Alternative Approach for Cerebral Protection during Complex Aortic Arch and Redo Surgery
Abstract
:1. Introduction
2. Patients and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- De Bakey, M.E.; Crawford, E.S.; Cooley, D.A.; Morris, G.C., Jr. Successful resection of fusiform aneurysm of aortic arch with replacement by homograft. Surg. Gynecol. Obstet. 1957, 105, 657–664. [Google Scholar] [PubMed]
- De Bakey, M.E.; Beall, A.C., Jr.; Cooley, D.A.; Crawford, E.S.; Morris, G.C., Jr.; Garrett, H.E. Resection and graft replacement of aneurysms involving the transverse arch of the aorta. Surg. Clin. N. Am. 1966, 46, 1057–1071. [Google Scholar] [CrossRef]
- Bachet, J. Open repair techniques in the aortic arch are still superior. Ann. Cardiothorac. Surg. 2018, 7, 328–344. [Google Scholar] [CrossRef] [Green Version]
- Chakos, A.; Jbara, D.; Yan, T.D.; Tian, D.H. Long-term survival and related outcomes for hybrid versus traditional arch repair—A meta-analysis. Ann. Cardiothorac. Surg. 2018, 7, 319–327. [Google Scholar] [CrossRef] [Green Version]
- Sabik, J.F.; Lytle, B.W.; McCarthy, P.M.; Cosgrove, D.M. Axillary artery: An alternative site of arterial cannulation for patients with extensive aortic and peripheral vascular disease. J. Thorac. Cardiovasc. Surg. 1995, 109, 885–890; discussion 890–891. [Google Scholar] [CrossRef] [Green Version]
- Schachner, T.; Nagiller, J.; Zimmer, A.; Laufer, G.; Bonatti, J. Technical problems and complications of axillary artery cannulation. Eur. J. Cardiothorac. Surg. 2005, 27, 634–637. [Google Scholar] [CrossRef]
- Di Eusanio, M.; Ciano, M.; Labriola, G.; Lionetti, G.; Di Eusanio, G. Cannulation of the innominate artery during surgery of the thoracic aorta: Our experience in 55 patients. Eur. J. Cardiothorac. Surg. 2007, 32, 270–273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Urbanski, P.P.; Lenos, A.; Lindemann, Y.; Weigang, E.; Zacher, M.; Diegeler, A. Carotid artery cannulation in aortic surgery. J. Thorac. Cardiovasc. Surg. 2006, 132, 1398–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borst, H.G.; Walterbusch, G.; Schaps, D. Extensive aortic replacement using “elephant trunk” prosthesis. Thorac. Cardiovasc. Surg. 1983, 31, 37–40. [Google Scholar] [CrossRef]
- Schepens, M.A.; Dossche, K.M.; Morshuis, W.J.; van den Barselaar, P.J.; Heijmen, R.H.; Vermeulen, F.E. The elephant trunk technique: Operative results in 100 consecutive patients. Eur. J. Cardiothorac. Surg. 2002, 21, 276–281. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.; Martens, A.; Krüger, H.; Maeding, I.; Ius, F.; Fleissner, F.; Haverich, A. Total aortic arch replacement with the elephant trunk technique: Single-centre 30-year results. Eur. J. Cardiothorac. Surg. 2014, 45, 289–296. [Google Scholar] [CrossRef] [Green Version]
- Karck, M.; Chavan, A.; Hagl, C.; Friedrich, H.; Galanski, M.; Haverich, A. The frozen elephant trunk technique: A new treatment for thoracic aortic aneurysms. J. Thorac. Cardiovasc. Surg. 2003, 125, 1550–1553. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, M.; Bachet, J.; Bavaria, J.; Carrel, T.P.; De Paulis, R.; di Bartolomeo, R.; Etz, C.D.; Grabenwöger, M.; Grimm, M.; Haverich, A.; et al. Current status and recommendations for use of the frozen elephant trunk technique: A position paper by the Vascular Domain of EACTS. Eur. J. Cardiothorac. Surg. 2015, 47, 759–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gega, A.; Rizzo, J.A.; Johnson, M.H.; Tranquilli, M.; Farkas, E.A.; Elefteriades, J.A. Straight Deep Hypothermic Arrest: Experience in 394 Patients Supports Its Effectiveness as a Sole Means of Brain Preservation. Ann. Thorac. Surg. 2007, 84, 759–767. [Google Scholar] [CrossRef]
