1983, 76 Pt 2, 777–784. [Google Scholar]
- Norton, S.A. Dolphin-to-human transmission of lobomycosis? J. Am. Acad. Dermatol. 2006, 55, 723–724. [Google Scholar] [CrossRef] [PubMed]
- Reif, J.S.; Schaefer, A.M.; Bossart, G.D. Lobomycosis: Risk of zoonotic transmission from dolphins to humans. Vector Borne Zoonotic Dis. 2013, 13, 689–693. [Google Scholar] [CrossRef]
- Rosa, P.S.; Soares, C.T.; Belone Ade, F.; Vilela, R.; Ura, S.; Filho, M.C.; Mendoza, L. Accidental Jorge Lobo’s disease in a worker dealing with Lacazia loboi infected mice: A case report. J. Med. Case Rep. 2009, 3, 67. [Google Scholar] [CrossRef]
- Belone, A.F.; Madeira, S.; Rosa, P.S.; Opromolla, D.V. Experimental reproduction of the Jorge Lobo’s disease in BAlb/c mice inoculated with Lacazia loboi obtained from a previously infected mouse. Mycopathologia 2002, 155, 191–194. [Google Scholar] [CrossRef] [PubMed]
- Lacaz, C.D.S.; Baruzzi, R.G.; Rosa, M.D.C.B. Doença de Jorge Lobo; IPSIS Editora SA: São Paulo, Brazil, 1986; pp. 1–92. [Google Scholar]
- Talhari, S.; Talhari, C. Lobomycosis. Clin. Dermatol. 2012, 30, 420–424. [Google Scholar] [CrossRef]
- Bossart, G.D.; Schaefer, A.M.; McCulloch, S.; Goldstein, J.; Fair, P.A.; Reif, J.S. Mucocutaneous lesions in free-ranging Atlantic bottlenose dolphins Tursiops truncatus from the southeastern USA. Dis. Aquat. Organ. 2015, 115, 175–184. [Google Scholar] [CrossRef]
- Daura-Jorge, F.G.; Simões-Lopes, P.C. Lobomycosis-like disease in wild bottlenose dolphins Tursiops truncatus of Laguna, southern Brazil: Monitoring of a progressive case. Dis. Aquat. Organ. 2011, 93, 163–170. [Google Scholar] [CrossRef] [PubMed]
- Sacristán, C.; Réssio, R.A.; Castilho, P.; Fernandes, N.; Costa-Silva, S.; Esperón, F.; Daura-Jorge, F.G.; Groch, K.R.; Kolesnikovas, C.K.; Marigo, J.; et al. Lacaziosis-like disease in Tursiops truncatus from Brazil: A histopathological and immunohistochemical approach. Dis. Aquat. Organ. 2016, 117, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Bessesen, B.L.; Oviedo, L.; Burdett Hart, L.; Herra-Miranda, D.; Pacheco-Polanco, J.D.; Baker, L.; Saborío-Rodriguez, G.; Bermúdez-Villapol, L.; Acevedo-Gutiérrez, A. Lacaziosis-like disease among bottlenose dolphins Tursiops truncatus photographed in Golfo Dulce, Costa Rica. Dis. Aquat. Organ. 2014, 107, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Bermúdez, L.; Van Bressem, M.F.; Reyes-Jaimes, O.; Sayegh, A.J.; Paniz-Mondolfi, A.E. Lobomycosis in man and lobomycosis-like disease in bottlenose dolphin, Venezuela. Emerg. Infect Dis. 2009, 15, 1301–1303. [Google Scholar] [CrossRef] [PubMed]
- de Moura, J.F.; Hauser-Davis, R.A.; Lemos, L.; Emin-Lima, R.; Siciliano, S. Guiana dolphins (Sotalia guianensis) as marine ecosystem sentinels: Ecotoxicology and emerging diseases. Rev. Environ. Contam. Toxicol. 2014, 228, 1–29. [Google Scholar] [CrossRef] [PubMed]
