Cardiac Biomarkers for the Detection and Management of Cancer Therapy-Related Cardiovascular Toxicity
Abstract
:1. Introduction
2. Baseline Assessment of Cardiovascular Risk Factors in Cancer Patients
3. Classical Biomarkers of Myocardial Injury and Cardiac Dysfunction
3.1. cTn
3.2. NPs
4. Role of Cardiac Biomarkers in Different Anti-Cancer Therapies
4.1. Anthracyclines
4.2. Trastuzumab
4.3. Immunotherapy
4.4. Androgenic Deprivation
4.5. Radiotherapy
5. Management of Patients Receiving Potentially Cardiotoxic Treatments
6. Novel Biomarkers
7. Conclusions and Prospect
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zamorano, J.L.; Lancellotti, P.; Rodriguez Munoz, D.; Aboyans, V.; Asteggiano, R.; Galderisi, M.; Habib, G.; Lenihan, D.J.; Lip, G.Y.H.; Lyon, A.R.; et al. 2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of the ESC Committee for Practice Guidelines: The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 2768–2801. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Lopez-Fernandez, T.; Couch, L.S.; Asteggiano, R.; Aznar, M.C.; Bergler-Klein, J.; Boriani, G.; Cardinale, D.; Cordoba, R.; Cosyns, B.; et al. 2022 ESC Guidelines on cardio-oncology developed in collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS). Eur. Heart J. Cardiovasc. Imaging 2022, 23, e333–e465. [Google Scholar] [CrossRef]
- Ananthan, K.; Lyon, A.R. The Role of Biomarkers in Cardio-Oncology. J. Cardiovasc. Transl. Res. 2020, 13, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Biasillo, G.; Salvatici, M.; Sandri, M.T.; Cipolla, C.M. Using biomarkers to predict and to prevent cardiotoxicity of cancer therapy. Expert Rev Mol Diagn. 2017, 17, 245–256. [Google Scholar] [CrossRef] [PubMed]
- Pudil, R.; Mueller, C.; Celutkiene, J.; Henriksen, P.A.; Lenihan, D.; Dent, S.; Barac, A.; Stanway, S.; Moslehi, J.; Suter, T.M.; et al. Role of serum biomarkers in cancer patients receiving cardiotoxic cancer therapies: A position statement from the Cardio-Oncology Study Group of the Heart Failure Association and the Cardio-Oncology Council of the European Society of Cardiology. Eur. J. Heart Fail. 2020, 22, 1966–1983. [Google Scholar] [CrossRef] [PubMed]
- Lyon, A.R.; Yousaf, N.; Battisti, N.M.L.; Moslehi, J.; Larkin, J. Immune checkpoint inhibitors and cardiovascular toxicity. Lancet Oncol. 2018, 19, e447–e458. [Google Scholar] [CrossRef]
- Christenson, E.S.; James, T.; Agrawal, V.; Park, B.H. Use of biomarkers for the assessment of chemotherapy-induced cardiac toxicity. Clin. Biochem. 2015, 48, 223–235. [Google Scholar] [CrossRef] [Green Version]
- Salvatici, M.; Cardinale, D.; Colombo, A.; Sandri, M.T. Cancer Cardiotoxicity and Cardiac Biomarkers. In Biomarkers in Disease Methods Discoveries & Applications; Springer: Dordrecht, The Netherlands, 2016; pp. 73–105. [Google Scholar]
- Katrukha, I.A.; Katrukha, A.G. Myocardial Injury and the Release of Troponins I and T in the Blood of Patients. Clin. Chem. 2021, 67, 124–130. [Google Scholar] [CrossRef]
- Cardinale, D.; Sandri, M.T.; Colombo, A.; Colombo, N.; Boeri, M.; Lamantia, G.; Civelli, M.; Peccatori, F.; Martinelli, G.; Fiorentini, C.; et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 2004, 109, 2749–2754. [Google Scholar] [CrossRef] [Green Version]
- Park, K.C.; Gaze, D.C.; Collinson, P.O.; Marber, M.S. Cardiac troponins: From myocardial infarction to chronic disease. Cardiovasc. Res. 2017, 113, 1708–1718. [Google Scholar] [CrossRef]
- Clerico, A.; Zaninotto, M.; Passino, C.; Aspromonte, N.; Piepoli, M.F.; Migliardi, M.; Perrone, M.; Fortunato, A.; Padoan, A.; Testa, A.; et al. Evidence on clinical relevance of cardiovascular risk evaluation in the general population using cardio-specific biomarkers. Clin. Chem. Lab. Med. 2020, 59, 79–90. [Google Scholar] [CrossRef] [PubMed]