- Ehrlich, M.P.; McCullough, J.N.; Zhang, N.; Weisz, D.J.; Juvonen, T.; Bodian, C.A.; Griepp, R.B. Effect of Hypothermia on Cerebral Blood Flow and Metabolism in the Pig. Ann. Thorac. Surg. 2002, 73, 191–197. [Google Scholar] [CrossRef]
- Ueda, Y.; Miki, S.; Kusuhara, K.; Okita, Y.; Tahata, T.; Yamanaka, K. Deep Hypothermic Systemic Circulatory Arrest and Continuous Retrograde Cerebral Perfusion for Surgery of Aortic Arch Aneurysm. Eur. J. Cardiothorac. Surg. 1992, 6, 36–41; discussion 42. [Google Scholar] [CrossRef]
- Boeckxstaens, C.J.; Flameng, W.J. Retrograde Cerebral Perfusion Does Not Perfuse the Brain in Nonhuman Primates. Ann. Thorac. Surg. 1995, 60, 319–328. [Google Scholar] [CrossRef] [Green Version]
- de Brux, J.L.; Subayi, J.B.; Pegis, J.D.; Pillet, J. Retrograde Cerebral Perfusion: Anatomic Study of the Distribution of Blood to the Brain. Ann. Thorac. Surg. 1995, 60, 1294–1298. [Google Scholar] [CrossRef]
- Reich, D.L.; Uysal, S.; Ergin, M.A.; Griepp, R.B. Retrograde Cerebral Perfusion as a Method of Neuroprotection during Thoracic Aortic Surgery. Ann Thorac. Surg. 2001, 72, 1774–1782. [Google Scholar] [CrossRef]
- Ehrlich, M.P.; Hagl, C.; McCullough, J.N.; Zhang, N.; Shiang, H.; Bodian, C.; Griepp, R.B. Retrograde cerebral perfusion provides negligible flow through brain capillaries in the pig. J. Thorac. Cardiovasc. Surg. 2001, 122, 331–338. [Google Scholar] [CrossRef] [Green Version]
- Künzli, A.; Zingg, P.O.; Zünd, G.; Leskosek, B.; von Segesser, L.K. Does retrograde cerebral perfusion via superior vena cava cannulation protect the brain? Eur. J. Cardiothorac. Surg. 2006, 30, 906–909. [Google Scholar] [CrossRef] [Green Version]
- Estrera, A.L.; Miller, I.I.I.C.C.; Lee, T.Y.; Shah, P.; Safi, H.J. Ascending and transverse aortic arch repair: The impact of retrograde cerebral perfusion. Circulation 2008, 118, S160–S166. [Google Scholar] [CrossRef] [Green Version]
- Lau, C.; Gaudino, M.; Iannacone, E.M.; Gambardella, I.; Munjal, M.; Ohmes, L.B.; Degner, B.C.; Girardi, L.N. Retrograde cerebral Perfusion is Effective for Prolonged Circulatory Arrest in Arch Aneurysm Repair. Ann. Thorac. Surg. 2018, 105, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Kazui, T.; Inoue, N.; Yamada, O.; Komatsu, S. Selective Cerebral Perfusion During Operation for Aneurysms of the Aortic Arch: A Reassessment. Ann. Thorac. Surg. 1992, 53, 109–114. [Google Scholar] [CrossRef]
- Kazui, T.; Yamashita, K.; Washiyama, N.; Terada, H.; Bashar, A.H.M.; Suzuki, T.; Ohkura, K. Usefulness of Antegrade Selective Cerebral Perfusion during Aortic Arch Operations. Ann. Thorac. Surg. 2002, 74, S1806–S1809. [Google Scholar] [CrossRef]
- Kazui, T. Total arch replacement with separated graft technique and selective antegrade cerebral perfusion. Ann. Cardiothorac. Surg. 2013, 2, 353–357. [Google Scholar] [PubMed]
- Bachet, J.; Guilmet, D.; Goudot, B.; Termignon, J.L.; Teodori, G.; Dreyfus, G.; Brodaty, D.; Dubois, C.; Delentdecker, P.; Cabrol, C. Cold cerebroplegia. A new technique of cerebral protection during operations on the transverse aortic arch. J. Thorac Cardiovasc. Surg. 1991, 102, 85–94. [Google Scholar] [CrossRef]
- Bachet, J.; Guilmet, D.; Goudot, B.; Dreyfus, G.D.; Delentdecker, P.; Brodaty, D.; Dubois, C. Antegrade Cerebral Perfusion with Cold Blood: A 13-Year Experience. Ann. Thorac. Surg. 1999, 67, 1874–1878. [Google Scholar] [CrossRef]
- Pacini, D.; Leone, A.; Di Marco, L.; Marsilli, D.; Sobaih, F.; Turci, S.; Masieri, V.; Di Bartolomeo, R. Antegrade selective cerebral perfusion in thoracic aorta surgery: Safety of moderate hypothermia. Eur. J. Cardiothorac. Surg. 2007, 31, 618–622. [Google Scholar] [CrossRef]
