Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart?
Abstract
1. Introduction
Insight in Pathogenesis
2. Deciphering Etiology of CMPs in Children according to Major Multisystemic Clinical Features
2.1. CMP + Dysmorphic Features + Intellectual Disability
2.1.1. Down Syndrome (DS)
2.1.2. 1p36 Deletion Syndrome
2.1.3. 6q25.1 Deletion Syndrome
2.2. CMP + Short Stature
2.2.1. RASopathies
2.2.2. Myhre Syndrome
2.2.3. Turner Syndrome (TS)
2.2.4. MULIBREY Dwarfism (MUL)
2.3. CMP + Limb Defects
2.3.1. Holt–Oram Syndrome (HOS)
2.3.2. CACNA1C-Related Disorders
2.4. CMP + Progressive Neuromuscular Disease + Delayed Motor Milestones
2.4.1. Friedreich’s Ataxia (FRDA)
2.4.2. Kearns–Sayre Syndrome (KSS)
2.4.3. Danon Disease (DD)
2.5. CMP + Skin+ Hair
2.5.1. Naxos Disease
2.5.2. Carvajal Syndrome (CS)
2.5.3. Menkes Disease (MD)
2.5.4. Cantù Syndrome (CS)
2.5.5. Epidermolysis Bullosa (EB) Simplex Secondary to KLHL24 Variants
2.6. CMP + Eye
Alström Syndrome (AS)
2.7. CMP + Corpus Callosum Agenesis
Vici Syndrome (VS)
2.8. CMP + Recurrent Infections
Barth Syndrome (BTHS)
2.9. CMP + Tall Stature
Marfan Syndrome (MFS)
2.10. CMP + High Inbreeding
3. Complex Multisystemic CMPs and Autophagy
4. A Link between CHDs and Children CMP
5. Conclusions
6. Limitations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Lipshultz, S.E.; Sleeper, L.A.; Towbin, J.A.; Lowe, A.M.; Orav, E.J.; Cox, G.F.; Lurie, P.R.; McCoy, K.L.; McDonald, M.A.; Messere, J.E.; et al. The Incidence of Pediatric Cardiomyopathy in Two Regions of the United States. N. Engl. J. Med. 2003, 348, 1647–1655. [Google Scholar] [CrossRef] [PubMed]
- Nugent, A.W.; Daubeney, P.E.F.; Chondros, P.; Carlin, J.B.; Cheung, M.; Wilkinson, L.C.; Davis, A.M.; Kahler, S.G.; Chow, C.W.; Wilkinson, J.L.; et al. The Epidemiology of Childhood Cardiomyopathy in Australia. N. Engl. J. Med. 2003, 348, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Andrews, R.E.; Fenton, M.J.; Ridout, D.A.; Burch, M.; British Congenital Cardiac Association. New-Onset Heart Failure Due to Heart Muscle Disease in Childhood: A Prospective Study in the United Kingdom and Ireland: A Prospective Study in the United Kingdom and Ireland. Circulation 2008, 117, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Massin, M.M.; Astadicko, I.; Dessy, H. Epidemiology of Heart Failure in a Tertiary Pediatric Center. Clin. Cardiol. 2008, 31, 388–391. [Google Scholar] [CrossRef]
- Webber, S.A. New-Onset Heart Failure in Children in the Absence of Structural Congenital Heart Disease. Circulation 2008, 117, 11–12. [Google Scholar] [CrossRef][Green Version]
- Arola, A.; Jokinen, E.; Ruuskanen, O.; Saraste, M.; Pesonen, E.; Kuusela, A.L.; Tikanoja, T.; Paavilainen, T.; Simell, O. Epidemiology of Idiopathic Cardiomyopathies in Children and Adolescents. A Nationwide Study in Finland. Am. J. Epidemiol. 1997, 146, 385–393. [Google Scholar] [CrossRef]
- Jefferies, J.L.; Wilkinson, J.D.; Sleeper, L.A.; Colan, S.D.; Lu, M.; Pahl, E.; Kantor, P.F.; Everitt, M.D.; Webber, S.A.; Kaufman, B.D.; et al. Cardiomyopathy Phenotypes and Outcomes for Children with Left Ventricular Myocardial Noncompaction: Results from the Pediatric Cardiomyopathy Registry. J. Card. Fail. 2015, 21, 877–884. [Google Scholar] [CrossRef]
- Alvarez, J.A.; Orav, E.J.; Wilkinson, J.D.; Fleming, L.E.; Lee, D.J.; Sleeper, L.A.; Rusconi, P.G.; Colan, S.D.; Hsu, D.T.; Canter, C.E.; et al. Competing Risks for Death and Cardiac Transplantation in Children with Dilated Cardiomyopathy: Results from the Pediatric Cardiomyopathy Registry: Results from the Pediatric Cardiomyopathy Registry. Circulation 2011, 124, 814–823. [Google Scholar] [CrossRef]
- Towbin, J.A.; Lowe, A.M.; Colan, S.D.; Sleeper, L.A.; Orav, E.J.; Clunie, S.; Messere, J.; Cox, G.F.; Lurie, P.R.; Hsu, D.; et al. Incidence, Causes, and Outcomes of Dilated Cardiomyopathy in Children. JAMA 2006, 296, 1867–1876. [Google Scholar] [CrossRef]
- Lipshultz, S.E.; Law, Y.M.; Asante-Korang, A.; Austin, E.D.; Dipchand, A.I.; Everitt, M.D.; Hsu, D.T.; Lin, K.Y.; Price, J.F.; Wilkinson, J.D.; et al. Cardiomyopathy in Children: Classification and Diagnosis: A Scientific Statement from the American Heart Association. Circulation 2019, 140, e9–e68. [Google Scholar] [CrossRef]
- Kaski, J.P.; Syrris, P.; Esteban, M.T.T.; Jenkins, S.; Pantazis, A.; Deanfield, J.E.; McKenna, W.J.; Elliott, P.M. Prevalence of Sarcomere Protein Gene Mutations in Preadolescent Children with Hypertrophic Cardiomyopathy. Circ. Cardiovasc. Genet. 2009, 2, 436–441. [Google Scholar] [CrossRef]
- Peddy, S.B.; Vricella, L.A.; Crosson, J.E.; Oswald, G.L.; Cohn, R.D.; Cameron, D.E.; Valle, D.; Loeys, B.L. Infantile Restrictive Cardiomyopathy Resulting from a Mutation in the Cardiac Troponin T Gene. Pediatrics 2006, 117, 1830–1833. [Google Scholar] [CrossRef]
- Ware, S.M.; Quinn, M.E.; Ballard, E.T.; Miller, E.; Uzark, K.; Spicer, R.L. Pediatric Restrictive Cardiomyopathy Associated with a Mutation in Beta-Myosin Heavy Chain. Clin. Genet. 2008, 73, 165–170. [Google Scholar] [CrossRef]
- Kaski, J.P.; Syrris, P.; Burch, M.; Tomé-Esteban, M.-T.; Fenton, M.; Christiansen, M.; Andersen, P.S.; Sebire, N.; Ashworth, M.; Deanfield, J.E.; et al. Idiopathic Restrictive Cardiomyopathy in Children Is Caused by Mutations in Cardiac Sarcomere Protein Genes. Heart 2008, 94, 1478–1484. [Google Scholar] [CrossRef]
- Hoedemaekers, Y.M.; Caliskan, K.; Michels, M.; Frohn-Mulder, I.; van der Smagt, J.J.; Phefferkorn, J.E.; Wessels, M.W.; ten Cate, F.J.; Sijbrands, E.J.G.; Dooijes, D.; et al. The Importance of Genetic Counseling, DNA Diagnostics, and Cardiologic Family Screening in Left Ventricular Noncompaction Cardiomyopathy. Circ. Cardiovasc. Genet. 2010, 3, 232–239. [Google Scholar] [CrossRef]
- Kayvanpour, E.; Sedaghat-Hamedani, F.; Amr, A.; Lai, A.; Haas, J.; Holzer, D.B.; Frese, K.S.; Keller, A.; Jensen, K.; Katus, H.A.; et al. Genotype-Phenotype Associations in Dilated Cardiomyopathy: Meta-Analysis on More than 8000 Individuals. Clin. Res. Cardiol. 2017, 106, 127–139. [Google Scholar] [CrossRef]
- Ware, S.M. Genetics of Paediatric Cardiomyopathies. Curr. Opin. Pediatr. 2017, 29, 534–540. [Google Scholar] [CrossRef]
- Baban, A.; Lodato, V.; Parlapiano, G.; Drago, F. Genetics in Congenital Heart Diseases: Unraveling the Link between Cardiac Morphogenesis, Heart Muscle Disease, and Electrical Disorders. Heart Fail. Clin. 2022, 18, 139–153. [Google Scholar] [CrossRef]
- Valentini, D.; Di Camillo, C.; Mirante, N.; Vallogini, G.; Olivini, N.; Baban, A.; Buzzonetti, L.; Galeotti, A.; Raponi, M.; Villani, A. Medical Conditions of Children and Young People with Down Syndrome. J. Intellect. Disabil. Res. 2021, 65, 199–209. [Google Scholar] [CrossRef]
- Baban, A.; Olivini, N.; Cantarutti, N.; Calì, F.; Vitello, C.; Valentini, D.; Adorisio, R.; Calcagni, G.; Alesi, V.; Di Mambro, C.; et al. Differences in Morbidity and Mortality in Down Syndrome Are Related to the Type of Congenital Heart Defect. Am. J. Med. Genet. A 2020, 182, 1342–1350. [Google Scholar] [CrossRef]
- Assenza, G.E.; Autore, C.; Marino, B. Hypertrophic Cardiomyopathy in a Patient with Down’s Syndrome. J. Cardiovasc. Med. 2007, 8, 463–464. [Google Scholar] [CrossRef]
- Hoe, T.S.; Chan, K.C.; Boo, N.Y. Cardiovascular Malformations in Malaysian Neonates with Down’s Syndrome. Singap. Med. J. 1990, 31, 474–476. [Google Scholar]
- Körten, M.-A.; Helm, P.C.; Abdul-Khaliq, H.; Baumgartner, H.; Kececioglu, D.; Schlensak, C.; Bauer, U.M.M.; Diller, G.-P.; Competence Network for Congenital Heart Defects Investigators. Eisenmenger Syndrome and Long-Term Survival in Patients with Down Syndrome and Congenital Heart Disease. Heart 2016, 102, 1552–1557. [Google Scholar] [CrossRef]
- Balli, S.; Yucel, I.K.; Kibar, A.E.; Ece, I.; Dalkiran, E.S.; Candan, S. Assessment of Cardiac Function in Absence of Congenital and Acquired Heart Disease in Patients with Down Syndrome. World J. Pediatr. 2016, 12, 463–469. [Google Scholar] [CrossRef]
- Abtahi, S.; Nezafati, P.; Amoozgar, H.; Rafie-Torghabe, M.; Nezafati, M.H. Evaluation of Left Ventricle Systolic and Diastolic Functions by Tissue Doppler Echocardiography in Children with down Syndrome. Iran. J. Pediatr. 2017, 26, e3807. [Google Scholar] [CrossRef]
- Orphanet: Sindrome da delezione 1p36. Available online: https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=IT&Expert=1606 (accessed on 29 December 2021).