- Clerico, A.; Zaninotto, M.; Passino, C.; Padoan, A.; Migliardi, M.; Plebani, M. High-sensitivity methods for cardiac troponins: The mission is not over yet. Adv. Clin. Chem. 2021, 103, 215–252. [Google Scholar] [PubMed]
- Auner, H.W.; Tinchon, C.; Linkesch, W.; Tiran, A.; Quehenberger, F.; Link, H.; Sill, H. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann. Hematol. 2003, 82, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Colombo, A.; Torrisi, R.; Sandri, M.T.; Civelli, M.; Salvatici, M.; Lamantia, G.; Colombo, N.; Cortinovis, S.; Dessanai, M.A.; et al. Trastuzumab-induced cardiotoxicity: Clinical and prognostic implications of troponin I evaluation. J. Clin. Oncol. 2010, 28, 3910–3916. [Google Scholar] [CrossRef]
- Sawaya, H.; Sebag, I.A.; Plana, J.C.; Januzzi, J.L.; Ky, B.; Tan, T.C.; Cohen, V.; Banchs, J.; Carver, J.R.; Wiegers, S.E.; et al. Assessment of echocardiography and biomarkers for the extended prediction of cardiotoxicity in patients treated with anthracyclines, taxanes, and trastuzumab. Circ. Cardiovasc. Imaging 2012, 5, 596–603. [Google Scholar] [CrossRef] [Green Version]
- Drafts, B.C.; Twomley, K.M.; D’Agostino, R.; Lawrence, J.; Avis, N.; Ellis, L.R.; Thohan, V.; Jordan, J.; Melin, S.A.; Torti, F.M.; et al. Low to moderate dose anthracycline-based chemotherapy is associated with early noninvasive imaging evidence of subclinical cardiovascular disease. JACC Cardiovasc. Imaging 2013, 6, 877–885. [Google Scholar] [CrossRef] [Green Version]
- Ky, B.; Putt, M.; Sawaya, H.; French, B.; Januzzi, J.L.; Sebag, I.A.; Plana, J.C.; Cohen, V.; Banchs, J.; Carver, J.R.; et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxanes, and trastuzumab. J. Am. Coll. Cardiol. 2014, 63, 809–816. [Google Scholar] [CrossRef] [Green Version]
- Putt, M.; Hahn, V.S.; Januzzi, J.L.; Sawaya, H.; Sebag, I.A.; Plana, J.C.; Picard, M.H.; Carver, J.R.; Halpern, E.F.; Kuter, I.; et al. Longitudinal Changes in Multiple Biomarkers Are Associated with Cardiotoxicity in Breast Cancer Patients Treated with Doxorubicin, Taxanes, and Trastuzumab. Clin. Chem. 2015, 61, 1164–1172. [Google Scholar] [CrossRef] [Green Version]
- Olivieri, J.; Perna, G.P.; Bocci, C.; Montevecchi, C.; Olivieri, A.; Leoni, P.; Gini, G. Modern Management of Anthracycline-Induced Cardiotoxicity in Lymphoma Patients: Low Occurrence of Cardiotoxicity with Comprehensive Assessment and Tailored Substitution by Nonpegylated Liposomal Doxorubicin. Oncologist 2017, 22, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Kitayama, H.; Kondo, T.; Sugiyama, J.; Kurimoto, K.; Nishino, Y.; Kawada, M.; Hirayama, M.; Tsuji, Y. High-sensitive troponin T assay can predict anthracycline- and trastuzumab-induced cardiotoxicity in breast cancer patients. Breast Cancer 2017, 24, 774–782. [Google Scholar] [CrossRef]
- Zardavas, D.; Suter, T.M.; Van Veldhuisen, D.J.; Steinseifer, J.; Noe, J.; Lauer, S.; Al-Sakaff, N.; Piccart-Gebhart, M.J.; de Azambuja, E. Role of Troponins I and T and N-Terminal Prohormone of Brain Natriuretic Peptide in Monitoring Cardiac Safety of Patients With Early-Stage Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer Receiving Trastuzumab: A Herceptin Adjuvant Study Cardiac Marker Substudy. J. Clin. Oncol. 2017, 35, 878–884. [Google Scholar] [PubMed]