- Salazar, J.; Coleman, R.; Griffith, S.; McNeil, J.; Young, H.; Calhoon, J.; Serrano, F.; DiGeronimo, R. Brain preservation with selective cerebral perfusion for operations requiring circulatory arrest: Protection at 25 °C is similar to 18 °C with shorter operating times. Eur. J. Cardiothorac. Surg. 2009, 36, 524–531. [Google Scholar] [CrossRef] [Green Version]
- Küçüker, S.A.; Özatik, M.A.; Saritaş, A.; Taşdemir, O. Arch repair with unilateral antegrade cerebral perfusion. Eur. J. Cardiothorac. Surg. 2005, 27, 638–643. [Google Scholar] [CrossRef] [Green Version]
- Malvindi, P.G.; Scrascia, G.; Vitale, N. Is unilateral antegrade cerebral perfusion equivalent to bilateral cerebral perfusion for patients undergoing aortic arch surgery? Interact. Cardiovasc Thorac. Surg. 2008, 7, 891–897. [Google Scholar] [CrossRef] [Green Version]
- Krähenbühl, E.S.; Reineke, D.; Aymard, T.; Clément, M.; Czerny, M.; Stalder, M.; Schmidli, J.; Carrel, T. Antegrade cerebral protection in thoracic aortic surgery: Lessons from the past decade. Eur. J. Cardiothorac. Surg. 2010, 38, 46–51. [Google Scholar] [CrossRef]
- Urbanski, P.P.; Lenos, A.; Blume, J.C.; Ziegler, V.; Griewing, B.; Schmitt, R.; Diegeler, A.; Dinkel, M. Does anatomical completeness of the circle of Willis correlate with sufficient cross-perfusion during unilateral cerebral perfusion? Eur. J. Cardiothorac. Surg. 2008, 33, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Matalanis, G.; Koirala, R.S.; Shi, W.Y.; Hayward, P.A.; McCall, P.R. Branch-first aortic arch replacement with no circulatory arrest or deep hypothermia. J. Thorac. Cardiovasc. Surg. 2011, 142, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Matalanis, G.; Ip, S. Total aortic repair for acute type a aortic dissection: A new paradigm. J. Vis. Surg. 2018, 4, 79. [Google Scholar] [CrossRef] [Green Version]
- Safi, H.J.; Miller, I.I.I.C.C.; Estrera, A.L.; Villa, M.A.; Goodrick, J.S.; Porat, E.; Azizzadeh, A. Optimization of Aortic Arch Replacement: Two-Stage Approach. Ann. Thorac. Surg. 2007, 83, S815–S818. [Google Scholar] [CrossRef]
- Leone, A.; Di Marco, L.; Murana, G.; Coppola, G.; Fiorentino, M.F.; Amodio, C.; Di Bartolomeo, R.; Pacini, D. The Decision-Making Process in Acute Type a Aortic Dissection: When to Replace the Aortic Arch. Semin. Thorac. Cardiovasc. Surg. 2019, 31, 691–696. [Google Scholar] [CrossRef] [PubMed]
- Czerny, M.; Schmidli, J.; Adler, S.; Van Den Berg, J.C.; Bertoglio, L.; Carrel, T.; Chiesa, R.; Clough, R.E.; Eberle, B.; Etz, C.; et al. Editor’s Choice—Current Options and Recommendations for the Treatment of Thoracic Aortic Pathologies Involving the Aortic Arch: An Expert Consensus Document of the European Association for Cardio-Thoracic Surgery (EACTS) & the European Society for Vascular Surgery (ESVS). Eur. J. Vasc. Endovasc. Surg. 2019, 57, 165–198. [Google Scholar] [PubMed] [Green Version]
- Capoccia, M.; Mireskandari, M.; Cheshire, N.J.; Rosendahl, U. Delayed Repair of Aortic Dissection in Sickle Cell Anaemia as a Combined Cardiac and Vascular Surgical Approach. J. Saudi Heart Assoc. 2020, 32, 208–212. [Google Scholar] [CrossRef]
- Capoccia, M.; Pal, S.; Murphy, M.; Mireskandari, M.; Hoschtitzky, A.; Nienaber, C.A.; Cheshire, N.J.; Rosendahl, U.P. Cardiac and Vascular Surgeons for the Treatment of Aortic Disease: A Successful Partnership for Complex Decision Making. J. Investig. Med. High Impact Case Rep. 2021, 9. [Google Scholar] [CrossRef]
- Mitchell, R.S.; Ishimaru, S.; Ehrlich, M.P.; Iwase, T.; Lauterjung, L.; Shimono, T.; Fattori, R.; Yutani, C. First International Summit on Thoracic Aortic Endografting: Roundtable on Thoracic Aortic Dissection as an Indication for Endografting. J. Endovasc. Ther. 2002, 9. [Google Scholar] [CrossRef]