- Esperón, F.; García-Párraga, D.; Bellière, E.N.; Sánchez-Vizcaíno, J.M. Molecular diagnosis of lobomycosis-like disease in a bottlenose dolphin in captivity. Med. Mycol. 2012, 50, 106–109. [Google Scholar] [CrossRef]
- Kiszka, J.; Van Bressem, M.F.; Pusineri, C. Lobomycosis-like disease and other skin conditions in Indo-Pacific bottlenose dolphins Tursiops aduncus from the Indian Ocean. Dis. Aquat. Organ. 2009, 84, 151–157. [Google Scholar] [CrossRef]
- Lane, E.P.; de Wet, M.; Thompson, P.; Siebert, U.; Wohlsein, P.; Plön, S. A systematic health assessment of Indian Ocean bottlenose (Tursiops aduncus) and Indo-Pacific humpback (Sousa plumbea) dolphins incidentally caught in shark nets off the KwaZulu-Natal Coast, South Africa. PLoS ONE 2014, 9, e107038. [Google Scholar] [CrossRef]
- Minakawa, T.; Ueda, K.; Tanaka, M.; Tanaka, N.; Kuwamura, M.; Izawa, T.; Konno, T.; Yamate, J.; Itano, E.N.; Sano, A.; et al. Detection of Multiple Budding Yeast Cells and a Partial Sequence of 43-kDa Glycoprotein Coding Gene of Paracoccidioides brasiliensis from a Case of Lacaziosis in a Female Pacific White-Sided Dolphin (Lagenorhynchus obliquidens). Mycopathologia 2016, 181, 523–529. [Google Scholar] [CrossRef]
- Tajima, Y.; Sasaki, K.; Kashiwagi, N.; Yamada, T.K. A case of stranded Indo-Pacific bottlenose dolphin (Tursiops aduncus) with lobomycosis-like skin lesions in Kinko-wan, Kagoshima, Japan. J. Vet. Med. Sci. 2015, 77, 989–992. [Google Scholar] [CrossRef] [PubMed]
- Kanegae, H.; Sano, A.; Okubo-Murata, M.; Watanabe, A.; Tashiro, R.; Eto, T.; Ueda, K.; Hossain, M.A.; Itano, E.N. Seroprevalences Against Paracoccidioides cetii: A Causative Agent for Paracoccidiomycosis Ceti (PCM-C) and Coccidioides posadasii; for Coccidioidomycosis (CCM) in Dall’s Porpoise (Phocoenoides dalli) and Harbor Porpoise (Phocoena phocoena) Stranded at Hokkaido, Japan. Mycopathologia 2022, 187, 385–391. [Google Scholar] [CrossRef] [PubMed]
- Burdett Hart, L.; Rotstein, D.S.; Wells, R.S.; Bassos-Hull, K.; Schwacke, L.H. Lacaziosis and lacaziosis-like prevalence among wild, common bottlenose dolphins Tursiops truncatus from the west coast of Florida, USA. Dis. Aquat. Organ. 2011, 95, 49–56. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, M.E.; Reif, J.S.; Mazzoil, M.; McCulloch, S.D.; Fair, P.A.; Bossart, G.D. Lobomycosis in bottlenose dolphins (Tursiops truncatus) from the Indian River Lagoon, Florida: Estimation of prevalence, temporal trends, and spatial distribution. Ecohealth 2008, 5, 289–297. [Google Scholar] [CrossRef] [PubMed]
- Reif, J.S.; Mazzoil, M.S.; McCulloch, S.D.; Varela, R.A.; Goldstein, J.D.; Fair, P.A.; Bossart, G.D. Lobomycosis in Atlantic bottlenose dolphins from the Indian River Lagoon, Florida. J. Am. Vet. Med. Assoc. 2006, 228, 104–108. [Google Scholar] [CrossRef]
