A Heterozygous Mutation in Cardiac Troponin T Promotes Ca2+ Dysregulation and Adult Cardiomyopathy in Zebrafish
Abstract
:1. Introduction
2. Materials and Methods
2.1. Zebrafish Husbandry
2.2. Generation of Mutant Lines
2.3. Adult Zebrafish Heart Isolations and Preparation
2.4. Adult Zebrafish Heart Staining
2.5. High-Speed Brightfield Imaging
2.6. High-Speed Fluorescence Imaging
2.7. Statistical Analysis
3. Results
3.1. Targeting Exon 9 of tnnt2a via CRISPR/Cas9 Promotes Changes in Heart Morphology of Adult Zebrafish
3.2. Heart Morphological Changes in tnnt2a+/RK94del Can Be Observed at Early Larval Stages of Development
3.3. Heart of Adult tnnt2a+/RK94del Displays Increased Myocardial Stress
3.4. Detection of Increased Collagen and Fibrin Deposition in Atrium of Adult tnnt2a+/RK94del Hearts
3.5. Embryonic tnnt2a+/RK94del fish Show Decreased Heart Rate Accompanied by Changes in Contractile and Hemodynamic Parameters
3.6. The tnnt2a+/RK94del Mutation Causes Impaired Calcium Dynamics in Embryos
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Towbin, J.A. Inherited Cardiomyopathies. Circ. J. 2014, 78, 2347–2356. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, R.S.; Watkins, H.; Ashrafian, H.; Redwood, C. Mechanisms of Disease Inherited Cardiomyopathies. N. Engl. J. Med. 2011, 364, 1643–1656. [Google Scholar]
- Braunwald, E. Cardiomyopathies: An overview. Circ. Res. 2017, 121, 711–721. [Google Scholar] [CrossRef]
- McCartan, C.; Mason, R.; Jayasinghe, S.R.; Griffiths, L.R. Cardiomyopathy classification: Ongoing debate in the genomics era. Biochem. Res. Int. 2012, 2012, 796926. [Google Scholar] [CrossRef] [Green Version]
- Thiene, G.; Corrado, D.; Basso, C. Revisiting definition and classification of cardiomyopathies in the era of molecular medicine. Eur. Heart J. 2008, 29, 144–146. [Google Scholar] [CrossRef] [Green Version]
- Lopes, L.R.; Elliott, P.M. A straightforward guide to the sarcomeric basis of cardiomyopathies. Heart 2014, 100, 1916–1923. [Google Scholar] [CrossRef] [PubMed]
- Eisner, D.A.; Caldwell, J.L.; Kistamás, K.; Trafford, A.W. Calcium and Excitation-Contraction Coupling in the Heart. Circ. Res. 2017, 121, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Redwood, C.S.; Moolman-Smook, J.C.; Watkins, H. Properties of mutant contractile proteins that cause hypertrophic cardiomyopathy. Cardiovasc. Res. 1999, 44, 20–36. [Google Scholar] [CrossRef] [Green Version]
- Gangadharan, B.; Sunitha, M.S.; Mukherjee, S.; Chowdhury, R.R.; Hague, F.; Seker, N.; Sowdhamini, R.; Spudich, J.A.; Mercer, J.A. Molecular mechanisms and structural features of cardiomyopathy-causing troponin T mutants in the tropomyosin overlap region. Proc. Natl. Acad. Sci. USA 2017, 114, 11115–11120. [Google Scholar] [CrossRef] [Green Version]
- Pinto, J.R.; Parvatiyar, M.S.; Jones, M.A.; Liang, J.; Potter, J.D. A troponin T mutation that causes infantile restrictive cardiomyopathy increases Ca2+ sensitivity of force development and impairs the inhibitory properties of troponin. J. Biol. Chem. 2008, 283, 2156–2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ezekian, J.E.; Clippinger, S.R.; Garcia, J.M.; Yang, Q.; Denfield, S.; Jeewa, A.; Dreyer, W.J.; Zou, W.; Fan, Y.; Allen, H.D.; et al. Variant R94C in TNNT2-Encoded Troponin T Predisposes to Pediatric Restrictive Cardiomyopathy and Sudden Death Through Impaired Thin Filament Relaxation Resulting in Myocardial Diastolic Dysfunction. J. Am. Heart Assoc. 2020, 9, e015111. [Google Scholar] [CrossRef]