- Shapira, S.K.; McCaskill, C.; Northrup, H.; Spikes, A.S.; Elder, F.F.; Sutton, V.R.; Korenberg, J.R.; Greenberg, F.; Shaffer, L.G. Chromosome 1p36 Deletions: The Clinical Phenotype and Molecular Characterization of a Common Newly Delineated Syndrome. Am. J. Hum. Genet. 1997, 61, 642–650. [Google Scholar] [CrossRef]
- Shaffer, L.G.; Lupski, J.R. Molecular Mechanisms for Constitutional Chromosomal Rearrangements in Humans. Annu. Rev. Genet. 2000, 34, 297–329. [Google Scholar] [CrossRef]
- Heilstedt, H.A.; Ballif, B.C.; Howard, L.A.; Lewis, R.A.; Stal, S.; Kashork, C.D.; Bacino, C.A.; Shapira, S.K.; Shaffer, L.G. Physical Map of 1p36, Placement of Breakpoints in Monosomy 1p36, and Clinical Characterization of the Syndrome. Am. J. Hum. Genet. 2003, 72, 1200–1212. [Google Scholar] [CrossRef]
- Zaveri, H.P.; Beck, T.F.; Hernández-García, A.; Shelly, K.E.; Montgomery, T.; van Haeringen, A.; Anderlid, B.-M.; Patel, C.; Goel, H.; Houge, G.; et al. Identification of Critical Regions and Candidate Genes for Cardiovascular Malformations and Cardiomyopathy Associated with Deletions of Chromosome 1p36. PLoS ONE 2014, 9, e85600. [Google Scholar] [CrossRef]
- Zhu, X.; Zhang, Y.; Wang, J.; Yang, J.-F.; Yang, Y.-F.; Tan, Z.-P. 576 Kb Deletion in 1p36.33-P36.32 Containing SKI Is Associated with Limb Malformation, Congenital Heart Disease and Epilepsy. Gene 2013, 528, 352–355. [Google Scholar] [CrossRef]
- Lodato, V.; Orlando, V.; Alesi, V.; Di Tommaso, S.; Bengala, M.; Parlapiano, G.; Agnolucci, E.; Cicenia, M.; Calì, F.; Digilio, M.C.; et al. 1p36 Deletion Syndrome and the Aorta: A Report of Three New Patients and a Literature Review. J. Cardiovasc. Dev. Dis. 2021, 8, 159. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, N.; Toribe, Y.; Nakajima, T.; Okinaga, T.; Kurosawa, K.; Nonaka, I.; Shimokawa, O.; Matsumoto, N. A Girl with 1p36 Deletion Syndrome and Congenital Fiber Type Disproportion Myopathy. J. Hum. Genet. 2002, 47, 556–559. [Google Scholar] [CrossRef] [PubMed]
- Heilstedt, H.A.; Ballif, B.C.; Howard, L.A.; Kashork, C.D.; Shaffer, L.G. Population Data Suggest That Deletions of 1p36 Are a Relatively Common Chromosome Abnormality: Epidemiology of Deletion 1p36. Clin. Genet. 2003, 64, 310–316. [Google Scholar] [CrossRef] [PubMed]
- Gajecka, M.; Mackay, K.L.; Shaffer, L.G. Monosomy 1p36 Deletion Syndrome. Am. J. Med. Genet. C Semin. Med. Genet. 2007, 145C, 346–356. [Google Scholar] [CrossRef]
- Battaglia, A.; Hoyme, H.E.; Dallapiccola, B.; Zackai, E.; Hudgins, L.; McDonald-McGinn, D.; Bahi-Buisson, N.; Romano, C.; Williams, C.A.; Brailey, L.L.; et al. Further Delineation of Deletion 1p36 Syndrome in 60 Patients: A Recognizable Phenotype and Common Cause of Developmental Delay and Mental Retardation. Pediatrics 2008, 121, 404–410. [Google Scholar] [CrossRef]
- Cheng, A.; Dinulos, M.B.P.; Neufeld-Kaiser, W.; Rosenfeld, J.; Kyriss, M.; Madan-Khetarpal, S.; Risheg, H.; Byers, P.H.; Liu, Y.J. 6q25.1 (TAB2) Microdeletion Syndrome: Congenital Heart Defects and Cardiomyopathy. Am. J. Med. Genet. A 2017, 173, 1848–1857. [Google Scholar] [CrossRef]
- Engwerda, A.; Leenders, E.K.S.M.; Frentz, B.; Terhal, P.A.; Löhner, K.; de Vries, B.B.A.; Dijkhuizen, T.; Vos, Y.J.; Rinne, T.; van den Berg, M.P.; et al. TAB2 Deletions and Variants Cause a Highly Recognisable Syndrome with Mitral Valve Disease, Cardiomyopathy, Short Stature and Hypermobility. Eur. J. Hum. Genet. 2021, 29, 1669–1676. [Google Scholar] [CrossRef]
- Thienpont, B.; Zhang, L.; Postma, A.V.; Breckpot, J.; Tranchevent, L.-C.; Van Loo, P.; Møllgård, K.; Tommerup, N.; Bache, I.; Tümer, Z.; et al. Haploinsufficiency of TAB2 Causes Congenital Heart Defects in Humans. Am. J. Hum. Genet. 2010, 86, 839–849. [Google Scholar] [CrossRef]
- Cheng, A.; Neufeld-Kaiser, W.; Byers, P.H.; Liu, Y.J. 6q25.1 (TAB2) Microdeletion Is a Risk Factor for Hypoplastic Left Heart: A Case Report That Expands the Phenotype. BMC Cardiovasc. Disord. 2020, 20, 137. [Google Scholar] [CrossRef]
- Weiss, K.; Applegate, C.; Wang, T.; Batista, D.A.S. Familial TAB2 Microdeletion and Congenital Heart Defects Including Unusual Valve Dysplasia and Tetralogy of Fallot: A 3 Generation Family WithTAB2deletion. Am. J. Med. Genet. A 2015, 167, 2702–2706. [Google Scholar] [CrossRef]
- Caulfield, T.R.; Richter, J.E., Jr.; Brown, E.E.; Mohammad, A.N.; Judge, D.P.; Atwal, P.S. Protein Molecular Modeling Techniques Investigating Novel TAB2 Variant R347X Causing Cardiomyopathy and Congenital Heart Defects in Multigenerational Family. Mol. Genet. Genomic Med. 2018, 6, 666–672. [Google Scholar] [CrossRef]
- Rauen, K.A. The RASopathies. Annu. Rev. Genom. Hum. Genet. 2013, 14, 355–369. [Google Scholar] [CrossRef]
- Roberts, A.E. Noonan Syndrome; University of Washington: Seattle, WA, USA, 2021. [Google Scholar]
- Calcagni, G.; Gagliostro, G.; Limongelli, G.; Unolt, M.; De Luca, E.; Digilio, M.C.; Baban, A.; Albanese, S.B.; Ferrero, G.B.; Baldassarre, G.; et al. Atypical Cardiac Defects in Patients with RASopathies: Updated Data on CARNET Study. Birth Defects Res. 2020, 112, 725–731. [Google Scholar] [CrossRef]
- Digilio, M.C.; Romana Lepri, F.; Dentici, M.L.; Henderson, A.; Baban, A.; Roberti, M.C.; Capolino, R.; Versacci, P.; Surace, C.; Angioni, A.; et al. Atrioventricular Canal Defect in Patients with RASopathies. Eur. J. Hum. Genet. 2013, 21, 200–204. [Google Scholar] [CrossRef]
- Linglart, L.; Gelb, B.D. Congenital Heart Defects in Noonan Syndrome: Diagnosis, Management, and Treatment. Am. J. Med. Genet. C Semin. Med. Genet. 2020, 184, 73–80. [Google Scholar] [CrossRef]
- Norrish, G.; Field, E.; Mcleod, K.; Ilina, M.; Stuart, G.; Bhole, V.; Uzun, O.; Brown, E.; Daubeney, P.E.F.; Lota, A.; et al. Clinical Presentation and Survival of Childhood Hypertrophic Cardiomyopathy: A Retrospective Study in United Kingdom. Eur. Heart J. 2019, 40, 986–993. [Google Scholar] [CrossRef]
- Calcagni, G.; Adorisio, R.; Martinelli, S.; Grutter, G.; Baban, A.; Versacci, P.; Digilio, M.C.; Drago, F.; Gelb, B.D.; Tartaglia, M.; et al. Clinical Presentation and Natural History of Hypertrophic Cardiomyopathy in RASopathies. Heart Fail. Clin. 2018, 14, 225–235. [Google Scholar] [CrossRef]
- Baban, A.; Olivini, N.; Lepri, F.R.; Calì, F.; Mucciolo, M.; Digilio, M.C.; Calcagni, G.; di Mambro, C.; Dallapiccola, B.; Adorisio, R.; et al. SOS1 Mutations in Noonan Syndrome: Cardiomyopathies and Not Only Congenital Heart Defects! Report of Six Patients Including Two Novel Variants and Literature Review. Am. J. Med. Genet. A 2019, 179, 2083–2090. [Google Scholar] [CrossRef]
- Norrish, G.; Kolt, G.; Cervi, E.; Field, E.; Dady, K.; Ziółkowska, L.; Olivotto, I.; Favilli, S.; Passantino, S.; Limongelli, G.; et al. Clinical Presentation and Long-Term Outcomes of Infantile Hypertrophic Cardiomyopathy: A European Multicentre Study. ESC Heart Fail. 2021, 8, 5057–5067. [Google Scholar] [CrossRef]
- Lepri, F.R.; Scavelli, R.; Digilio, M.C.; Gnazzo, M.; Grotta, S.; Dentici, M.L.; Pisaneschi, E.; Sirleto, P.; Capolino, R.; Baban, A.; et al. Diagnosis of Noonan Syndrome and Related Disorders Using Target next Generation Sequencing. BMC Med. Genet. 2014, 15, 14. [Google Scholar] [CrossRef]
- Starr, L.J.; Lindor, N.M.; Lin, A.E. Myhre Syndrome; University of Washington: Seattle, WA, USA, 2017. [Google Scholar]
- Liang, C.; Xu, J.; Meng, Q.; Zhang, B.; Liu, J.; Hua, J.; Zhang, Y.; Shi, S.; Yu, X. TGFB1-Induced Autophagy Affects the Pattern of Pancreatic Cancer Progression in Distinct Ways Depending on SMAD4 Status. Autophagy 2020, 16, 486–500. [Google Scholar] [CrossRef]