- Van Bressem, M.F.; Simões-Lopes, P.C.; Félix, F.; Kiszka, J.J.; Daura-Jorge, F.G.; Avila, I.C.; Secchi, E.R.; Flach, L.; Fruet, P.F.; du Toit, K.; et al. Epidemiology of lobomycosis-like disease in bottlenose dolphins Tursiops spp. from South America and southern Africa. Dis. Aquat. Organ. 2015, 117, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Ueda, K.; Sano, A.; Yamate, J.; Nakagawa, E.I.; Kuwamura, M.; Izawa, T.; Tanaka, M.; Hasegawa, Y.; Chibana, H.; Izumisawa, Y.; et al. Two cases of lacaziosis in bottlenose dolphins (Tursiops truncatus) in Japan. Case Rep. Vet. Med. 2013, 2013, 318548. [Google Scholar] [CrossRef]
- Van Bressem, M.F.; Santos, M.C.; Oshima, J.E. Skin diseases in Guiana dolphins (Sotalia guianensis) from the Paranaguá estuary, Brazil: A possible indicator of a compromised marine environment. Mar. Environ. Res. 2009, 67, 63–68. [Google Scholar] [CrossRef]
- Vilela, R.; Mendoza, L. Paracoccidioidomycosis ceti (Lacaziosis/Lobomycosis) in Dolphins. In Emerging and Epizootic Fungal Infections in Animals; Seyedmousavi, S., de Hoog, G., Guillot, J., Verweij, P., Eds.; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Rotstein, D.S.; Burdett, L.G.; McLellan, W.; Schwacke, L.; Rowles, T.; Terio, K.A.; Schultz, S.; Pabst, A. Lobomycosis in offshore bottlenose dolphins (Tursiops truncatus), North Carolina. Emerg. Infect Dis. 2009, 15, 588–590. [Google Scholar] [CrossRef]
- Ueda, K.; Nakamura, I.; Itano, E.N.; Takemura, K.; Nakazato, Y.; Sano, A. Trichosporon asteroides Isolated from Cutaneous Lesions of a Suspected Case of “paracoccidioidomycosis ceti” in a Bottlenose Dolphin (Tursiops truncatus). Mycopathologia 2017, 182, 937–946. [Google Scholar] [CrossRef]
- Ramos, E.A.; Castelblanco-Martínez, D.N.; Garcia, J.; Rojas Arias, J.; Foley, J.R.; Audley, K.; Van Waerebeek, K.; Van Bressem, M.F. Lobomycosis-like disease in common bottlenose dolphins Tursiops truncatus from Belize and Mexico: Bridging the gap between the Americas. Dis. Aquat. Organ. 2018, 128, 1–12. [Google Scholar] [CrossRef]
- Smith, J.A.; Riddell, J., 4th; Kauffman, C.A. Cutaneous manifestations of endemic mycoses. Curr. Infect Dis. Rep. 2013, 15, 440–449. [Google Scholar] [CrossRef]
- Cates, M.B.; Kaufman, L.; Grabau, J.H.; Pletcher, J.M.; Schroeder, J.P. Blastomycosis in an Atlantic bottlenose dolphin. J. Am. Vet. Med. Assoc. 1986, 189, 1148–1150. [Google Scholar] [PubMed]
- Sweeney, J.C.; Migaki, G.; Vainik, P.M.; Conklin, R.H. Systemic mycosis in marine mammals. J. Am. Vet. Med. Assoc. 1976, 169, 946. [Google Scholar] [PubMed]
- Shubitz, L.F. Comparative aspects of coccidioidomycosis in animals and humans. Ann. N. Y. Acad. Sci. 2007, 1111, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Crum, N.F. Coccidioidomycosis: A Contemporary Review. Infect Dis. Ther. 2022, 11, 713–742. [Google Scholar] [CrossRef]
- Reidarson, T.H.; Griner, L.A.; Pappagianis, D.; McBain, J. Coccidioidomycosis in a bottlenose dolphin. J. Wildl. Dis. 1998, 34, 629–631. [Google Scholar] [CrossRef]