- Menon, S.C.; Michels, V.V.; Pellikka, P.A.; Ballew, J.D.; Karst, M.L.; Herron, K.J.; Nelson, S.M.; Rodeheffer, R.J.; Olsen, T.M. Cardiac troponin T mutation in familial cardiomyopathy with variable remodeling and restrictive physiology. Clin. Genet. 2008, 74, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Czernuszewicz, G.Z.; Gonzalez, O.; Tapscott, T.; Karibe, A.; Durand, J.-B.; Brugad, R.; Hill, R.; Gregoritch, J.M.; Anderson, J.L.; et al. Novel Cardiac Troponin T Mutation as a Cause of Familial Dilated Cardiomyopathy. Circulation 2001, 104, 2188–2193. [Google Scholar] [CrossRef] [Green Version]
- Thierfelder, L.; Watkins, H.; MacRae, C.; Lamas, R.; McKenna, W.; Vosberg, H.-P.; Seidman, J.G.; Seidman, C.E. Tropomyosin and Cardiac Troponin T Mutations Cause Familial Hypertrophic Cardiomyopathy: A Disease of the Sarcomere. Cell 1994, 77, 701–712. [Google Scholar] [CrossRef]
- Moolman, J.C.; Corfield, V.A.; Posen, B.; Ngumbela, K.; Seidman, C.; Brink, P.; Watkins, H. Sudden Death due to Troponin T Mutations. J. Am. Coll. Cardiol. 1997, 29, 549–555. [Google Scholar] [CrossRef]
- Lieschke, G.J.; Currie, P.D. Animal models of human disease: Zebrafish swim into view. Nat. Rev. Genet. 2007, 8, 353–367. [Google Scholar] [CrossRef] [PubMed]
- Bakkers, J. Zebrafish as a model to study cardiac development and human cardiac disease. Cardiovasc. Res. 2011, 91, 279–288. [Google Scholar] [CrossRef] [Green Version]
- Bournele, D.; Beis, D. Zebrafish models of cardiovascular disease. Heart Fail. Rev. 2016, 21, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Duncker, D.J.; Bakkers, J.; Brundel, B.J.; Robbins, J.; Tardiff, J.C.; Carrier, L. Animal and in silico models for the study of sarcomeric cardiomyopathies. Cardiovasc. Res. 2015, 105, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Sehnert, A.J.; Huq, A.; Weinstein, B.M.; Walker, C.; Fishman, M.; Stainier, D.Y.R. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat. Genet. 2002, 31, 106–110. [Google Scholar] [CrossRef]
- Aleström, P.; D’Angeo, L.; Midtlyng, P.J.; Schoderet, D.F.; Shulte-Merker, S.; Sohm, F.; Warner, S. Zebrafish: Housing and husbandry recommendations. Lab. Anim. 2020, 54, 213–224. [Google Scholar] [CrossRef] [Green Version]
- Labun, K.; Guo, X.; Chaves, A.; Church, G.; Gagnon, J.A.; Valen, E. Accurate analysis of genuine CRISPR editing events with ampliCan. Genome Res. 2019, 29, 843–847. [Google Scholar] [CrossRef] [Green Version]
- Moorman, A.F.M.; Houweling, A.C.; De Boer, P.A.J.; Christoffels, V.M. Sensitive Nonradioactive Detection of mRNA in Tissue Sections: Novel Application of the Whole-mount In Situ Hybridization Protocol. J. Histochem. Cytochem. 2001, 49, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, C.C.; Kruse, F.; Vasudevarao, M.D.; Junker, J.P.; Zebrowski, D.C.; Fischer, K.; Noel, E.S.; Grun, D.; Berezikov, E.; Engel, F.B.; et al. Spatially Resolved Genome-wide Transcriptional Profiling Identifies BMP Signaling as Essential Regulator of Zebrafish Cardiomyocyte Regeneration. Dev. Cell 2016, 36, 36–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Opbergen, C.J.M.; Kooman, C.D.; Kok, B.J.; Knopfel, T.; Renninger, S.L.; Orger, M.B.; Vos, M.A.; van Veen, T.A.B.; Bakkers, J.; de Boer, T.P. Optogenetic sensors in the zebrafish heart: A novel in vivo electrophysiological tool to study cardiac arrhythmogenesis. Theranostics 2018, 8, 4750–4764. [Google Scholar] [CrossRef] [PubMed]