- Lin, A.E.; Michot, C.; Cormier-Daire, V.; L’Ecuyer, T.J.; Matherne, G.P.; Barnes, B.H.; Humberson, J.B.; Edmondson, A.C.; Zackai, E.; O’Connor, M.J.; et al. Gain-of-Function Mutations InSMAD4cause a Distinctive Repertoire of Cardiovascular Phenotypes in Patients with Myhre Syndrome. Am. J. Med. Genet. A 2016, 170, 2617–2631. [Google Scholar] [CrossRef]
- Starr, L.J.; Grange, D.K.; Delaney, J.W.; Yetman, A.T.; Hammel, J.M.; Sanmann, J.N.; Perry, D.A.; Schaefer, G.B.; Olney, A.H. Myhre Syndrome: Clinical Features and Restrictive Cardiopulmonary Complications. Am. J. Med. Genet. A 2015, 167, 2893–2901. [Google Scholar] [CrossRef]
- Gravholt, C.H.; Viuff, M.H.; Brun, S.; Stochholm, K.; Andersen, N.H. Turner Syndrome: Mechanisms and Management. Nat. Rev. Endocrinol. 2019, 15, 601–614. [Google Scholar] [CrossRef]
- Völkl, T.M.K.; Degenhardt, K.; Koch, A.; Simm, D.; Dörr, H.G.; Singer, H. Cardiovascular Anomalies in Children and Young Adults with Ullrich-Turner Syndrome the Erlangen Experience. Clin. Cardiol. 2005, 28, 88–92. [Google Scholar] [CrossRef]
- Silberbach, M.; Roos-Hesselink, J.W.; Andersen, N.H.; Braverman, A.C.; Brown, N.; Collins, R.T.; De Backer, J.; Eagle, K.A.; Hiratzka, L.F.; Johnson, W.H., Jr.; et al. Cardiovascular Health in Turner Syndrome: A Scientific Statement from the American Heart Association. Circ. Genom. Precis. Med. 2018, 11, e000048. [Google Scholar] [CrossRef]
- Viuff, M.H.; Trolle, C.; Wen, J.; Jensen, J.M.; Nørgaard, B.L.; Gutmark, E.J.; Gutmark-Little, I.; Mortensen, K.H.; Gravholt, C.H.; Andersen, N.H. Coronary Artery Anomalies in Turner Syndrome. J. Cardiovasc. Comput. Tomogr. 2016, 10, 480–484. [Google Scholar] [CrossRef]
- Bondy, C.A.; Ceniceros, I.; Van, P.L.; Bakalov, V.K.; Rosing, D.R. Prolonged Rate-Corrected QT Interval and Other Electrocardiogram Abnormalities in Girls with Turner Syndrome. Pediatrics 2006, 118, e1220–e1225. [Google Scholar] [CrossRef]
- Donadille, B.; Christin-Maitre, S. Heart and Turner Syndrome. Ann. Endocrinol. 2021, 82, 135–140. [Google Scholar] [CrossRef]
- Bhatia, S.; Qasim, A.; Almasri, M.; Frank, L.; Aly, A.M. Left Ventricular Noncompaction in a Child with Turner Syndrome. Case Rep. Pediatr. 2019, 2019, 6824321. [Google Scholar] [CrossRef]
- Digilio, M.C.; Bernardini, L.; Gagliardi, M.G.; Versacci, P.; Baban, A.; Capolino, R.; Dentici, M.L.; Roberti, M.C.; Angioni, A.; Novelli, A.; et al. Syndromic Non-Compaction of the Left Ventricle: Associated Chromosomal Anomalies: Syndromic Non-Compaction of the Left Ventricle. Clin. Genet. 2013, 84, 362–367. [Google Scholar] [CrossRef] [PubMed]
- Karlberg, N.; Jalanko, H.; Perheentupa, J.; Lipsanen-Nyman, M. Mulibrey Nanism: Clinical Features and Diagnostic Criteria. J. Med. Genet. 2004, 41, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Kivistö, S.; Lipsanen-Nyman, M.; Kupari, M.; Hekali, P.; Lauerma, K. Cardiac Involvement in Mulibrey Nanism: Characterization with Magnetic Resonance Imaging. J. Cardiovasc. Magn. Reson. 2004, 6, 645–652. [Google Scholar] [CrossRef] [PubMed]
- Eerola, A.; Pihkala, J.I.; Karlberg, N.; Lipsanen-Nyman, M.; Jokinen, E. Cardiac Dysfunction in Children with Mulibrey Nanism. Pediatr. Cardiol. 2007, 28, 155–162. [Google Scholar] [CrossRef]
- Kumpf, M.; Hämäläinen, R.H.; Hofbeck, M.; Baden, W. Refractory Congestive Heart Failure Following Delayed Pericardectomy in a 12-Year-Old Child with Mulibrey Nanism Due to a Novel Mutation in TRIM37. Eur. J. Pediatr. 2013, 172, 1415–1418. [Google Scholar] [CrossRef]
- McDermott, D.A.; Fong, J.C.; Basson, C.T. Holt-Oram Syndrome; University of Washington: Seattle, WA, USA, 2019. [Google Scholar]
- Varela, D.; Conceição, N.; Cancela, M.L. Transcriptional Regulation of Human T-Box 5 Gene (TBX5) by Bone- and Cardiac-Related Transcription Factors. Gene 2021, 768, 145322. [Google Scholar] [CrossRef]
- Baban, A.; Postma, A.V.; Marini, M.; Trocchio, G.; Santilli, A.; Pelegrini, M.; Sirleto, P.; Lerone, M.; Albanese, S.B.; Barnett, P.; et al. Identification of TBX5 Mutations in a Series of 94 Patients with Tetralogy of Fallot. Am. J. Med. Genet. A 2014, 164, 3100–3107. [Google Scholar] [CrossRef]
- Baban, A.; Pitto, L.; Pulignani, S.; Cresci, M.; Mariani, L.; Gambacciani, C.; Digilio, M.C.; Pongiglione, G.; Albanese, S. Holt-Oram Syndrome with Intermediate Atrioventricular Canal Defect, and Aortic Coarctation: Functional Characterization of a de novo TBX5 Mutation. Am. J. Med. Genet. A 2014, 164, 1419–1424. [Google Scholar] [CrossRef]
- Markunas, A.M.; Manivannan, P.K.R.; Ezekian, J.E.; Agarwal, A.; Eisner, W.; Alsina, K.; Allen, H.D.; Wray, G.A.; Kim, J.J.; Wehrens, X.H.T.; et al. TBX5-Encoded T-Box Transcription Factor 5 Variant T223M Is Associated with Long QT Syndrome and Pediatric Sudden Cardiac Death. Am. J. Med. Genet. A 2021, 185, 923–929. [Google Scholar] [CrossRef]
- Nieto-Marín, P.; Tinaquero, D.; Utrilla, R.G.; Cebrián, J.; González-Guerra, A.; Crespo-García, T.; Cámara-Checa, A.; Rubio-Alarcón, M.; Dago, M.; Alfayate, S.; et al. Tbx5 Variants Disrupt Nav1.5 Function Differently in Patients Diagnosed with Brugada or Long QT Syndrome. Cardiovasc. Res. 2021, cvab045. [Google Scholar] [CrossRef]
- Rathjens, F.S.; Blenkle, A.; Iyer, L.M.; Renger, A.; Syeda, F.; Noack, C.; Jungmann, A.; Dewenter, M.; Toischer, K.; El-Armouche, A.; et al. Preclinical Evidence for the Therapeutic Value of TBX5 Normalization in Arrhythmia Control. Cardiovasc. Res. 2021, 117, 1908–1922. [Google Scholar] [CrossRef]
- Zhu, Y.; Gramolini, A.O.; Walsh, M.A.; Zhou, Y.-Q.; Slorach, C.; Friedberg, M.K.; Takeuchi, J.K.; Sun, H.; Henkelman, R.M.; Backx, P.H.; et al. Tbx5-Dependent Pathway Regulating Diastolic Function in Congenital Heart Disease. Proc. Natl. Acad. Sci. USA 2008, 105, 5519–5524. [Google Scholar] [CrossRef]
- Boczek, N.J.; Best, J.M.; Tester, D.J.; Giudicessi, J.R.; Middha, S.; Evans, J.M.; Kamp, T.J.; Ackerman, M.J. Exome Sequencing and Systems Biology Converge to Identify Novel Mutations in the L-Type Calcium Channel, CACNA1C, Linked to Autosomal Dominant Long QT Syndrome. Circ. Cardiovasc. Genet. 2013, 6, 279–289. [Google Scholar] [CrossRef]
- Kelu Bisabu, K.; Zhao, J.; Mokrane, A.-E.; Segura, É.; Marsolais, M.; Grondin, S.; Naas, E.; Gagnon, J.; Cadrin-Tourigny, J.; Aguilar, M.; et al. Novel Gain-of-Function Variant in CACNA1C Associated with Timothy Syndrome, Multiple Accessory Pathways, and Noncompaction Cardiomyopathy. Circ. Genom. Precis. Med. 2020, 13, e003123. [Google Scholar] [CrossRef]
- Walsh, R.; Adler, A.; Amin, A.S.; Abiusi, E.; Care, M.; Bikker, H.; Amenta, S.; Feilotter, H.; Nannenberg, E.A.; Mazzarotto, F.; et al. Evaluation of Gene Validity for CPVT and Short QT Syndrome in Sudden Arrhythmic Death. Eur. Heart J. 2021, ehab687. [Google Scholar] [CrossRef]
- Kosaki, R.; Ono, H.; Terashima, H.; Kosaki, K. Timothy Syndrome-like Condition with Syndactyly but without Prolongation of the QT Interval. Am. J. Med. Genet. A 2018, 176, 1657–1661. [Google Scholar] [CrossRef]
- Feingold, B.; Mahle, W.T.; Auerbach, S.; Clemens, P.; Domenighetti, A.A.; Jefferies, J.L.; Judge, D.P.; Lal, A.K.; Markham, L.W.; Parks, W.J.; et al. Management of Cardiac Involvement Associated with Neuromuscular Diseases: A Scientific Statement from the American Heart Association. Circulation 2017, 136, e200–e231. [Google Scholar] [CrossRef]
- Amini, O.; Lakziyan, R.; Abavisani, M.; Sarchahi, Z. The Cardiomyopathy of Friedreich’s Ataxia Common in a Family: A Case Report. Ann. Med. Surg. 2021, 66, 102408. [Google Scholar] [CrossRef]