- Gulati, G.; Heck, S.L.; Røsjø, H.; Ree, A.H.; Hoffmann, P.; Hagve, T.A.; Norseth, J.; Gravdehaug, B.; Steine, K.; Geisler, J.; et al. Neurohormonal Blockade and Circulating Cardiovascular Biomarkers During Anthracycline Therapy in Breast Cancer Patients: Results From the PRADA (Prevention of Cardiac Dysfunction During Adjuvant Breast Cancer Therapy) Study. J. Am. Heart Assoc. 2017, 6, e006513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shafi, A.; Siddiqui, N.; Imtiaz, S.; Din Sajid, M.U. Left Ventricular Systolic Dysfunction Predicted By Early Troponin I Release After Anthracycline Based Chemotherapy In Breast Cancer Patients. J. Ayub. Med. Coll. Abbottabad. 2017, 29, 266–269. [Google Scholar] [PubMed]
- Mahmood, S.S.; Fradley, M.G.; Cohen, J.V.; Nohria, A.; Reynolds, K.L.; Heinzerling, L.M.; Sullivan, R.J.; Damrongwatanasuk, R.; Chen, C.L.; Gupta, D.; et al. Myocarditis in Patients Treated With Immune Checkpoint Inhibitors. J. Am. Coll. Cardiol. 2018, 71, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Ponde, N.; Bradbury, I.; Lambertini, M.; Ewer, M.; Campbell, C.; Ameels, H.; Zardavas, D.; Di Cosimo, S.; Baselga, J.; Huober, J.; et al. Cardiac biomarkers for early detection and prediction of trastuzumab and/or lapatinib-induced cardiotoxicity in patients with HER2-positive early-stage breast cancer: A NeoALTTO sub-study (BIG 1-06). Breast Cancer Res. Treat. 2018, 168, 631–638. [Google Scholar] [CrossRef]
- Alvi, R.M.; Frigault, M.J.; Fradley, M.G.; Jain, M.D.; Mahmood, S.S.; Awadalla, M.; Lee, D.H.; Zlotoff, D.A.; Zhang, L.; Drobni, Z.D.; et al. Cardiovascular Events Among Adults Treated With Chimeric Antigen Receptor T-Cells (CAR-T). J. Am. Coll. Cardiol. 2019, 74, 3099–3108. [Google Scholar] [CrossRef]
- Demissei, B.G.; Hubbard, R.A.; Zhang, L.; Smith, A.M.; Sheline, K.; McDonald, C.; Narayan, V.; Domchek, S.M.; DeMichele, A.; Shah, P.; et al. Changes in Cardiovascular Biomarkers With Breast Cancer Therapy and Associations With Cardiac Dysfunction. J. Am. Heart Assoc. 2020, 9, e014708. [Google Scholar] [CrossRef]
- Finke, D.; Romann, S.W.; Heckmann, M.B.; Hund, H.; Bougatf, N.; Kantharajah, A.; Katus, H.A.; Müller, O.J.; Frey, N.; Giannitsis, E.; et al. High-sensitivity cardiac troponin T determines all-cause mortality in cancer patients: A single-centre cohort study. ESC Heart Fail. 2021, 8, 3709–3719. [Google Scholar] [CrossRef]
- Kjaer, A.; Hesse, B. Heart failure and neuroendocrine activation: Diagnostic, prognostic and therapeutic perspectives. Clin. Physiol. 2001, 21, 661–672. [Google Scholar] [CrossRef] [Green Version]
- Masson, S.; Latini, R.; Anand, I.S.; Vago, T.; Angelici, L.; Barlera, S.; Missov, E.D.; Clerico, A.; Tognoni, G.; Cohn, J.N.; et al. Direct comparison of B-type natriuretic peptide (BNP) and amino-terminal proBNP in a large population of patients with chronic and symptomatic heart failure: The Valsartan Heart Failure (Val-HeFT) data. Clin. Chem. 2006, 52, 1528–1538. [Google Scholar] [CrossRef]
- Mueller, C.; McDonald, K.; de Boer, R.A.; Maisel, A.; Cleland, J.G.; Kozhuharov, N.; Coats, A.J.; Metra, M.; Mebazaa, A.; Ruschitzka, F.; et al. Heart Failure Association of the European Society of Cardiology practical guidance on the use of natriuretic peptide concentrations. Eur. J. Heart Fail. 2019, 21, 715–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wieshammer, S.; Dreyhaupt, J.; Muller, D.; Momm, F.; Jakob, A. Limitations of N-Terminal Pro-B-Type Natriuretic Peptide in the Diagnosis of Heart Disease among Cancer Patients Who Present with Cardiac or Pulmonary Symptoms. Oncology 2016, 90, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.S.; Son, C.B.; Shin, S.H.; Kim, Y.S. Clinical correlation between brain natriutetic peptide and anthracyclin-induced cardiac toxicity. Cancer Res. Treat. 2008, 40, 121–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lenihan, D.J.; Stevens, P.L.; Massey, M.; Plana, J.C.; Araujo, D.M.; Fanale, M.A.; Fayad, L.E.; Fisch, M.J.; Yeh, E.T. The Utility of Point-of-Care Biomarkers to Detect Cardiotoxicity During Anthracycline Chemotherapy: A Feasibility Study. J. Card. Fail. 2016, 22, 433–438. [Google Scholar] [CrossRef]