- Sergeeva, I.A.; Hooijkaas, I.B.; van der Made, I.; Jong, W.M.C.; Creemers, E.E.; Christoffels, V.M. A transgenic mouse model for the simultaneous monitoring of ANF and BNP gene activity during heart development and disease. Cardiovasc. Res. 2014, 101, 78–86. [Google Scholar] [CrossRef] [Green Version]
- Sabatelli, P.; Gualandi, F.; Gara, S.K.; Grumati, P.; Zamparelli, A.; Martoni, E.; Pellegrini, C.; Merlini, L.; Ferlini, A.; Bonaldo, P.; et al. Expression of collagen VI α5 and α6 chains in human muscle and in Duchenne muscular dystrophy-related muscle fibrosis. Matrix Biol. 2012, 31, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Tsang, T.S.M.; Barnes, M.E.; Gersh, B.J.; Bailey, K.R.; Seward, J.B. Left Atrial Volume as a Morphophysiologic Expression of Left Ventricular Diastolic Dysfunction and Relation to Cardiovascular Risk Burden. Am. J. Cardiol. 2002, 90, 1284–1289. [Google Scholar] [CrossRef]
- Tanokura, M.; Tawada, Y.; Ono, A.; Ohtsuki, L. Chymotryptic Subfragments of Troponin T from Rabbit Skeletal Muscle. Interaction with Tropomyosin, Troponin I and Troponin C. J. Biochem. 1983, 93, 331–337. [Google Scholar] [CrossRef]
- Marston, S.; Zamora, J.E. Troponin structure and function: A view of recent progress. J. Muscle Res. Cell Motil. 2020, 41, 71–89. [Google Scholar] [CrossRef] [Green Version]
- Palm, T.; Graboski, S.; Hitchcock-DeGregori, S.E.; Greenfield, N.J. Disease-causing mutations in cardiac troponin T: Identification of a critical tropomyosin-binding region. Biophys. J. 2001, 81, 2827–2837. [Google Scholar] [CrossRef] [Green Version]
- Harada, K.; Potter, J.D. Familial Hypertrophic Cardiomyopathy Mutations from Different Functional Regions of Troponin T Result in Different Effects on the pH and Ca2+ Sensitivity of Cardiac Muscle Contraction. J. Biol. Chem. 2004, 279, 14488–14495. [Google Scholar] [CrossRef] [Green Version]
- Manning, E.P.; Tardiff, J.C.; Schwartz, S.D. Molecular effects of familial hypertrophic cardiomyopathy-related mutations in the TNT1 domain of cTnT. J. Mol. Biol. 2012, 421, 54–66. [Google Scholar] [CrossRef] [Green Version]
- Sirenko, S.G.; Potter, J.D.; Knollmann, B.C. Differential effect of troponin T mutations on the inotropic responsiveness of mouse hearts—Role of myofilament Ca2+ sensitivity increase. J. Physiol. 2006, 575, 201–213. [Google Scholar] [CrossRef]
- Knollmann, B.C.; Krchhof, P.; Sirenko, S.G.; Degen, H.; Greene, A.E.; Scober, T.; Mackow, J.C.; Fabritz, L.; Potter, J.D.; Morad, M. Familial hypertrophic cardiomyopathy-linked mutant troponin T causes stress-induced ventricular tachycardia and Ca2+-dependent action potential remodeling. Circ. Res. 2003, 92, 428–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chandra, M.; Rundel, V.L.M.; Tardiff, J.C.; Leinwand, L.A.; de Trombe, P.P.; Solaro, R.J. Ca(2+) activation of myofilaments from transgenic mouse hearts expressing R92Q mutant cardiac troponin T. Am. J. Physiol. Heart Circ. Physiol. 2001, 280, H705–H713. [Google Scholar] [CrossRef]
- Morimoto, S.; Yanaga, F.; Minakami, R.; Ohtsuki, I. Ca2+-sensitizing effects of the mutations at Ile-79 and Arg-92 of troponin T in hypertrophic cardiomyopathy. Am. J. Physiol. 1998, 275, C200–C207. [Google Scholar] [CrossRef]