- Bidichandani, S.I.; Delatycki, M.B. Friedreich Ataxia. In GeneReviews®; Adam, M.P., Ardinger, H.H., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Mirzaa, G.M., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1998. [Google Scholar]
- Baban, A.; Cicenia, M.; Travaglini, L.; Calí, F.; Vasco, G.; Francalanci, P. Remember friedreich ataxia even in a toddler with apparently isolated dilated (not hypertrophic!) cardiomyopathy: Revisited. Minerva Pediatr. 2021. [Google Scholar] [CrossRef]
- Yoon, G.; Soman, T.; Wilson, J.; George, K.; Mital, S.; Dipchand, A.I.; McCabe, J.; Logan, W.; Kantor, P. Cardiac Transplantation in Friedreich Ataxia. J. Child Neurol. 2012, 27, 1193–1196. [Google Scholar] [CrossRef]
- Plehn, J.F.; Hasbani, K.; Ernst, I.; Horton, K.D.; Drinkard, B.E.; Di Prospero, N.A. The Subclinical Cardiomyopathy of Friedreich’s Ataxia in a Pediatric Population. J. Card. Fail. 2018, 24, 672–679. [Google Scholar] [CrossRef]
- Rupp, S.; Felimban, M.; Schänzer, A.; Schranz, D.; Marschall, C.; Zenker, M.; Logeswaran, T.; Neuhäuser, C.; Thul, J.; Jux, C.; et al. Genetic Basis of Hypertrophic Cardiomyopathy in Children. Clin. Res. Cardiol. 2019, 108, 282–289. [Google Scholar] [CrossRef]
- Child, J.S.; Perloff, J.K.; Bach, P.M.; Wolfe, A.D.; Perlman, S.; Kark, R.A. Cardiac Involvement in Friedreich’s Ataxia: A Clinical Study of 75 Patients. J. Am. Coll. Cardiol. 1986, 7, 1370–1378. [Google Scholar] [CrossRef]
- Hsu, D.T. Cardiac Manifestations of Neuromuscular Disorders in Children. Paediatr. Respir. Rev. 2010, 11, 35–38. [Google Scholar] [CrossRef]
- Kipps, A.; Alexander, M.; Colan, S.D.; Gauvreau, K.; Smoot, L.; Crawford, L.; Darras, B.T.; Blume, E.D. The Longitudinal Course of Cardiomyopathy in Friedreich’s Ataxia during Childhood. Pediatr. Cardiol. 2009, 30, 306–310. [Google Scholar] [CrossRef]
- Baban, A.; Lodato, V.; Parlapiano, G.; di Mambro, C.; Adorisio, R.; Bertini, E.S.; Dionisi-Vici, C.; Drago, F.; Martinelli, D. Myocardial and Arrhythmic Spectrum of Neuromuscular Disorders in Children. Biomolecules 2021, 11, 1578. [Google Scholar] [CrossRef]
- Goldstein, A.; Falk, M.J. Mitochondrial DNA Deletion Syndromes; University of Washington: Seattle, WA, USA, 2019. [Google Scholar]
- Berardo, A.; DiMauro, S.; Hirano, M. A Diagnostic Algorithm for Metabolic Myopathies. Curr. Neurol. Neurosci. Rep. 2010, 10, 118–126. [Google Scholar] [CrossRef]
- Shemesh, A.; Margolin, E. Kearns Sayre Syndrome. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2021. [Google Scholar]
- Ashrafzadeh, F.; Ghaemi, N.; Akhondian, J.; Beiraghi Toosi, M.; Elmi, S. Hypoparathyroidism as the First Manifestation of Kearns-Sayre Syndrome: A Case Report. Iran. J. Child Neurol. 2013, 7, 53–57. [Google Scholar]
- Ergül, Y.; Nişli, K.; Saygılı, A.; Dindar, A. Kearns-Sayre Syndrome Presenting as Somatomedin C Deficiency and Complete Heart Block. Turk Kardiyol. Dern. Ars. 2010, 38, 568–571. [Google Scholar]
- Kane, J.M.; Rossi, J.; Tsao, S.; Burton, B.K. Metabolic Cardiomyopathy and Mitochondrial Disorders in the Pediatric Intensive Care Unit. J. Pediatr. 2007, 151, 538–541. [Google Scholar] [CrossRef]
- Chertkof, J.; Hufnagel, R.B.; Blain, D.; Gropman, A.L.; Brooks, B.P. Retinoschisis Associated with Kearns-Sayre Syndrome. Ophthalmic Genet. 2020, 41, 497–500. [Google Scholar] [CrossRef] [PubMed]
- Berenberg, R.A.; Pellock, J.M.; DiMauro, S.; Schotland, D.L.; Bonilla, E.; Eastwood, A.; Hays, A.; Vicale, C.T.; Behrens, M.; Chutorian, A.; et al. Lumping or Splitting? “Ophthalmoplegia-plus” or Kearns-Sayre Syndrome? Ann. Neurol. 1977, 1, 37–54. [Google Scholar] [CrossRef] [PubMed]
- Chawla, S.; Coku, J.; Forbes, T.; Kannan, S. Kearns-Sayre Syndrome Presenting as Complete Heart Block. Pediatr. Cardiol. 2008, 29, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Di Mambro, C.; Tamborrino, P.P.; Silvetti, M.S.; Yammine, M.L.; Marcolin, C.; Righi, D.; Baban, A.; Martinelli, D.; Dionisi Vici, C.; Drago, F. Progressive Involvement of Cardiac Conduction System in Paediatric Patients with Kearns-Sayre Syndrome: How to Predict Occurrence of Complete Heart Block and Sudden Cardiac Death? Europace 2021, 23, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Kearns, T.P. External Ophthalmoplegia, Pigmentary Degeneration of the Retina, and Cardiomyopathy: A Newly Recognized Syndrome. Trans. Am. Ophthalmol. Soc. 1965, 63, 559–625. [Google Scholar]
- Auré, K.; Ogier de Baulny, H.; Laforêt, P.; Jardel, C.; Eymard, B.; Lombès, A. Chronic Progressive Ophthalmoplegia with Large-Scale MtDNA Rearrangement: Can We Predict Progression? Brain 2007, 130 Pt 6, 1516–1524. [Google Scholar] [CrossRef]
- Channer, K.S.; Channer, J.L.; Campbell, M.J.; Rees, J.R. Cardiomyopathy in the Kearns-Sayre Syndrome. Heart 1988, 59, 486–490. [Google Scholar] [CrossRef]
- Tranchant, C.; Mousson, B.; Mohr, M.; Dumoulin, R.; Welsch, M.; Weess, C.; Stepien, G.; Warter, J.M. Cardiac Transplantation in an Incomplete Kearns-Sayre Syndrome with Mitochondrial DNA Deletion. Neuromuscul. Disord. 1993, 3, 561–566. [Google Scholar] [CrossRef]
- Homan, D.J.; Niyazov, D.M.; Fisher, P.W.; Mandras, S.; Patel, H.; Bates, M.; Parrino, G.; Ventura, H.O. Heart Transplantation for a Patient with Kearns-Sayre Syndrome and End-Stage Heart Failure: Kearns-Sayre Syndrome and End-Stage Heart Failure. Congest. Heart Fail. 2011, 17, 102–104. [Google Scholar] [CrossRef]
- Di Nora, C.; Paldino, A.; Miani, D.; Finato, N.; Pizzolitto, S.; De Maglio, G.; Vendramin, I.; Sponga, S.; Nalli, C.; Sinagra, G.; et al. Heart Transplantation in Kearns-Sayre Syndrome. Transplantation 2019, 103, e393–e394. [Google Scholar] [CrossRef]
- Nishino, I.; Fu, J.; Tanji, K.; Yamada, T.; Shimojo, S.; Koori, T.; Mora, M.; Riggs, J.E.; Oh, S.J.; Koga, Y.; et al. Primary LAMP-2 Deficiency Causes X-Linked Vacuolar Cardiomyopathy and Myopathy (Danon Disease). Nature 2000, 406, 906–910. [Google Scholar] [CrossRef]
- Cheng, Z.; Fang, Q. Danon Disease: Focusing on Heart. J. Hum. Genet. 2012, 57, 407–410. [Google Scholar] [CrossRef]
- Lotan, D.; Salazar-Mendiguchía, J.; Mogensen, J.; Rathore, F.; Anastasakis, A.; Kaski, J.; Garcia-Pavia, P.; Olivotto, I.; Charron, P.; Biagini, E.; et al. Clinical Profile of Cardiac Involvement in Danon Disease: A Multicenter European Registry: A Multicenter European Registry. Circ. Genom. Precis. Med. 2020, 13, e003117. [Google Scholar] [CrossRef]
- Taylor, M.R.G.; Adler, E.D. Danon Disease; University of Washington: Seattle, WA, USA, 2020. [Google Scholar]
- Brambatti, M.; Caspi, O.; Maolo, A.; Koshi, E.; Greenberg, B.; Taylor, M.R.G.; Adler, E.D. Danon Disease: Gender Differences in Presentation and Outcomes. Int. J. Cardiol. 2019, 286, 92–98. [Google Scholar] [CrossRef]
- Thiadens, A.A.H.J.; Slingerland, N.W.R.; Florijn, R.J.; Visser, G.H.; Riemslag, F.C.; Klaver, C.C.W. Cone-Rod Dystrophy Can Be a Manifestation of Danon Disease. Arbeitsphysiologie 2012, 250, 769–774. [Google Scholar] [CrossRef]
- Schorderet, D.F.; Cottet, S.; Lobrinus, J.A.; Borruat, F.-X.; Balmer, A.; Munier, F.L. Retinopathy in Danon Disease. Arch. Ophthalmol. 2007, 125, 231–236. [Google Scholar] [CrossRef]
- Prall, F.R.; Drack, A.; Taylor, M.; Ku, L.; Olson, J.L.; Gregory, D.; Mestroni, L.; Mandava, N. Ophthalmic Manifestations of Danon Disease. Ophthalmology 2006, 113, 1010–1013. [Google Scholar] [CrossRef]
- Taylor, M.R.G.; Ku, L.; Slavov, D.; Cavanaugh, J.; Boucek, M.; Zhu, X.; Graw, S.; Carniel, E.; Barnes, C.; Quan, D.; et al. Danon Disease Presenting with Dilated Cardiomyopathy and a Complex Phenotype. J. Hum. Genet. 2007, 52, 830–835. [Google Scholar] [CrossRef]