- Palumbo, I.; Palumbo, B.; Fravolini, M.L.; Marcantonini, M.; Perrucci, E.; Latini, M.E.; Falcinelli, L.; Sabalich, I.; Tranfaglia, C.; Schillaci, G.; et al. Brain natriuretic peptide as a cardiac marker of transient radiotherapy-related damage in left-sided breast cancer patients: A prospective study. Breast 2016, 25, 45–50. [Google Scholar] [CrossRef]
- Catino, A.B.; Hubbard, R.A.; Chirinos, J.A.; Townsend, R.; Keefe, S.; Haas, N.B.; Puzanov, I.; Fang, J.C.; Agarwal, N.; Hyman, D.; et al. Longitudinal Assessment of Vascular Function With Sunitinib in Patients With Metastatic Renal Cell Carcinoma. Circ. Heart Fail. 2018, 11, e004408. [Google Scholar] [CrossRef]
- Cornell, R.F.; Ky, B.; Weiss, B.M.; Dahm, C.N.; Gupta, D.K.; Du, L.; Carver, J.R.; Cohen, A.D.; Engelhardt, B.G.; Garfall, A.L.; et al. Prospective Study of Cardiac Events During Proteasome Inhibitor Therapy for Relapsed Multiple Myeloma. J. Clin. Oncol. 2019, 37, 1946–1955. [Google Scholar] [CrossRef]
- Bouwer, N.I.; Liesting, C.; Kofflard, M.J.; Sprangers-van Campen, S.M.; Brugts, J.J.; Kitzen, J.J.; Fouraux, M.A.; Levin, M.D.; Boersma, E. NT-proBNP correlates with LVEF decline in HER2-positive breast cancer patients treated with trastuzumab. Cardiooncology 2019, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Blancas, I.; Martin-Perez, F.J.; Garrido, J.M.; Rodriguez-Serrano, F. NT-proBNP as predictor factor of cardiotoxicity during trastuzumab treatment in breast cancer patients. Breast 2020, 54, 106–113. [Google Scholar] [CrossRef]
- Simoes, R.; Silva, L.M.; Cruz, A.; Fraga, V.G.; de Paula Sabino, A.; Gomes, K.B. Troponin as a cardiotoxicity marker in breast cancer patients receiving anthracycline-based chemotherapy: A narrative review. Biomed. Pharmacother. 2018, 107, 989–996. [Google Scholar] [CrossRef]
- Semeraro, G.C.; Cipolla, C.M.; Cardinale, D.M. Role of Cardiac Biomarkers in Cancer Patients. Cancers 2021, 13, 5426. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Sandri, M.T.; Martinoni, A.; Tricca, A.; Civelli, M.; Lamantia, G.; Cinieri, S.; Martinelli, G.; Cipolla, C.M.; Fiorentini, C. Left ventricular dysfunction predicted by early troponin I release after high-dose chemotherapy. J. Am. Coll. Cardiol. 2000, 36, 517–522. [Google Scholar] [CrossRef]
- Michel, L.; Mincu, R.I.; Mahabadi, A.A.; Settelmeier, S.; Al-Rashid, F.; Rassaf, T.; Totzeck, M. Troponins and brain natriuretic peptides for the prediction of cardiotoxicity in cancer patients: A meta-analysis. Eur. J. Heart Fail. 2020, 22, 350–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, Y.; Xu, X.; Cheng, L.; Li, L.; Sun, M.; Chen, H.; Pan, C.; Shu, X. Two-dimensional speckle tracking echocardiography combined with high-sensitive cardiac troponin T in early detection and prediction of cardiotoxicity during epirubicine-based chemotherapy. Eur. J. Heart Fail. 2014, 16, 300–308. [Google Scholar] [CrossRef] [PubMed]
- Michel, L.; Mincu, R.I.; Mrotzek, S.M.; Korste, S.; Neudorf, U.; Rassaf, T.; Totzeck, M. Cardiac biomarkers for the detection of cardiotoxicity in childhood cancer-a meta-analysis. ESC Heart Fail. 2020, 7, 423–433. [Google Scholar] [CrossRef] [Green Version]
- Gulati, G.; Heck, S.L.; Ree, A.H.; Hoffmann, P.; Schulz-Menger, J.; Fagerland, M.W.; Gravdehaug, B.; von Knobelsdorff-Brenkenhoff, F.; Bratland, Å.; Storås, T.H.; et al. Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA): A 2 × 2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol. Eur. Heart J. 2016, 37, 1671–1680. [Google Scholar] [CrossRef] [Green Version]