- Azar, M.M.; Loyd, J.L.; Relich, R.F.; Wheat, L.J.; Hage, C.A. Current Concepts in the Epidemiology, Diagnosis, and Management of Histoplasmosis Syndromes. Semin. Respir Crit. Care Med. 2020, 41, 13–30. [Google Scholar] [CrossRef]
- Jensen, E.D.; Lipscomb, T.; Van Bonn, B.; Miller, G.; Fradkin, J.M.; Ridgway, S.H. Disseminated histoplasmosis in an Atlantic bottlenose dolphin (Tursiops truncatus). J. Zoo Wildl. Med. 1998, 29, 456–460. [Google Scholar]
- Francisco, E.C.; Hagen, F. JMM Profile: Trichosporon yeasts: From superficial pathogen to threat for haematological-neutropenic patients. J. Med. Microbiol. 2022, 71, 001621. [Google Scholar] [CrossRef]
- Buck, J.D.; Wells, R.S.; Rhinehart, H.L.; Hansen, L.J. Aerobic microorganisms associated with free-ranging bottlenose dolphins in coastal Gulf of Mexico and Atlantic Ocean waters. J. Wildl. Dis. 2006, 42, 536–544. [Google Scholar] [CrossRef]
- Morris, P.J.; Johnson, W.R.; Pisani, J.; Bossart, G.D.; Adams, J.; Reif, J.S.; Fair, P.A. Isolation of culturable microorganisms from free-ranging bottlenose dolphins (Tursiops truncatus) from the southeastern United States. Vet. Microbiol. 2011, 148, 440–447. [Google Scholar] [CrossRef]
- Wirth, F.; Goldani, L.Z. Epidemiology of Rhodotorula: An emerging pathogen. Interdiscip. Perspect. Infect Dis. 2012, 2012, 465717. [Google Scholar] [CrossRef]
- García-Suárez, J.; Gómez-Herruz, P.; Cuadros, J.A.; Burgaleta, C. Epidemiology and outcome of Rhodotorula infection in haematological patients. Mycoses 2011, 54, 318–324. [Google Scholar] [CrossRef] [PubMed]
- Buck, J.D. Occurrence of human-associated yeasts in the feces and pool waters of captive bottlenosed dolphins (Tursiops truncatus). J. Wildl. Dis. 1980, 16, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Guillot, J.; Bond, R. Malassezia Yeasts in Veterinary Dermatology: An Updated Overview. Front. Cell Infect Microbiol. 2020, 10, 79. [Google Scholar] [CrossRef] [PubMed]
- Guillot, J.; Petit, T.; Degorce-Rubiales, F.; Guého, E.; Chermette, R. Dermatitis caused by Malassezia pachydermatis in a California sea lion (Zalophus californianus). Vet. Rec. 1998, 142, 311–312. [Google Scholar] [CrossRef] [PubMed]
- Nakagaki, K.; Hata, K.; Iwata, E.; Takeo, K. Malassezia pachydermatis isolated from a South American sea lion (Otaria byronia) with dermatitis. J. Vet. Med. Sci. 2000, 62, 901–903. [Google Scholar] [CrossRef] [PubMed]
- Guass, O.; Haapanen, L.M.; Dowd, S.E.; Širović, A.; McLaughlin, R.W. Analysis of the microbial diversity in faecal material of the endangered blue whale, Balaenoptera musculus. Antonie Van Leeuwenhoek. 2016, 109, 1063–1069. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, C.E.; Alexander, K.A. Unchartered waters: Climate change likely to intensify infectious disease outbreaks causing mass mortality events in marine mammals. Glob. Chang. Biol. 2020, 26, 4284–4301. [Google Scholar] [CrossRef] [PubMed]
- Gorris, M.E.; Cat, L.A.; Zender, C.S.; Treseder, K.K.; Randerson, J.T. Coccidioidomycosis Dynamics in Relation to Climate in the Southwestern United States. Geohealth 2018, 2, 6–24. [Google Scholar] [CrossRef]