Age | Diagnosis | Comorbidities | Preoperative Data | Operation | Perfusion Data | Outcome |
---|---|---|---|---|---|---|
42 years | Expanding pseudo-aneurysm of the ascending aorta with severe sternal adhesions and fistula formation. Previous AVR with aortic homograft for bicuspid aortic valve disease. Redo AVR with aortic root remodelling for homograft degeneration. | Previous CVA | LVEF 57% | Replacement of the ascending aorta with Dacron graft and partial resection of the sternum. | CPB 267 min X-Clamp 125 min T 25 °C | Alive at follow up. |
60 years | Acute Type B aortic dissection with retrograde progression and involvement of the superior mesenteric artery. | HTN Chronic renal impairment on dialysis Sickle Cell anaemia | LVEF 45%; LVIDd 5.5 cm; PASP 34 mm Hg; TAPSE 2.5 cm; E/A ratio 2.3 | Aortic arch replacement with frozen elephant trunk using Thoraflex device. | CPB 238 min X-Clamp 122 min HCA 73 min T 24 °C | Alive at follow up. TEVAR after 12 months for expanding false lumen in the descending thoracic aorta. |
12 years | Type B aortic dissection with expanding false lumen in previous AVR with bioprosthesis and ascending aorta and arch replacement with Lupiae Dacron graft (11 years old). Previous valve sparing aortic root replacement in bicuspid aortic valve disease complicated by myocardial ischaemia requiring LAD patching (9 years old). Previous PDA device closure (1 year old). | Loeys-Dietz syndrome Renal impairment | LVEF 51%; LVIDd 4.1 cm | Replacement of distal aortic arch and proximal descending thoracic aorta with 22 mm Dacron graft. Readmission after four months for replacement of distal thoracic and abdominal aorta due to laminar thrombus in the abdominal aorta. | CPB 166 min T 32 °C | Deceased after 53 days postoperatively due to cardiac arrest following abdominal aortic rupture. |
20 years | Aneurysm of the proximal descending thoracic aorta in previous ascending aorta and arch replacement with frozen elephant trunk. | Marfan’s syndrome HTN | LVEF 49%; LVIDd 6.1 cm; PASP 20 mmHg; TAPSE 1.35 cm; E/A ratio 1.2 | Replacement of descending thoracic aorta with 34 mm Dacron graft; debranching of left subclavian artery with by-pass between left subclavian artery and left common carotid artery using 8 mm Dacron graft. | CPB 76 min X-Clamp 66 min T 34 °C | Alive at follow up. |
43 years | Severe bicuspid aortic valve stenosis and narrowing of Dacron graft between ascending and descending thoracic aorta in previous redo CoA repair (aged 18). Previous end-to-end repair of CoA (aged 3) followed by resection of sub-aortic stenosis (aged 7). | Previous stroke; epilepsy | LVEF 69%; LVIDd 4.2 cm; PASP 29 mmHg; TAPSE 2.3 cm | Aortic valve replacement with 23 mm mechanical prosthesis and additional interposition Dacron graft between ascending and descending thoracic aorta. | CPB 167 min X-Clamp 90 min HCA 13 min T 16 °C | Alive at follow up. |
85 years | Aneurysm of the ascending aorta and distal aortic arch (8 cm) in previous acute type B aortic dissection treated conservatively. | HTN | LVEF 65%; LVIDd 5.4 cm; PASP 25 mmHg; TAPSE 2.1 cm; E/A ratio 0.71 | Replacement of the ascending aorta and debranching of the aortic arch to create a landing zone for a subsequent TEVAR procedure. | CPB 104 min X-Clamp 44 min T 34 °C | Alive at follow up. TEVAR after 2 months. |
44 years | Severe aneurysmatic dilatation of the distal aortic arch and proximal descending thoracic aorta with compression of the left branch of the pulmonary artery. | HTN; DM Behcet’s disease | LVEF 62%; LVIDd 5.3 cm; PASP 36 mmHg; TAPSE 3 cm; E/A ratio 1.2 | Replacement of the aortic arch with frozen elephant trunk using Thoraflex device. | CPB 265 min X-Clamp 70 min HCA 48 min T 18 °C | Alive at follow up. |