- Bosch, X.; Rovira, M.; Sitges, M.; Domènech, A.; Ortiz-Pérez, J.T.; de Caralt, T.M.; Morales-Ruiz, M.; Perea, R.J.; Monzó, M.; Esteve, J. Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: The OVERCOME trial (preventiOn of left Ventricular dysfunction with Enalapril and caRvedilol in patients submitted to intensive ChemOtherapy for the treatment of Malignant hEmopathies). J. Am. Coll. Cardiol. 2013, 61, 2355–2362. [Google Scholar]
- Lipshultz, S.E.; Miller, T.L.; Scully, R.E.; Lipsitz, S.R.; Rifai, N.; Silverman, L.B.; Colan, S.D.; Neuberg, D.S.; Dahlberg, S.E.; Henkel, J.M.; et al. Changes in cardiac biomarkers during doxorubicin treatment of pediatric patients with high-risk acute lymphoblastic leukemia: Associations with long-term echocardiographic outcomes. J. Clin. Oncol. 2012, 30, 1042–1049. [Google Scholar] [CrossRef]
- Semeraro, G.C.; Lamantia, G.; Cipolla, C.M.; Cardinale, D. How to identify anthracycline-induced cardiotoxicity early and reduce its clinical impact in everyday practice. Kardiol. Pol. 2021, 79, 114–122. [Google Scholar] [CrossRef]
- Morris, P.G.; Chen, C.; Steingart, R.; Fleisher, M.; Lin, N.; Moy, B.; Come, S.; Sugarman, S.; Abbruzzi, A.; Lehman, R.; et al. Troponin I and C-reactive protein are commonly detected in patients with breast cancer treated with dose-dense chemotherapy incorporating trastuzumab and lapatinib. Clin. Cancer Res. 2011, 17, 3490–3499. [Google Scholar] [CrossRef] [Green Version]
- Delombaerde, D.; Vervloet, D.; Franssen, C.; Croes, L.; Gremonprez, F.; Prenen, H.; Peeters, M.; Vulsteke, C. Clinical implications of isolated troponinemia following immune checkpoint inhibitor therapy. ESMO Open 2021, 6, 100216. [Google Scholar] [CrossRef] [PubMed]
- Waliany, S.; Neal, J.W.; Reddy, S.; Wakelee, H.; Shah, S.A.; Srinivas, S.; Padda, S.K.; Fan, A.C.; Colevas, A.D.; Wu, S.M.; et al. Myocarditis Surveillance with High-Sensitivity Troponin I During Cancer Treatment with Immune Checkpoint Inhibitors. JACC CardioOncol. 2021, 3, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Johnson, D.B.; Balko, J.M.; Compton, M.L.; Chalkias, S.; Gorham, J.; Xu, Y.; Hicks, M.; Puzanov, I.; Alexander, M.R.; Bloomer, T.L.; et al. Fulminant Myocarditis with Combination Immune Checkpoint Blockade. N. Engl. J. Med. 2016, 375, 1749–1755. [Google Scholar] [CrossRef] [PubMed]
- Slawinski, G.; Wrona, A.; Dabrowska-Kugacka, A.; Raczak, G.; Lewicka, E. Immune Checkpoint Inhibitors and Cardiac Toxicity in Patients Treated for Non-Small Lung Cancer: A Review. Int. J. Mol. Sci. 2020, 21, 7195. [Google Scholar] [CrossRef]
- Guha, A.; Armanious, M.; Fradley, M.G. Update on cardio-oncology: Novel cancer therapeutics and associated cardiotoxicities. Trends Cardiovasc. Med. 2019, 29, 29–39. [Google Scholar] [CrossRef]
- Margel, D.; Peer, A.; Ber, Y.; Shavit-Grievink, L.; Tabachnik, T.; Sela, S.; Witberg, G.; Baniel, J.; Kedar, D.; Duivenvoorden, W.C.; et al. Cardiovascular Morbidity in a Randomized Trial Comparing GnRH Agonist and GnRH Antagonist among Patients with Advanced Prostate Cancer and Preexisting Cardiovascular Disease. J. Urol. 2019, 202, 1199–1208. [Google Scholar] [CrossRef]
- Zaher, E.; Fahmy, E.; Mahmoud, K.; Kerm, Y.E.; Auf, M. Assessment of the onset of radiation-induced cardiac damage after radiotherapy of breast cancer patients. Alex. J. Med. 2018, 54, 655–660. [Google Scholar] [CrossRef]
- Skytta, T.; Tuohinen, S.; Boman, E.; Virtanen, V.; Raatikainen, P.; Kellokumpu-Lehtinen, P.L. Troponin T-release associates with cardiac radiation doses during adjuvant left-sided breast cancer radiotherapy. Radiat. Oncol. 2015, 10, 141. [Google Scholar] [CrossRef] [Green Version]