- Rodrigues, M.L.; Nosanchuk, J.D. Fungal diseases as neglected pathogens: A wake-up call to public health officials. PLoS Negl. Trop. Dis. 2020, 14, e0007964. [Google Scholar] [CrossRef]
- Nabi, G.; McLaughlin, R.W.; Khan, S.; Hao, Y.; Chang, M.X. Pneumonia in endangered aquatic mammals and the need for developing low-coverage vaccination for their management and conservation. Anim. Health Res. Rev. 2020, 21, 122–130. [Google Scholar] [CrossRef]
- Hu, N.; Bourdeau, P.E.; Harlos, C.; Liu, Y.; Hollander, J. Meta-analysis reveals variance in tolerance to climate change across marine trophic levels. Sci. Total Environ. 2022, 827, 154244. [Google Scholar] [CrossRef]
- Tetu, S.G.; Sarker, I.; Moore, L.R. How will marine plastic pollution affect bacterial primary producers? Commun. Biol. 2020, 3, 55. [Google Scholar] [CrossRef]
- Nogales, B.; Lanfranconi, M.P.; Piña-Villalonga, J.M.; Bosch, R. Anthropogenic perturbations in marine microbial communities. FEMS Microbiol. Rev. 2011, 35, 275–298. [Google Scholar] [CrossRef]
- Bai, Y.; Wang, Q.; Liao, K.; Jian, Z.; Zhao, C.; Qu, J. Fungal Community as a Bioindicator to Reflect Anthropogenic Activities in a River Ecosystem. Front. Microbiol. 2018, 9, 3152. [Google Scholar] [CrossRef]
- Kumar, V.; Sarma, V.V.; Thambugala, K.M.; Huang, J.J.; Li, X.Y.; Hao, G.F. Ecology and Evolution of Marine Fungi with Their Adaptation to Climate Change. Front. Microbiol. 2021, 12, 719000. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. On the Emergence of Candida auris: Climate Change, Azoles, Swamps, and Birds. mBio 2019, 10, e01397-19. [Google Scholar] [CrossRef] [PubMed]
- Overy, D.P.; Berrue, F.; Correa, H.; Hanif, N.; Hay, K.; Lanteigne, M.; Mquilian, K.; Duffy, S.; Boland, P.; Jagannathan, R.; et al. Sea foam as a source of fungal inoculum for the isolation of biologically active natural products. Mycology 2014, 5, 130–144. [Google Scholar] [CrossRef] [PubMed]
- Amend, A.; Burgaud, G.; Cunliffe, M.; Edgcomb, V.P.; Ettinger, C.L.; Gutiérrez, M.H.; Heitman, J.; Hom, E.F.Y.; Ianiri, G.; Jones, A.C.; et al. Fungi in the Marine Environment: Open Questions and Unsolved Problems. mBio 2019, 10, e01189-18. [Google Scholar] [CrossRef] [PubMed]
- Gusa, A.; Yadav, V.; Roth, C.; Williams, J.D.; Shouse, E.M.; Magwene, P.; Heitman, J.; Jinks-Robertson, S. Genome-wide analysis of heat stress-stimulated transposon mobility in the human fungal pathogen Cryptococcus deneoformans. Proc. Natl. Acad. Sci. USA 2023, 120, e2209831120. [Google Scholar] [CrossRef] [PubMed]
- Van Rhijn, N.; Bromley, M. The Consequences of Our Changing Environment on Life Threatening and Debilitating Fungal Diseases in Humans. J. Fungi 2021, 7, 367. [Google Scholar] [CrossRef]
- Martinez, R. New Trends in Paracoccidioidomycosis Epidemiology. J. Fungi 2017, 3, 1. [Google Scholar] [CrossRef]