- Maron, B.J.; Roberts, W.C.; Arad, M.; Haas, T.S.; Spirito, P.; Wright, G.B.; Almquist, A.K.; Baffa, J.M.; Saul, J.P.; Ho, C.Y.; et al. Clinical Outcome and Phenotypic Expression in LAMP2 Cardiomyopathy. JAMA 2009, 301, 1253–1259. [Google Scholar] [CrossRef]
- D’souza, R.S.; Levandowski, C.; Slavov, D.; Graw, S.L.; Allen, L.A.; Adler, E.; Mestroni, L.; Taylor, M.R.G. Danon Disease: Clinical Features, Evaluation, and Management. Circ. Heart Fail. 2014, 7, 843–849. [Google Scholar] [CrossRef]
- McKoy, G.; Protonotarios, N.; Crosby, A.; Tsatsopoulou, A.; Anastasakis, A.; Coonar, A.; Norman, M.; Baboonian, C.; Jeffery, S.; McKenna, W.J. Identification of a Deletion in Plakoglobin in Arrhythmogenic Right Ventricular Cardiomyopathy with Palmoplantar Keratoderma and Woolly Hair (Naxos Disease). Lancet 2000, 355, 2119–2124. [Google Scholar] [CrossRef]
- Protonotarios, I.; Asimaki, A.; Xylouri, Z.; Protonotarios, A.; Tsatsopoulou, A. Clinical and Molecular Aspects of Naxos Disease. Heart Fail. Clin. 2022, 18, 89–99. [Google Scholar] [CrossRef]
- Polivka, L.; Bodemer, C.; Hadj-Rabia, S. Combination of Palmoplantar Keratoderma and Hair Shaft Anomalies, the Warning Signal of Severe Arrhythmogenic Cardiomyopathy: A Systematic Review on Genetic Desmosomal Diseases. J. Med. Genet. 2016, 53, 289–295. [Google Scholar] [CrossRef]
- Protonotarios, N.I.; Tsatsopoulou, A.A.; Gatzoulis, K.A. Arrhythmogenic Right Ventricular Cardiomyopathy Caused by a Deletion in Plakoglobin (Naxos Disease). Card. Electrophysiol. Rev. 2002, 6, 72–80. [Google Scholar] [CrossRef]
- Pigors, M.; Kiritsi, D.; Krümpelmann, S.; Wagner, N.; He, Y.; Podda, M.; Kohlhase, J.; Hausser, I.; Bruckner-Tuderman, L.; Has, C. Lack of Plakoglobin Leads to Lethal Congenital Epidermolysis Bullosa: A Novel Clinico-Genetic Entity. Hum. Mol. Genet. 2011, 20, 1811–1819. [Google Scholar] [CrossRef]
- Erolu, E.; Akalın, F.; Saylan Çevik, B.; Yücelten, D. Arrhythmogenic Right Ventricular Dysplasia, Cutaneous Manifestations and Desmoplakin Mutation: Carvajal Syndrome. Pediatr. Int. 2018, 60, 987–989. [Google Scholar] [CrossRef]
- Winik, B.C.; Asial, R.A.; McGrath, J.A.; South, A.P.; Boente, M.C. Acantholytic Ectodermal Dysplasia: Clinicopathological Study of a New Desmosomal Disorder. Br. J. Dermatol. 2009, 160, 868–874. [Google Scholar] [CrossRef]
- Vahidnezhad, H.; Youssefian, L.; Faghankhani, M.; Mozafari, N.; Saeidian, A.H.; Niaziorimi, F.; Abdollahimajd, F.; Sotoudeh, S.; Rajabi, F.; Mirsafaei, L.; et al. Arrhythmogenic Right Ventricular Cardiomyopathy in Patients with Biallelic JUP-Associated Skin Fragility. Sci. Rep. 2020, 10, 21622. [Google Scholar] [CrossRef]
- Protonotarios, N.; Tsatsopoulou, A.; Anastasakis, A.; Sevdalis, E.; McKoy, G.; Stratos, K.; Gatzoulis, K.; Tentolouris, K.; Spiliopoulou, C.; Panagiotakos, D.; et al. Genotype-Phenotype Assessment in Autosomal Recessive Arrhythmogenic Right Ventricular Cardiomyopathy (Naxos Disease) Caused by a Deletion in Plakoglobin. J. Am. Coll. Cardiol. 2001, 38, 1477–1484. [Google Scholar] [CrossRef]
- Coonar, A.S.; Protonotarios, N.; Tsatsopoulou, A.; Needham, E.W.; Houlston, R.S.; Cliff, S.; Otter, M.I.; Murday, V.A.; Mattu, R.K.; McKenna, W.J. Gene for Arrhythmogenic Right Ventricular Cardiomyopathy with Diffuse Nonepidermolytic Palmoplantar Keratoderma and Woolly Hair (Naxos Disease) Maps to 17q21. Circulation 1998, 97, 2049–2058. [Google Scholar] [CrossRef] [PubMed]
- Narin, N.; Akcakus, M.; Gunes, T.; Baykan, A.; Uzum, K.; Ferahbas, A. Arrhythmogenic Right Ventricular Cardiomyopathy (Naxos Disease). Pacing Clin. Electrophysiol. 2003, 26, 2326–2329. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, S.R.; Gard, J.J.; Carvajal-Huerta, L.; Ruiz-Cabezas, J.C.; Thiene, G.; Saffitz, J.E. Structural and Molecular Pathology of the Heart in Carvajal Syndrome. Cardiovasc. Pathol. 2004, 13, 26–32. [Google Scholar] [CrossRef]
- Protonotarios, N.; Anastasakis, A.; Antoniades, L.; Chlouverakis, G.; Syrris, P.; Basso, C.; Asimaki, A.; Theopistou, A.; Stefanadis, C.; Thiene, G.; et al. Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia on the Basis of the Revised Diagnostic Criteria in Affected Families with Desmosomal Mutations. Eur. Heart J. 2011, 32, 1097–1104. [Google Scholar] [CrossRef] [PubMed]
- Marcus, F.I.; McKenna, W.J.; Sherrill, D.; Basso, C.; Bauce, B.; Bluemke, D.A.; Calkins, H.; Corrado, D.; Cox, M.G.P.J.; Daubert, J.P.; et al. Diagnosis of Arrhythmogenic Right Ventricular Cardiomyopathy/Dysplasia: Proposed Modification of the Task Force Criteria. Eur. Heart J. 2010, 31, 806–814. [Google Scholar] [CrossRef]
- Baykan, A.; Olgar, S.; Argun, M.; Ozyurt, A.; Pamukcu, O.; Uzum, K.; Narin, N. Different Clinical Presentations of Naxos Disease and Carvajal Syndrome: Case Series from a Single Tertiary Center and Review of the Literature. Anatol. J. Cardiol. 2015, 15, 404–408. [Google Scholar] [CrossRef]
- Protonotarios, N.; Tsatsopoulou, A. Naxos Disease. Indian Pacing Electrophysiol. J. 2005, 5, 76–80. [Google Scholar]
- Protonotarios, N.; Tsatsopoulou, A. Naxos Disease: Cardiocutaneous Syndrome Due to Cell Adhesion Defect. Orphanet J. Rare Dis. 2006, 1, 4. [Google Scholar] [CrossRef]
- Basso, C.; Tsatsopoulou, A.; Thiene, G.; Anastasakis, A.; Valente, M.; Protonotarios, N. “Petrified” Right Ventricle in Long-Standing Naxos Arrhythmogenic Right Ventricular Cardiomyopathy. Circulation 2001, 104, E132–E133. [Google Scholar] [CrossRef][Green Version]
- Pigors, M.; Schwieger-Briel, A.; Cosgarea, R.; Diaconeasa, A.; Bruckner-Tuderman, L.; Fleck, T.; Has, C. Desmoplakin Mutations with Palmoplantar Keratoderma, Woolly Hair and Cardiomyopathy. Acta Derm. Venereol. 2015, 95, 337–340. [Google Scholar] [CrossRef]
- Maruthappu, T.; Posafalvi, A.; Castelletti, S.; Delaney, P.J.; Syrris, P.; O’Toole, E.A.; Green, K.J.; Elliott, P.M.; Lambiase, P.D.; Tinker, A.; et al. Loss-of-Function Desmoplakin I and II Mutations Underlie Dominant Arrhythmogenic Cardiomyopathy with a Hair and Skin Phenotype. Br. J. Dermatol. 2019, 180, 1114–1122. [Google Scholar] [CrossRef]
- Guerra, L.; Magliozzi, M.; Baban, A.; Di Mambro, C.; Di Zenzo, G.; Novelli, A.; El Hachem, M.; Zambruno, G.; Castiglia, D. Palmoplantar Keratoderma and Woolly Hair Revealing Asymptomatic Arrhythmogenic Cardiomyopathy. Acta Derm. Venereol. 2019, 99, 831–832. [Google Scholar] [CrossRef]
- Turkay, S.; Odemis, E.; Karadag, A. Woolly Hair, Palmoplantar Keratoderma and Arrhythmogenic Dilated Cardiomyopathy in a 7-Year-Old Turkish Girl: Carvajal Syndrome. Ann. Trop. Paediatr. 2006, 26, 73–77. [Google Scholar] [CrossRef]
- Norgett, E.E.; Hatsell, S.J.; Carvajal-Huerta, L.; Cabezas, J.C.; Common, J.; Purkis, P.E.; Whittock, N.; Leigh, I.M.; Stevens, H.P.; Kelsell, D.P. Recessive Mutation in Desmoplakin Disrupts Desmoplakin-Intermediate Filament Interactions and Causes Dilated Cardiomyopathy, Woolly Hair and Keratoderma. Hum. Mol. Genet. 2000, 9, 2761–2766. [Google Scholar] [CrossRef]
- Yuan, Z.-Y.; Cheng, L.-T.; Wang, Z.-F.; Wu, Y.-Q. Desmoplakin and Clinical Manifestations of Desmoplakin Cardiomyopathy. Chin. Med. J. 2021, 134, 1771–1779. [Google Scholar] [CrossRef]
- Yermakovich, D.; Sivitskaya, L.; Vaikhanskaya, T.; Danilenko, N.; Motuk, I. Novel Desmoplakin Mutations in Familial Carvajal Syndrome. Acta Myol. 2018, 37, 263–266. [Google Scholar]
- Boulé, S.; Fressart, V.; Laux, D.; Mallet, A.; Simon, F.; de Groote, P.; Bonnet, D.; Klug, D.; Charron, P. Expanding the Phenotype Associated with a Desmoplakin Dominant Mutation: Carvajal/Naxos Syndrome Associated with Leukonychia and Oligodontia. Int. J. Cardiol. 2012, 161, 50–52. [Google Scholar] [CrossRef]