- Skytta, T.; Tuohinen, S.; Luukkaala, T.; Virtanen, V.; Raatikainen, P.; Kellokumpu-Lehtinen, P.L. Adjuvant radiotherapy-induced cardiac changes among patients with early breast cancer: A three-year follow-up study. Acta Oncol. 2019, 58, 1250–1258. [Google Scholar] [CrossRef]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e876–e894. [Google Scholar] [CrossRef]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Gardner, R.S.; Baumbach, A.; Böhm, M.; Burri, H.; Butler, J.; Čelutkienė, J.; Chioncel, O.; et al. 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef] [PubMed]
- Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; et al. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation 2015, 131, 1981–1988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Avila, M.S.; Ayub-Ferreira, S.M.; de Barros Wanderley, M.R.; das Dores Cruz, F.; Gonçalves Brandão, S.M.; Rigaud, V.O.C.; Higuchi-dos-Santos, M.H.; Hajjar, L.A.; Kalil Filho, R.; Hoff, P.M.; et al. Carvedilol for Prevention of Chemotherapy-Related Cardiotoxicity: The CECCY Trial. J. Am. Coll. Cardiol. 2018, 71, 2281–2290. [Google Scholar] [CrossRef] [PubMed]
- Palaskas, N.L.; Segura, A.; Lelenwa, L.; Siddiqui, B.A.; Subudhi, S.K.; Lopez-Mattei, J.; Durand, J.B.; Deswal, A.; Zhao, B.; Maximilian Buja, L.; et al. Immune checkpoint inhibitor myocarditis: Elucidating the spectrum of disease through endomyocardial biopsy. Eur. J. Heart Fail. 2021, 23, 1725–1735. [Google Scholar] [CrossRef] [PubMed]
- Schindler, E.I.; Szymanski, J.J.; Hock, K.G.; Geltman, E.M.; Scott, M.G. Short- and Long-term Biologic Variability of Galectin-3 and Other Cardiac Biomarkers in Patients with Stable Heart Failure and Healthy Adults. Clin. Chem. 2016, 62, 360–366. [Google Scholar] [CrossRef]
Company/Platform/ Assay | Cardiac Troponin Concentration | ||
---|---|---|---|
Cardiac Troponin Concentration | 99th Percentile, ng/L | Kit Name | |
hs-cTnI | |||
Abbott Architect | 1.1–1.6 | 26.2 | Architect Stat High Sensitive Troponin-I |
Beckman Access | 1.0–2.3 | 17.5 | Access hs-TnI |
Siemens Centaur | 1.6 | 47.3 | High-Sensitivity TnI (TNIH) |
Ortho Vitros | 0.39–0.86 | 11.0 | Hs-Troponin I |
Quidel Triage True | 2.33 | 27.9 | Hs-cTnI/cTnI-II |
hs-cTnT | |||
Roche Elecsys | 5.0 | 14 | hs-cTnT |
Clinical Studies | Type of Treatment | Study Population | Age | Gender (M:F) | Pre-Treatment cTn Positivity Percentage (%) | Percentage of cTn Positivity After Treatment (%) | Mean cTn Level (Pre-Treatment) | Mean cTn Level (Post-Treatment) | cTn Threshold | Type of cTn Assay |
---|---|---|---|---|---|---|---|---|---|---|
Auner (2003) [14] | AC | Adults with haematological diseases | 58 | 42:36 | 3/78 (3.8%) | 12/78 (15.4%) | <0.01 ng/mL | 40 (30–120) ng/L | 30 ng/L | cTnT (Roche ElecIII TnT) |
Cardinale (2004) [10] | AC | End-stage cancer, receiving high-dose chemotherapy | 47 ± 12 | 216:487 | 0% | 208/703 (30%) | NA | 160 ± 240 ng/L | 80 ng/L | cTnI (Stratus CS Tn I) |
Cardinale (2010) [15] | Trastuzumab | Breast cancer patients receiving trastuzumab | 50 ± 10 | 251 females | 7/251 (2.8%) | 36/251 (14.3%) | 0.31 ± 0.45 ng/mL | 0.31 ± 0.45 ng/mL | 0.08 ng/mL | cTnI (Stratus CS, TnI) |
Sawaya (2012) [16] | AC | Women with HER2-positive breast cancer receiving AC regimen chemotherapy, followed by paclitaxel and trastuzumab | 50 | 81 females | NA | 26/81 (32.1%) | 1.3 pg/mL (0.7–6 pg/mL) | 32 pg/mL (10–56 pg/mL) | 30 pg/mL | cTnI (Siemens Healthcare Diagnostics, Tn I) |