- Barrozo, L.V.; Benard, G.; Silva, M.E.; Bagagli, E.; Marques, S.A.; Mendes, R.P. First description of a cluster of acute/subacute paracoccidioidomycosis cases and its association with a climatic anomaly. PLoS Negl. Trop. Dis. 2010, 4, e643. [Google Scholar] [CrossRef]
- Cogliati, M.; D’Amicis, R.; Zani, A.; Montagna, M.T.; Caggiano, G.; De Giglio, O.; Balbino, S.; De Donno, A.; Serio, F.; Susever, S.; et al. Environmental distribution of Cryptococcus neoformans and C. gattii around the Mediterranean basin. FEMS Yeast Res. 2016, 16, fow045. [Google Scholar] [CrossRef]
- Granados, D.P.; Castañeda, E. Influence of climatic conditions on the isolation of members of the Cryptococcus neoformans species complex from trees in Colombia from 1992–2004. FEMS Yeast Res. 2006, 6, 636–644. [Google Scholar] [CrossRef]
- Kidd, S.E.; Bach, P.J.; Hingston, A.O.; Mak, S.; Chow, Y.; MacDougall, L.; Kronstad, J.W.; Bartlett, K.H. Cryptococcus gattii dispersal mechanisms, British Columbia, Canada. Emerg. Infect Dis. 2007, 13, 51–57. [Google Scholar] [CrossRef]
- Weaver, E.A.; Kolivras, K.N. Investigating the Relationship Between Climate and Valley Fever (Coccidioidomycosis). Ecohealth 2018, 15, 840–852. [Google Scholar] [CrossRef]
- Maiga, A.W.; Deppen, S.; Scaffidi, B.K.; Baddley, J.; Aldrich, M.C.; Dittus, R.S.; Grogan, E.L. Mapping Histoplasma capsulatum Exposure, United States. Emerg. Infect Dis. 2018, 24, 1835–1839. [Google Scholar] [CrossRef]
- Proctor, M.E.; Klein, B.S.; Jones, J.M.; Davis, J.P. Cluster of pulmonary blastomycosis in a rural community: Evidence for multiple high-risk environmental foci following a sustained period of diminished precipitation. Mycopathologia 2002, 153, 113–120. [Google Scholar] [CrossRef]
- Rodrigues, A.M.; Beale, M.A.; Hagen, F.; Fisher, M.C.; Terra, P.P.D.; de Hoog, S.; Brilhante, R.S.N.; de Aguiar Cordeiro, R.; de Souza Collares, M.C.D.; Rocha, M.F.G.; et al. The global epidemiology of emerging Histoplasma species in recent years. Stud. Mycol. 2020, 97, 100095. [Google Scholar] [CrossRef]
- Medoff, G.; Maresca, B.; Lambowitz, A.M.; Kobayashi, G.; Painter, A.; Sacco, M.; Carratu, L. Correlation between pathogenicity and temperature sensitivity in different strains of Histoplasma capsulatum. J. Clin. Investig. 1986, 78, 1638–1647. [Google Scholar] [CrossRef]
- Campbell, C.C.; Berliner, M.D. Virulence differences in mice of type A and B Histoplasma capsulatum yeasts grown in continuous light and total darkness. Infect. Immun. 1973, 8, 677–678. [Google Scholar] [CrossRef]
- Monapathi, M.; Horn, S.; Vogt, T.; van Wyk, D.; Mienie, C.; Ezeokoli, O.T.; Coertze, R.; Rhode, O.; Bezuidenhout, C.C. Antifungal agents, yeast abundance and diversity in surface water: Potential risks to water users. Chemosphere 2021, 274, 129718. [Google Scholar] [CrossRef]
- Hagler, A.N.; Mendonça-Hagler, L.C. Yeasts from marine and estuarine waters with different levels of pollution in the state of rio de janeiro, Brazil. Appl. Environ. Microbiol. 1981, 41, 173–178. [Google Scholar] [CrossRef]