- Carvajal-Huerta, L. Epidermolytic Palmoplantar Keratoderma with Woolly Hair and Dilated Cardiomyopathy. J. Am. Acad. Dermatol. 1998, 39, 418–421. [Google Scholar] [CrossRef]
- Kilic, T.; Babaoglu, K.; Aygün, F.; Vural, A.; Ural, D.; Agacdiken, A.; Anik, Y.; Komsuoglu, B. Biventricular Involvement in a Turkish Boy with Palmoplantar Hyperkeratosis and Curly Hair, an Unusual Presentation of Naxos-Carvajal Syndrome. Int. J. Cardiol. 2007, 115, e122–e125. [Google Scholar] [CrossRef]
- Prompona, M.; Kozlik-Feldmann, R.; Mueller-Hoecker, J.; Reiser, M.; Huber, A. Images in Cardiovascular Medicine. Magnetic Resonance Imaging Characteristics in Carvajal Syndrome (Variant of Naxos Disease). Circulation 2007, 116, e524–e530. [Google Scholar] [CrossRef]
- Malčić, I.; Buljević, B. Arrhythmogenic right ventricular cardiomyopathy, Naxos island disease and Carvajal syndrome. Cent. Eur. J. Paediatr. 2017, 13, 93106. [Google Scholar] [CrossRef]
- Horn, N.; Morton, N.E. Genetic Epidemiology of Menkes Disease: Genetic Epidemiology of Menkes Disease. Genet. Epidemiol. 1986, 3, 225–230. [Google Scholar] [CrossRef]
- Tønnesen, T.; Kleijer, W.J.; Horn, N. Incidence of Menkes Disease. Hum. Genet. 1991, 86, 408–410. [Google Scholar] [CrossRef]
- Gu, Y.H.; Kodama, H.; Shiga, K.; Nakata, S.; Yanagawa, Y.; Ozawa, H. A Survey of Japanese Patients with Menkes Disease from 1990 to 2003: Incidence and Early Signs before Typical Symptomatic Onset, Pointing the Way to Earlier Diagnosis. J. Inherit. Metab. Dis. 2005, 28, 473–478. [Google Scholar] [CrossRef]
- Danks, D.M. Disorders of copper transport. In The Metabolic Basis of Inherited Disease, 2nd ed.; Scriver, J.R., Beaudet, A.L., Sly, W.S., Valle, D., Eds.; McGraw-Hill: New York, NY, USA, 1995; pp. 2211–2235. [Google Scholar]
- Tümer, Z.; Møller, L.B. Menkes Disease. Eur. J. Hum. Genet. 2010, 18, 511–518. [Google Scholar] [CrossRef]
- Møller, L.B.; Lenartowicz, M.; Zabot, M.-T.; Josiane, A.; Burglen, L.; Bennett, C.; Riconda, D.; Fisher, R.; Janssens, S.; Mohammed, S.; et al. Clinical Expression of Menkes Disease in Females with Normal Karyotype. Orphanet J. Rare Dis. 2012, 7, 6. [Google Scholar] [CrossRef]
- Kim, J.H.; Lee, B.H.; Kim, Y.-M.; Choi, J.-H.; Kim, G.-H.; Cheon, C.K.; Yoo, H.-W. Novel Mutations and Clinical Outcomes of Copper-Histidine Therapy in Menkes Disease Patients. Metab. Brain Dis. 2015, 30, 75–81. [Google Scholar] [CrossRef]
- Tümer, Z. Is It a Pathogenic ATP7A Variation and Is It Menkes Disease? Case Rep. Neurol. Med. 2015, 2015, 358605. [Google Scholar] [CrossRef][Green Version]
- Kaler, S.G.; Liew, C.J.; Donsante, A.; Hicks, J.D.; Sato, S.; Greenfield, J.C. Molecular Correlates of Epilepsy in Early Diagnosed and Treated Menkes Disease. J. Inherit. Metab. Dis. 2010, 33, 583–589. [Google Scholar] [CrossRef]
- Kaler, S.G. ATP7A-Related Copper Transport Diseases-Emerging Concepts and Future Trends. Nat. Rev. Neurol. 2011, 7, 15–29. [Google Scholar] [CrossRef]
- Gu, Y.-H.; Kodama, H.; Kato, T. Congenital Abnormalities in Japanese Patients with Menkes Disease. Brain Dev. 2012, 34, 746–749. [Google Scholar] [CrossRef]
- Hicks, J.D.; Donsante, A.; Pierson, T.M.; Gillespie, M.J.; Chou, D.E.; Kaler, S.G. Increased Frequency of Congenital Heart Defects in Menkes Disease. Clin. Dysmorphol. 2012, 21, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Nath, R. Copper Deficiency and Heart Disease: Molecular Basis, Recent Advances and Current Concepts. Int. J. Biochem. Cell Biol. 1997, 29, 1245–1254. [Google Scholar] [CrossRef]
- Van Bon, B.W.M.; Gilissen, C.; Grange, D.K.; Hennekam, R.C.M.; Kayserili, H.; Engels, H.; Reutter, H.; Ostergaard, J.R.; Morava, E.; Tsiakas, K.; et al. Cantú Syndrome Is Caused by Mutations in ABCC9. Am. J. Hum. Genet. 2012, 90, 1094–1101. [Google Scholar] [CrossRef] [PubMed]
- Grange, D.K.; Nichols, C.G.; Singh, G.K. Cantú Syndrome; University of Washington: Seattle, WA, USA, 2020. [Google Scholar]
- Kortüm, F.; Niceta, M.; Magliozzi, M.; Dumic Kubat, K.; Robertson, S.P.; Moresco, A.; Dentici, M.L.; Baban, A.; Leoni, C.; Onesimo, R.; et al. Cantú Syndrome versus Zimmermann-Laband Syndrome: Report of Nine Individuals with ABCC9 Variants. Eur. J. Med. Genet. 2020, 63, 103996. [Google Scholar] [CrossRef]
- Hedberg-Oldfors, C.; Abramsson, A.; Osborn, D.P.S.; Danielsson, O.; Fazlinezhad, A.; Nilipour, Y.; Hübbert, L.; Nennesmo, I.; Visuttijai, K.; Bharj, J.; et al. Cardiomyopathy with Lethal Arrhythmias Associated with Inactivation of KLHL24. Hum. Mol. Genet. 2019, 28, 1919–1929. [Google Scholar] [CrossRef]
- He, Y.; Maier, K.; Leppert, J.; Hausser, I.; Schwieger-Briel, A.; Weibel, L.; Theiler, M.; Kiritsi, D.; Busch, H.; Boerries, M.; et al. Monoallelic Mutations in the Translation Initiation Codon of KLHL24 Cause Skin Fragility. Am. J. Hum. Genet. 2016, 99, 1395–1404. [Google Scholar] [CrossRef]
- Lin, Z.; Li, S.; Feng, C.; Yang, S.; Wang, H.; Ma, D.; Zhang, J.; Gou, M.; Bu, D.; Zhang, T.; et al. Stabilizing Mutations of KLHL24 Ubiquitin Ligase Cause Loss of Keratin 14 and Human Skin Fragility. Nat. Genet. 2016, 48, 1508–1516. [Google Scholar] [CrossRef]
- Brofferio, A.; Sachdev, V.; Hannoush, H.; Marshall, J.D.; Naggert, J.K.; Sidenko, S.; Noreuil, A.; Sirajuddin, A.; Bryant, J.; Han, J.C.; et al. Characteristics of Cardiomyopathy in Alström Syndrome: Prospective Single-Center Data on 38 Patients. Mol. Genet. Metab. 2017, 121, 336–343. [Google Scholar] [CrossRef]
- Marshall, J.D.; Bronson, R.T.; Collin, G.B.; Nordstrom, A.D.; Maffei, P.; Paisey, R.B.; Carey, C.; Macdermott, S.; Russell-Eggitt, I.; Shea, S.E.; et al. New Alström Syndrome Phenotypes Based on the Evaluation of 182 Cases. Arch. Intern. Med. 2005, 165, 675–683. [Google Scholar] [CrossRef]
- Marshall, J.D.; Maffei, P.; Collin, G.B.; Naggert, J.K. Alström Syndrome: Genetics and Clinical Overview. Curr. Genom. 2011, 12, 225–235. [Google Scholar] [CrossRef]
- Russell-Eggitt, I.M.; Clayton, P.T.; Coffey, R.; Kriss, A.; Taylor, D.S.I.; Taylor, J.F.N. Alström Syndrome. Ophthalmology 1998, 105, 1274–1280. [Google Scholar] [CrossRef]
- Malm, E.; Ponjavic, V.; Nishina, P.M.; Naggert, J.K.; Hinman, E.G.; Andréasson, S.; Marshall, J.D.; Möller, C. Full-Field Electroretinography and Marked Variability in Clinical Phenotype of Alström Syndrome. Arch. Ophthalmol. 2008, 126, 51–57. [Google Scholar] [CrossRef]
- Sebag, J.; Albert, D.M.; Craft, J.L. The Alström Syndrome: Ophthalmic Histopathology and Retinal Ultrastructure. Br. J. Ophthalmol. 1984, 68, 494–501. [Google Scholar] [CrossRef]
- Tremblay, F.; LaRoche, R.G.; Shea, S.E.; Ludman, M.D. Longitudinal Study of the Early Electroretinographic Changes in Alström’s Syndrome. Am. J. Ophthalmol. 1993, 115, 657–665. [Google Scholar] [CrossRef]
- Welsh, L.W. Alström Syndrome: Progressive Deafness and Blindness. Ann. Otol. Rhinol. Laryngol. 2007, 116, 281–285. [Google Scholar] [CrossRef]
- Paisey, R.B.; Steeds, R.; Barrett, T.; Williams, D.; Geberhiwot, T.; Gunay-Aygun, M. Alström Syndrome. In GeneReviews®; University of Washington: Seattle, WA, USA, 2003. [Google Scholar]
- Vandenberk, B.; Vandael, E.; Robyns, T.; Vandenberghe, J.; Garweg, C.; Foulon, V.; Ector, J.; Willems, R. Which QT Correction Formulae to Use for QT Monitoring? J. Am. Heart Assoc. 2016, 5, e003264. [Google Scholar] [CrossRef]
- Loudon, M.A.; Bellenger, N.G.; Carey, C.M.; Paisey, R.B. Cardiac Magnetic Resonance Imaging in Alström Syndrome. Orphanet J. Rare Dis. 2009, 4, 14. [Google Scholar] [CrossRef]
- Makaryus, A.N.; Zubrow, M.E.; Marshall, J.D.; Gillam, L.D.; Mangion, J.R. Cardiac Manifestations of Alström Syndrome: Echocardiographic Findings. J. Am. Soc. Echocardiogr. 2007, 20, 1359–1363. [Google Scholar] [CrossRef]