Draft [17] (2013) | AC | Patients with breast cancer, leukaemia, or lymphoma receiving low-to-moderate doses of anthracycline-based chemotherapy | 50 ± 2 | 42:58 | NA | 26% of the participants met the criteria (0.06 ≤ x < 1.0 mg/mL) | 0.02 ± 0.003 ng /mL | 0.04 ± 0.01 ng/mL | 0.06 ng/mL TnI | TnI (Beckman Coulter) |
Ky (2014) [18] | AC | Breast cancer patients undergoing doxorubicin and trastuzumab therapy | 50 | 78 females | NA | 1.3 (0.7 to 4.0) μg/L | 13.9 (2.6–31.6) μg/L | 6.2 ± 13.7 μg/L | cTnI (Siemens Healthcare Diagnostics) | |
Putt (2015) [19] | AC | Breast cancer patients undergoing doxorubicin and trastuzumab therapy | 49 | 78 females | NA | NA | 1.30 (0.700–3.95) ng/L | 3 months: 9.9 ng/L 6 months: 12.0 ng/L 9 months: 6.8 ng/L 12 months: 4.2 ng/L 15 months: 3.9 ng/L | 3 ng/L | cTnI (Siemens Healthcare Diagnostics) |
Olivieri (2017) [20] | AC | Lymphoma patients receiving AC or liposomal AC chemotherapy | 60 | 56:43 | 4/99 (4%) | 42/99 (42%) | NA | NA | 30 ng/L | NA |
Kitayama (2017) [21] | AC | Breast cancer patients receiving AC or trastuzumab | 55–57 | 40 females | 0% | 4/40 (10%) | No cardiotoxicity: 0.007 ± 0.0017 ng/mL Cardiotoxicity: 0.005 ± 0.0019 ng/mL | 0.044 ± 0.0109 ng/mL | 0.04 ng/mL | Hs-cTnT (EcLusys high-sensitivity Troponin T, Roche Diagnostics) |
Zardavas (2017) [22] | Trastuzumab | HER2-positive breast cancer patients receive neoadjuvant chemotherapy | 50 | 452 females | cTnI: 56/412 (13.6%) cTnT: 101/407 (24.8%) | NA | cTnI: 28.4 ng/L cTnT: 13.3 ng/L | NA | cTnI: 40 ng/L cTnT: 14 ng/L | cTnI, hs-cTnT (Roche Diagnostics) |
Gulati (2017) [23] | AC | Patients with early-stage breast cancer Stratification according to adriamycin dose ≥400 mg/m2 <400 mg/m2 | ≥400 mg/m2: 51 <400 mg/m2: 48.5 | 121 females | cTnI: 37/121 cTnT: 15/121 | cTnI: 117/121 cTnT: 98/121 | NA | NA | cTnI: 1.2 ng/L cTnT: 5 ng/L | cTnI:Architect i2000SR platform (Abbott Diagnostics, Abbott, IL, USA) cTnT:cobas 8000 e602 analyzer (Roche Diagnostics, Indianapolis, IN, USA) |
Shafi (2017) [24] | AC | Patients with early breast cancer | 47 | 82 females | 0% | 18/82 (22%) | NA | NA | NA | Stratus I |
Mahmood (2018) [25] | ICIs | ICI-associated myocarditis cases | 65 | 97:43 | NA | 94% of patients with myocarditis have elevated cTnT | 1.18 (0.19–5.90) ng/mL | 2.68 (0.24–7.63) ng/mL | NA | cTnT (4th generation Troponin T Assay) |
Ponde (2018) [26] | Trastuzumab and/or lapatinib | HER2-positive early-stage breast cancer | 50 (25–75) | 280 females | cTnT: 0.6% | 2 weeks: 0.6% Pre-surgery: 2.9% | NA | NA | cTnT > 0.015 μg/L | cTnT (Cobas Anti-Troponin T-Ak-Biotin/Anti-Troponin T-Ak-Ru) |
Alvi (2019) [27] | CAR-T | 137 patients with combined cancers receiving CAR-T treatment | 62 (54–70) | 93: 44 | NA | 29/137 (21.2%) | 63 ng/L (34–110 ng/L) | 63 ng/L (34–110 ng/L) | 0.03 ng/mL | NA |
Demissei (2020) [28] | Anthracyclines and trastuzumab chemotherapy | 170 breast cancer patients receiving doxorubicin+ trastuzumab | 43 (38–54) | 170 females | NA | 71/170 (41.8%) | 3 ng/L | NA | 14 ng/L | hs-cTnT: Cobas platform (Roche Diagnostics) |
Finke (2021) [29] | Adjuvant or neoadjuvant | 930 patients with combined cancers | 61 (52, 70) | 287:643 | NA | 11.4% | NA | NA | 7 ng/L | Elecsys® Troponin T high sensitive hs-cTnT assay (Roche Diagnostics) |
Clinical Studies | Type of Treatment | Study Population | Age | Gender (M: F) | Pre-Treatment NPs Positivity Percentage (%) | Percentage of NPs Positivity After Treatment (%) | Mean NPs Level (Pre-Treatment) | Mean NPs Level (Post-Treatment) | NPs Threshold | Type of NPs Assay |
---|---|---|---|---|---|---|---|---|---|---|
Lee (2008) [34] | AC | 86 patients with acute leukaemia, malignant lymphoma, or multiple myeloma | 48.5 (20–65) | 49: 37 | NA | NA | 25.0 pg/mL | 305.8 pg/mL | 100 pg/mL | Triage® BNP kit |