51 years | Infected Dacron graft in the ascending aortic position with contained rupture and pseudo-aneurysm formation adherent to the sternum. Previous David’s procedure for ascending aortic aneurysm. Progression of the disease to the aortic arch requiring frozen elephant trunk with Thoraflex device 3 years later followed by TEVAR after 6 months. | HTN Renal impairment Giant Cell Arteritis | LVEF 55%; LVIDd 4.3 cm; TAPSE 1.3 cm; E/A ratio 1.2 | Replacement of the infected Dacron graft in the ascending aortic position with an aortic homograft. | CPB 263 min X-Clamp 70 min HCA 49 min T 17 °C | Deceased after 26 days postoperatively due to severe haemorrhagic stroke. |
75 years | Severe dilatation of the aortic arch (10 cm), ascending aorta (9 cm) and proximal descending thoracic aorta. | HTN; critical LAD disease | LVEF 45%; LVIDd 6.7 cm PASP 35 mmHg; TAPSE 2.2 cm | Replacement of ascending aorta and aortic arch with conventional elephant trunk using a 34 mm Siena Dacron graft and vein graft to LAD. | CPB 275 min X-Clamp 114 min T 17 °C | Deceased after 2 days postoperatively due to severe inflammatory reaction. |
39 years | Severe aortic regurgitation with significant dilation of the aortic root (5.2 cm) and arch involvement. Repair of acute type A aortic dissection with interposition Dacron graft to the ascending aorta and resuspension of the aortic valve cusps 6 years earlier. | HTN | LVEF 66%; LVIDd 5.7 cm; PASP 10 mmHg; TAPSE 1.9 cm; E/A ratio 1 | Modified Bentall procedure with composite mechanical graft and frozen elephant trunk with Thoraflex device. | CPB 276 min X-Clamp 127 min HCA 41 min T 18 °C | Alive at follow up |
51 years | Severe aneurysmatic dilatation of the distal aortic arch. | LVEF 67%; LVIDd 5.4 cm; PASP 32 mmHg; TAPSE 3.3 cm; E/A ratio 1.4 | Replacement of ascending aorta, aortic arch and proximal descending thoracic aorta with Dacron graft using conventional elephant trunk. | CPB 437 min X-Clamp 21 min T 28 °C | Alive at follow up. | |
56 years | Expanding diameter and false lumen in previous acute type B aortic dissection treated conservatively. | HTN | LVEF 74%; LVIDd 5.6 cm; PASP 16 mmHg; TAPSE 2.6 cm; E/A ratio 1.1 | Aortic arch replacement with frozen elephant trunk using Evita device. | CPB 228 min X-Clamp 55 min HCA 34 min T 24 °C | Alive at follow up. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capoccia, M.; Nienaber, C.A.; Mireskandari, M.; Sabetai, M.; Young, C.; Cheshire, N.J.; Rosendahl, U.P. Alternative Approach for Cerebral Protection during Complex Aortic Arch and Redo Surgery. J. Cardiovasc. Dev. Dis. 2021, 8, 86. https://doi.org/10.3390/jcdd8080086
Capoccia M, Nienaber CA, Mireskandari M, Sabetai M, Young C, Cheshire NJ, Rosendahl UP. Alternative Approach for Cerebral Protection during Complex Aortic Arch and Redo Surgery. Journal of Cardiovascular Development and Disease. 2021; 8(8):86. https://doi.org/10.3390/jcdd8080086
Chicago/Turabian StyleCapoccia, Massimo, Christoph A. Nienaber, Maziar Mireskandari, Michael Sabetai, Christopher Young, Nicholas J. Cheshire, and Ulrich P. Rosendahl. 2021. "Alternative Approach for Cerebral Protection during Complex Aortic Arch and Redo Surgery" Journal of Cardiovascular Development and Disease 8, no. 8: 86. https://doi.org/10.3390/jcdd8080086
APA StyleCapoccia, M., Nienaber, C. A., Mireskandari, M., Sabetai, M., Young, C., Cheshire, N. J., & Rosendahl, U. P. (2021). Alternative Approach for Cerebral Protection during Complex Aortic Arch and Redo Surgery. Journal of Cardiovascular Development and Disease, 8(8), 86. https://doi.org/10.3390/jcdd8080086