- Toulany, A.; Shea, S.; Warren, A.E. Doppler Tissue, Strain, and Strain Rate Imaging in Pediatric Patients with Alström Syndrome: Are There Regional Functional Abnormalities? J. Am. Soc. Echocardiogr. 2006, 19, 14–20. [Google Scholar] [CrossRef]
- Edwards, N.C.; Moody, W.E.; Yuan, M.; Warfield, A.T.; Cramb, R.; Paisey, R.B.; Geberhiwot, T.; Steeds, R.P. Diffuse Left Ventricular Interstitial Fibrosis Is Associated with Sub-Clinical Myocardial Dysfunction in Alström Syndrome: An Observational Study. Orphanet J. Rare Dis. 2015, 10, 83. [Google Scholar] [CrossRef][Green Version]
- Bettini, V.; Maffei, P.; Pagano, C.; Romano, S.; Milan, G.; Favaretto, F.; Marshall, J.D.; Paisey, R.; Scolari, F.; Greggio, N.A.; et al. The Progression from Obesity to Type 2 Diabetes in Alström Syndrome. Pediatr. Diabetes 2012, 13, 59–67. [Google Scholar] [CrossRef]
- Paisey, R.B. New Insights and Therapies for the Metabolic Consequences of Alström Syndrome. Curr. Opin. Lipidol. 2009, 20, 315–320. [Google Scholar] [CrossRef]
- Dionisi Vici, C.; Sabetta, G.; Gambarara, M.; Vigevano, F.; Bertini, E.; Boldrini, R.; Parisi, S.G.; Quinti, I.; Aiuti, F.; Fiorilli, M. Agenesis of the Corpus Callosum, Combined Immunodeficiency, Bilateral Cataract, and Hypopigmentation in Two Brothers. Am. J. Med. Genet. 1988, 29, 1–8. [Google Scholar] [CrossRef]
- Cullup, T.; Kho, A.L.; Dionisi-Vici, C.; Brandmeier, B.; Smith, F.; Urry, Z.; Simpson, M.A.; Yau, S.; Bertini, E.; McClelland, V.; et al. Recessive Mutations in EPG5 Cause Vici Syndrome, a Multisystem Disorder with Defective Autophagy. Nat. Genet. 2013, 45, 83–87. [Google Scholar] [CrossRef]
- Byrne, S.; Dionisi-Vici, C.; Smith, L.; Gautel, M.; Jungbluth, H. Vici Syndrome: A Review. Orphanet J. Rare Dis. 2016, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Alzahrani, A.; Alghamdi, A.A.; Waggass, R. A Saudi Infant with Vici Syndrome: Case Report and Literature Review. Open Access Maced. J. Med. Sci. 2018, 6, 1081–1084. [Google Scholar] [CrossRef] [PubMed]
- Autti, T.; Joensuu, R.; Aberg, L. Decreased T2 Signal in the Thalami May Be a Sign of Lysosomal Storage Disease. Neuroradiology 2007, 49, 571–578. [Google Scholar] [CrossRef] [PubMed]
- Miyata, R.; Hayashi, M.; Itoh, E. Pathological Changes in Cardiac Muscle and Cerebellar Cortex in Vici Syndrome. Am. J. Med. Genet. A 2014, 164, 3203–3205. [Google Scholar] [CrossRef] [PubMed]
- Rogers, R.C.; Aufmuth, B.; Monesson, S. Vici Syndrome: A Rare Autosomal Recessive Syndrome with Brain Anomalies, Cardiomyopathy, and Severe Intellectual Disability. Case Rep. Genet. 2011, 2011, 421582. [Google Scholar] [CrossRef][Green Version]
- Dudek, J.; Maack, C. Barth Syndrome Cardiomyopathy. Cardiovasc. Res. 2017, 113, 399–410. [Google Scholar] [CrossRef]
- Schlame, M.; Towbin, J.A.; Heerdt, P.M.; Jehle, R.; DiMauro, S.; Blanck, T.J.J. Deficiency of Tetralinoleoyl-Cardiolipin in Barth Syndrome. Ann. Neurol. 2002, 51, 634–637. [Google Scholar] [CrossRef]
- Bertero, E.; Kutschka, I.; Maack, C.; Dudek, J. Cardiolipin Remodeling in Barth Syndrome and Other Hereditary Cardiomyopathies. Biochim. Biophys. Acta Mol. Basis Dis. 2020, 1866, 165803. [Google Scholar] [CrossRef]
- Cantlay, A.M.; Shokrollahi, K.; Allen, J.T.; Lunt, P.W.; Newbury-Ecob, R.A.; Steward, C.G. Genetic Analysis of the G4.5 Gene in Families with Suspected Barth Syndrome. J. Pediatr. 1999, 135, 311–315. [Google Scholar] [CrossRef]
- Steward, C.G.; Newbury-Ecob, R.A.; Hastings, R.; Smithson, S.F.; Tsai-Goodman, B.; Quarrell, O.W.; Kulik, W.; Wanders, R.; Pennock, M.; Williams, M.; et al. Barth Syndrome: An X-Linked Cause of Fetal Cardiomyopathy and Stillbirth. Prenat. Diagn. 2010, 30, 970–976. [Google Scholar] [CrossRef]
- Clarke, S.L.N.; Bowron, A.; Gonzalez, I.L.; Groves, S.J.; Newbury-Ecob, R.; Clayton, N.; Martin, R.P.; Tsai-Goodman, B.; Garratt, V.; Ashworth, M.; et al. Barth Syndrome. Orphanet J. Rare Dis. 2013, 8, 23. [Google Scholar] [CrossRef]
- Ronvelia, D.; Greenwood, J.; Platt, J.; Hakim, S.; Zaragoza, M.V. Intrafamilial Variability for Novel TAZ Gene Mutation: Barth Syndrome with Dilated Cardiomyopathy and Heart Failure in an Infant and Left Ventricular Noncompaction in His Great-Uncle. Mol. Genet. Metab. 2012, 107, 428–432. [Google Scholar] [CrossRef]
- Spencer, C.T.; Bryant, R.M.; Day, J.; Gonzalez, I.L.; Colan, S.D.; Thompson, W.R.; Berthy, J.; Redfearn, S.P.; Byrne, B.J. Cardiac and Clinical Phenotype in Barth Syndrome. Pediatrics 2006, 118, e337–e346. [Google Scholar] [CrossRef]
- Wortmann, S.B.; Kluijtmans, L.A.J.; Sequeira, S.; Wevers, R.A.; Morava, E. Leucine Loading Test Is Only Discriminative for 3-Methylglutaconic Aciduria Due to AUH Defect. JIMD Rep. 2014, 16, 1–6. [Google Scholar] [CrossRef]
- Houtkooper, R.H.; Turkenburg, M.; Poll-The, B.T.; Karall, D.; Pérez-Cerdá, C.; Morrone, A.; Malvagia, S.; Wanders, R.J.; Kulik, W.; Vaz, F.M. The Enigmatic Role of Tafazzin in Cardiolipin Metabolism. Biochim. Biophys. Acta 2009, 1788, 2003–2014. [Google Scholar] [CrossRef]
- Kulik, W.; van Lenthe, H.; Stet, F.S.; Houtkooper, R.H.; Kemp, H.; Stone, J.E.; Steward, C.G.; Wanders, R.J.; Vaz, F.M. Bloodspot Assay Using HPLC-Tandem Mass Spectrometry for Detection of Barth Syndrome. Clin. Chem. 2008, 54, 371–378. [Google Scholar] [CrossRef]
- Takeda, A.; Sudo, A.; Yamada, M.; Yamazawa, H.; Izumi, G.; Nishino, I.; Ariga, T. Eponym: Barth Syndrome: Barth Syndrome. Eur. J. Pediatr. 2011, 170, 1365–1367. [Google Scholar] [CrossRef] [PubMed]
- Baban, A.; Adorisio, R.; Corica, B.; Rizzo, C.; Calì, F.; Semeraro, M.; Taurisano, R.; Magliozzi, M.; Carrozzo, R.; Parisi, F.; et al. Delayed Appearance of 3-Methylglutaconic Aciduria in Neonates with Early Onset Metabolic Cardiomyopathies: A Potential Pitfall for the Diagnosis. Am. J. Med. Genet. A 2020, 182, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Barth, P.G.; Scholte, H.R.; Berden, J.A.; Van Der Klei-Van Moorsel, J.M.; Luyt-Houwen, I.E.M.; Van’T Veer-Korthof, E.T.; Van Der Harten, J.J.; Sobotka-Plojhar, M.A. An X-Linked Mitochondrial Disease Affecting Cardiac Muscle, Skeletal Muscle and Neutrophil Leucocytes. J. Neurol. Sci. 1983, 62, 327–355. [Google Scholar] [CrossRef]
- Adès, L.C.; Gedeon, A.K.; Wilson, M.J.; Latham, M.; Partington, M.W.; Mulley, J.C.; Nelson, J.; Lui, K.; Sillence, D.O. Barth Syndrome: Clinical Features and Confirmation of Gene Localisation to Distal Xq28. Am. J. Med. Genet. 1993, 45, 327–334. [Google Scholar] [CrossRef] [PubMed]
- Barth, P.G.; Valianpour, F.; Bowen, V.M.; Lam, J.; Duran, M.; Vaz, F.M.; Wanders, R.J.A. X-Linked Cardioskeletal Myopathy and Neutropenia (Barth Syndrome): An Update. Am. J. Med. Genet. A 2004, 126, 349–354. [Google Scholar] [CrossRef]
- Yen, T.-Y.; Hwu, W.-L.; Chien, Y.-H.; Wu, M.-H.; Lin, M.-T.; Tsao, L.-Y.; Hsieh, W.-S.; Lee, N.-C. Acute Metabolic Decompensation and Sudden Death in Barth Syndrome: Report of a Family and a Literature Review. Eur. J. Pediatr. 2008, 167, 941–944. [Google Scholar] [CrossRef]
- Roberts, A.E.; Nixon, C.; Steward, C.G.; Gauvreau, K.; Maisenbacher, M.; Fletcher, M.; Geva, J.; Byrne, B.J.; Spencer, C.T. The Barth Syndrome Registry: Distinguishing Disease Characteristics and Growth Data from a Longitudinal Study. Am. J. Med. Genet. A 2012, 158, 2726–2732. [Google Scholar] [CrossRef]
- Martin, A.B.; Garson, A., Jr.; Perry, J.C. Prolonged QT Interval in Hypertrophic and Dilated Cardiomyopathy in Children. Am. Heart J. 1994, 127, 64–70. [Google Scholar] [CrossRef]