Lenihan (2016) [35] | AC | 109 patients receiving anthracyclines | 56 | 52: 57 (48%:52%) | 1/109 (0.9%) | NA | NA | NA | 100 pg/mL | NA |
Palumbo (2016) [36] | AC | Female patient with left-sided breast cancer | 63 | 78 females | NA | NA | 14.66 ± 11.26 pg/mL | 1 month: 23.96 pg/mL | 6.7 ± 18.6 pg/mL | BNP (Shinoria-BNP) |
Gulati 2017 [23] | AC | Patients with early-stage breast cancer Stratification according to adriamycin dose ≥400 mg/m2 <400 mg/m2 | ≥400 mg/m2: 51 <400 mg/m2: 48.5 | 121 females | NA | NA | BNP: 10.4 (5.0, 19.1) NT-proBNP: 48.3 (32.0, 76.5) | BNP: 12.0 (5.0, 23.0) NT-proBNP: 55.2 (29.5, 98.1) | BNP: Architect i2000SR platform (Abbott Diagnostics) NT-proBNP:cobas 8000 e602 analyzer (Roche Diagnostics) | |
Kitayama (2017) [21] | AC | Breast cancer patients receiving AC or trastuzumab | 55–57 | 40 females | NA | no significant difference from baseline | 19 ± 1.9 pg/mL | 20 ± 6 pg/mL | 18 ± 2.2 pg/mL | BNP (BNP-JP Architect) |
Catino (2018) [37] | VEGF | Patients with metastatic renal cell carcinoma receiving sunitinib | 62.5 | 56: 28 | 31.7 pg/mL | NA | 31.7 pg/mL | NA | NA | BNP (Singulex single molecule counting assay) |
Ponde 2018 [26] | Trastuzumab and/or lapatinib | HER2-positive early-stage breast cancer | 50 (25–75) | 280 females | NA | 2 weeks: 5.8% pre-surgery: 12.1% | NA | NA | Anti-NT-proBNP-Ak~Ru(bpy) | |
Cornell (2019) [38] | Proteasome inhibitors | Carfilzomib or bortezomib for patients with multiple myeloma | 66 | 63: 32 | NA | NA | Carfilzomib: 24 pg/mL Bortezomib: 11 pg/mL | Mean rise in BNP of 165 pg/mL, mean rise in NT-proBNP of 5925 pg/mL | BNP: 100 pg/mL NT-proBNP: 125 pg/mL | NA |
Bouwer (2019) [39] | Trastuzumab | Single-centre study, HER2-positive breast cancer patients | 54 | 135 females | 9% | NA | NA | NT-proBNP levels were slightly elevated from baseline levels (+2.9 pmol/L) in all individual patients | 64 pmol/L | NT-proBNP level (Dimension Vista 500, Siemens Healthcare Diagnostics, Deerfield, IL, USA) |
Blancas (2020) [40] | Trastuzumab | HER2-positive breast cancer patients | 50.7 (26–76) | 66 females | NA | NA | NA | 320.6 pg/mL | <125 pg/mL (<50 years), <300 pg/mL (≥50 and 75 years) or <450 pg/mL (≥75 years) | NT-proBNP: ELISA (Roche Diagnostics®) |
Finke (2021) [29] | Adjuvant or neoadjuvant | 930 patients with combined cancers | 61 (52, 70) | 287:643 | NA | 17.2% | 141 (70, 293.5) | NA | >300 ng/L | Stratus® CS Acute Care™ NT-proBNP assay (Siemens AG, Berlin and Munich, Germany) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, X.; Sun, Y.; Zhang, Y.; Fang, F.; Liu, J.; Xia, Y.; Liu, Y. Cardiac Biomarkers for the Detection and Management of Cancer Therapy-Related Cardiovascular Toxicity. J. Cardiovasc. Dev. Dis. 2022, 9, 372. https://doi.org/10.3390/jcdd9110372
Zhang X, Sun Y, Zhang Y, Fang F, Liu J, Xia Y, Liu Y. Cardiac Biomarkers for the Detection and Management of Cancer Therapy-Related Cardiovascular Toxicity. Journal of Cardiovascular Development and Disease. 2022; 9(11):372. https://doi.org/10.3390/jcdd9110372
Chicago/Turabian StyleZhang, Xinxin, Yuxi Sun, Yanli Zhang, Fengqi Fang, Jiwei Liu, Yunlong Xia, and Ying Liu. 2022. "Cardiac Biomarkers for the Detection and Management of Cancer Therapy-Related Cardiovascular Toxicity" Journal of Cardiovascular Development and Disease 9, no. 11: 372. https://doi.org/10.3390/jcdd9110372
APA StyleZhang, X., Sun, Y., Zhang, Y., Fang, F., Liu, J., Xia, Y., & Liu, Y. (2022). Cardiac Biomarkers for the Detection and Management of Cancer Therapy-Related Cardiovascular Toxicity. Journal of Cardiovascular Development and Disease, 9(11), 372. https://doi.org/10.3390/jcdd9110372