- Woollett, L.L.; Hedrick, L.R.; Tarver, M.G. A statistical evaluation of the ecology of yeasts in polluted water. Antonie Van Leeuwenhoek. 1970, 36, 437–444. [Google Scholar] [CrossRef]
- Berdicevsky, I.; Duek, L.; Merzbach, D.; Yannai, S. Susceptibility of different yeast species to environmental toxic metals. Environ. Pollut. 1993, 80, 41–44. [Google Scholar] [CrossRef]
- Fu, W.; Cao, X.; An, T.; Zhao, H.; Zhang, J.; Li, D.; Jin, X.; Liu, B. Genome-wide identification of resistance genes and transcriptome regulation in yeast to accommodate ammonium toxicity. BMC Genom. 2022, 23, 514. [Google Scholar] [CrossRef]
- Cui, L.; Morris, A.; Ghedin, E. The human mycobiome in health and disease. Genome Med. 2013, 5, 63. [Google Scholar] [CrossRef]
- Sonne, C.; Siebert, U.; Gonnsen, K.; Desforges, J.P.; Eulaers, I.; Persson, S.; Roos, A.; Bäcklin, B.M.; Kauhala, K.; Tange Olsen, M.; et al. Health effects from contaminant exposure in Baltic Sea birds and marine mammals: A review. Environ. Int. 2020, 139, 105725. [Google Scholar] [CrossRef]
- Desforges, J.P.; Sonne, C.; Levin, M.; Siebert, U.; De Guise, S.; Dietz, R. Immunotoxic effects of environmental pollutants in marine mammals. Environ. Int. 2016, 86, 126–139. [Google Scholar] [CrossRef]
- Wensel, C.R.; Pluznick, J.L.; Salzberg, S.L.; Sears, C.L. Next-generation sequencing: Insights to advance clinical investigations of the microbiome. J. Clin. Investig. 2022, 132, e154944. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Bustos, V.; Acosta-Hernández, B.; Cabañero-Navalón, M.D.; Pemán, J.; Ruiz-Gaitán, A.C.; Rosario Medina, I. The Ecology of Non-Candida Yeasts and Dimorphic Fungi in Cetaceans: From Pathogenicity to Environmental and Global Health Implications. J. Fungi 2024, 10, 111. https://doi.org/10.3390/jof10020111
Garcia-Bustos V, Acosta-Hernández B, Cabañero-Navalón MD, Pemán J, Ruiz-Gaitán AC, Rosario Medina I. The Ecology of Non-Candida Yeasts and Dimorphic Fungi in Cetaceans: From Pathogenicity to Environmental and Global Health Implications. Journal of Fungi. 2024; 10(2):111. https://doi.org/10.3390/jof10020111
Chicago/Turabian StyleGarcia-Bustos, Victor, Begoña Acosta-Hernández, Marta Dafne Cabañero-Navalón, Javier Pemán, Alba Cecilia Ruiz-Gaitán, and Inmaculada Rosario Medina. 2024. "The Ecology of Non-Candida Yeasts and Dimorphic Fungi in Cetaceans: From Pathogenicity to Environmental and Global Health Implications" Journal of Fungi 10, no. 2: 111. https://doi.org/10.3390/jof10020111
APA StyleGarcia-Bustos, V., Acosta-Hernández, B., Cabañero-Navalón, M. D., Pemán, J., Ruiz-Gaitán, A. C., & Rosario Medina, I. (2024). The Ecology of Non-Candida Yeasts and Dimorphic Fungi in Cetaceans: From Pathogenicity to Environmental and Global Health Implications. Journal of Fungi, 10(2), 111. https://doi.org/10.3390/jof10020111