- Rigaud, C.; Lebre, A.-S.; Touraine, R.; Beaupain, B.; Ottolenghi, C.; Chabli, A.; Ansquer, H.; Ozsahin, H.; Di Filippo, S.; De Lonlay, P.; et al. Natural History of Barth Syndrome: A National Cohort Study of 22 Patients. Orphanet J. Rare Dis. 2013, 8, 70. [Google Scholar] [CrossRef]
- Bleyl, S.B.; Mumford, B.R.; Thompson, V.; Carey, J.C.; Pysher, T.J.; Chin, T.K.; Ward, K. Neonatal, Lethal Noncompaction of the Left Ventricular Myocardium Is Allelic with Barth Syndrome. Am. J. Hum. Genet. 1997, 61, 868–872. [Google Scholar] [CrossRef]
- Pignatelli, R.H.; McMahon, C.J.; Dreyer, W.J.; Denfield, S.W.; Price, J.; Belmont, J.W.; Craigen, W.J.; Wu, J.; El Said, H.; Bezold, L.; et al. Clinical Characterization of Left Ventricular Noncompaction in Children: A Relatively Common Form of Cardiomyopathy: A Relatively Common Form of Cardiomyopathy. Circulation 2003, 108, 2672–2678. [Google Scholar] [CrossRef]
- Hanke, S.P.; Gardner, A.B.; Lombardi, J.P.; Manning, P.B.; Nelson, D.P.; Towbin, J.A.; Jefferies, J.L.; Lorts, A. Left Ventricular Noncompaction Cardiomyopathy in Barth Syndrome: An Example of an Undulating Cardiac Phenotype Necessitating Mechanical Circulatory Support as a Bridge to Transplantation. Pediatr. Cardiol. 2012, 33, 1430–1434. [Google Scholar] [CrossRef]
- Dietz, H. Marfan Syndrome. In GeneReviews®; University of Washington: Seattle, WA, USA, 2001. [Google Scholar]
- Loeys, B.L.; Dietz, H.C.; Braverman, A.C.; Callewaert, B.L.; De Backer, J.; Devereux, R.B.; Hilhorst-Hofstee, Y.; Jondeau, G.; Faivre, L.; Milewicz, D.M.; et al. The Revised Ghent Nosology for the Marfan Syndrome. J. Med. Genet. 2010, 47, 476–485. [Google Scholar] [CrossRef]
- Baban, A.; Castori, M. Pharmacological resources, diagnostic approach and coordination of care in joint hypermobility-related disorders. Expert Rev. Clin. Pharmacol. 2018, 11, 689–703. [Google Scholar] [CrossRef]
- Muiño-Mosquera, L.; De Backer, J. Cardiomyopathy in Genetic Aortic Diseases. Front. Pediatr. 2021, 9, 682390. [Google Scholar] [CrossRef]
- Groth, K.A.; Stochholm, K.; Hove, H.; Andersen, N.H.; Gravholt, C.H. Causes of Mortality in the Marfan Syndrome (from a Nationwide Register Study). Am. J. Cardiol. 2018, 122, 1231–1235. [Google Scholar] [CrossRef]
- Diller, G.-P.; Kempny, A.; Alonso-Gonzalez, R.; Swan, L.; Uebing, A.; Li, W.; Babu-Narayan, S.; Wort, S.J.; Dimopoulos, K.; Gatzoulis, M.A. Survival Prospects and Circumstances of Death in Contemporary Adult Congenital Heart Disease Patients under Follow-up at a Large Tertiary Centre. Circulation 2015, 132, 2118–2125. [Google Scholar] [CrossRef]
- Hetzer, R.; Siegel, G.; Delmo Walter, E.M. Cardiomyopathy in Marfan Syndrome. Eur. J. Cardiothorac. Surg. 2016, 49, 561–567; discussion 567–568. [Google Scholar] [CrossRef]
- Yetman, A.T.; Bornemeier, R.A.; McCrindle, B.W. Long-Term Outcome in Patients with Marfan Syndrome: Is Aortic Dissection the Only Cause of Sudden Death? J. Am. Coll. Cardiol. 2003, 41, 329–332. [Google Scholar] [CrossRef]
- Savolainen, A.; Nisula, L.; Keto, P.; Hekali, P.; Viitasalo, M.; Kaitila, I.; Kupari, M. Left Ventricular Function in Children with the Marfan Syndrome. Eur. Heart J. 1994, 15, 625–630. [Google Scholar] [CrossRef]
- Alpendurada, F.; Wong, J.; Kiotsekoglou, A.; Banya, W.; Child, A.; Prasad, S.K.; Pennell, D.J.; Mohiaddin, R.H. Evidence for Marfan Cardiomyopathy. Eur. J. Heart Fail. 2010, 12, 1085–1091. [Google Scholar] [CrossRef]
- Mewton, N.; Liu, C.Y.; Croisille, P.; Bluemke, D.; Lima, J.A.C. Assessment of Myocardial Fibrosis with Cardiovascular Magnetic Resonance. J. Am. Coll. Cardiol. 2011, 57, 891–903. [Google Scholar] [CrossRef]
- Karur, G.R.; Pagano, J.J.; Bradley, T.; Lam, C.Z.; Seed, M.; Yoo, S.-J.; Grosse-Wortmann, L. Diffuse Myocardial Fibrosis in Children and Adolescents with Marfan Syndrome and Loeys-Dietz Syndrome. J. Am. Coll. Cardiol. 2018, 72, 2279–2281. [Google Scholar] [CrossRef]
- Aalberts, J.J.J.; van Tintelen, J.P.; Meijboom, L.J.; Polko, A.; Jongbloed, J.D.H.; van der Wal, H.; Pals, G.; Osinga, J.; Timmermans, J.; de Backer, J.; et al. Relation between Genotype and Left-Ventricular Dilatation in Patients with Marfan Syndrome. Gene 2014, 534, 40–43. [Google Scholar] [CrossRef]
- Arnaud, P.; Milleron, O.; Hanna, N.; Ropers, J.; Ould Ouali, N.; Affoune, A.; Langeois, M.; Eliahou, L.; Arnoult, F.; Renard, P.; et al. Clinical Relevance of Genotype-Phenotype Correlations beyond Vascular Events in a Cohort Study of 1500 Marfan Syndrome Patients with FBN1 Pathogenic Variants. Genet. Med. 2021, 23, 1296–1304. [Google Scholar] [CrossRef]
- Muiño-Mosquera, L.; De Wilde, H.; Devos, D.; Babin, D.; Jordaens, L.; Demolder, A.; De Groote, K.; De Wolf, D.; De Backer, J. Myocardial Disease and Ventricular Arrhythmia in Marfan Syndrome: A Prospective Study. Orphanet J. Rare Dis. 2020, 15, 300. [Google Scholar] [CrossRef]
- Hengel, H.; Buchert, R.; Sturm, M.; Haack, T.B.; Schelling, Y.; Mahajnah, M.; Sharkia, R.; Azem, A.; Balousha, G.; Ghanem, Z.; et al. First-Line Exome Sequencing in Palestinian and Israeli Arabs with Neurological Disorders Is Efficient and Facilitates Disease Gene Discovery. Eur. J. Hum. Genet. 2020, 28, 1034–1043. [Google Scholar] [CrossRef]
- Sharkia, R.; Zaid, M.; Athamna, A.; Cohen, D.; Azem, A.; Zalan, A. The Changing Pattern of Consanguinity in a Selected Region of the Israeli Arab Community. Am. J. Hum. Biol. 2008, 20, 72–77. [Google Scholar] [CrossRef]
- Al-Gazali, L.; Hamamy, H.; Al-Arrayad, S. Genetic Disorders in the Arab World. BMJ 2006, 333, 831–834. [Google Scholar] [CrossRef]
- Magner, M.; Dvorakova, V.; Tesarova, M.; Mazurova, S.; Hansikova, H.; Zahorec, M.; Brennerova, K.; Bzduch, V.; Spiegel, R.; Horovitz, Y.; et al. TMEM70 Deficiency: Long-Term Outcome of 48 Patients. J. Inherit. Metab. Dis. 2015, 38, 417–426. [Google Scholar] [CrossRef]
- Jiang, P.; Mizushima, N. Autophagy and Human Diseases. Cell Res. 2014, 24, 69–79. [Google Scholar] [CrossRef] [PubMed]
- Mizushima, N.; Komatsu, M. Autophagy: Renovation of Cells and Tissues. Cell 2011, 147, 728–741. [Google Scholar] [CrossRef] [PubMed]
- Basu, R.; Hazra, S.; Shanks, M.; Paterson, D.I.; Oudit, G.Y. Novel Mutation in Exon 14 of the Sarcomere Gene MYH7 in Familial Left Ventricular Noncompaction with Bicuspid Aortic Valve. Circ. Heart Fail. 2014, 7, 1059–1062. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lodato, V.; Parlapiano, G.; Calì, F.; Silvetti, M.S.; Adorisio, R.; Armando, M.; El Hachem, M.; Romanzo, A.; Dionisi-Vici, C.; Digilio, M.C.; et al. Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart? J. Cardiovasc. Dev. Dis. 2022, 9, 47. https://doi.org/10.3390/jcdd9020047
Lodato V, Parlapiano G, Calì F, Silvetti MS, Adorisio R, Armando M, El Hachem M, Romanzo A, Dionisi-Vici C, Digilio MC, et al. Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart? Journal of Cardiovascular Development and Disease. 2022; 9(2):47. https://doi.org/10.3390/jcdd9020047
Chicago/Turabian StyleLodato, Valentina, Giovanni Parlapiano, Federica Calì, Massimo Stefano Silvetti, Rachele Adorisio, Michela Armando, May El Hachem, Antonino Romanzo, Carlo Dionisi-Vici, Maria Cristina Digilio, and et al. 2022. "Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart?" Journal of Cardiovascular Development and Disease 9, no. 2: 47. https://doi.org/10.3390/jcdd9020047
APA StyleLodato, V., Parlapiano, G., Calì, F., Silvetti, M. S., Adorisio, R., Armando, M., El Hachem, M., Romanzo, A., Dionisi-Vici, C., Digilio, M. C., Novelli, A., Drago, F., Raponi, M., & Baban, A. (2022). Cardiomyopathies in Children and Systemic Disorders When Is It Useful to Look beyond the Heart? Journal of Cardiovascular Development and Disease, 9(2), 47. https://doi.org/10.3390/jcdd9020047