- Szczesna, D.; Zhang, R.; Zhao, J.; Jones, M.; Guzman, G.; Potter, J.D. Altered Regulation of Cardiac Muscle Contraction by Troponin T Mutations That Cause Familial Hypertrophic Cardiomyopathy. J. Biol. Chem. 2000, 275, 624–630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yanaga, F.; Morimoto, S.; Ohtsuki, I. Ca2+ Sensitization and Potentiation of the Maximum Level of Myofibrillar ATPase Activity Caused by Mutations of Troponin T Found in Familial Hypertrophic Cardiomyopathy. J. Biol. Chem. 1999, 274, 8806–8812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, T.; Szczesna, D.; Housmans, P.R.; Zhao, J.; de Freitas, F.; Gomes, A.V.; Culbreath, L.; McCue, J.; Wang, Y.; Xu, Y.; et al. Abnormal Contractile Function in Transgenic Mice Expressing a Familial Hypertrophic Cardiomyopathy linked Troponin T (I79N) Mutation. J. Biol. Chem. 2001, 276, 3743–3755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hernandez, O.M.; Szczesna-Cordary, D.; Knollmann, B.C.; Miller, T.; Bell, M.; Zhao, J.; Sirenko, S.G.; Diaz, Z.; Guzman, G.; Xu, Y.; et al. F110I and R278C troponin T mutations that cause familial hypertrophic cardiomyopathy affect muscle contraction in transgenic mice and reconstituted human cardiac fibers. J. Biol. Chem. 2005, 280, 37183–37194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, T.R.; Ginsburg, K.S.; Bers, D.M. Reverse Mode of the Sarcoplasmic Reticulum Calcium Pump and Load-DependentCytosolic Calcium Decline in Voltage-Clamped Cardiac Ventricular Myocytes. Biophys. J. 2000, 78, 322–333. [Google Scholar] [CrossRef] [Green Version]
- Kataoka, A.; Hemmer, C.; Chase, P.B. Computational simulation of hypertrophic cardiomyopathy mutations in Troponin I: Influence of increased myofilament calcium sensitivity on isometric force, ATPase and [Ca2+]i. J. Biomech. 2007, 40, 2044–2052. [Google Scholar] [CrossRef] [PubMed]
- Dunlay, S.M.; Roger, V.L.; Redfield, M.M. Epidemiology of heart failure with preserved ejection fraction. Nat. Rev. Cardiol. 2017, 14, 591–602. [Google Scholar] [CrossRef]
- Lekavich, C.L.; Barksdale, D.J.; Neelon, V.; Wu, J.R. Heart failure preserved ejection fraction (HFpEF): An integrated and strategic review. Heart Fail. Rev. 2015, 20, 643–653. [Google Scholar] [CrossRef] [PubMed]
- Tardiff, J.C.; Factor, S.M.; Tompkins, B.D.; Hewett, T.E.l.; Palmer, B.M.; Moore, R.L.; Schwartz, S.; Robbins, J.; Leinwand, L.A. A truncated cardiac troponin T molecule in transgenic mice suggests multiple cellular mechanisms for familial hypertrophic cardiomyopathy. J. Clin. Investig. 1998, 101, 2800–2811. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tardiff, J.C.; Hewett, T.E.; Palmer, B.M.; Olsson, C.; Factor, S.M.; Moore, R.L.; Robbins, J.; Leinwand, L.A. Cardiac troponin T mutations result in allele-specific phenotypes in a mouse model for hypertrophic cardiomyopathy. J. Clin. Investig. 1999, 104, 469–481. [Google Scholar] [CrossRef] [Green Version]
- Losi, M.A.; Betocchi, S.; Barbati, G.; Parisi, V.; Tocchetti, C.-G.; Pastore, F.; Migliore, T.; Contaldi, C.; Caput, A.; Romano, R.; et al. Prognostic Significance of Left Atrial Volume Dilatation in Patients with Hypertrophic Cardiomyopathy. J. Am. Soc. Echocardiogr. 2009, 22, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Park, S.M.; Park, S.W.; Casaclang-Verzosa, G.; Ommen, S.R.; Pelkka, P.A.; Miller, F.A., Jr.; Sarano, M.E.; Kubo, S.H.; Oh, J.K. Diastolic dysfunction and left atrial enlargement as contributing factors to functional mitral regurgitation in dilated cardiomyopathy: Data from the Acorn trial. Am. Heart J. 2009, 157, 762.e3–762.e10. [Google Scholar] [CrossRef]
- MacRae, C.A.; Peterson, R.T. Zebrafish as tools for drug discovery. Nat. Rev. Drug Discov. 2015, 14, 721–731. [Google Scholar] [CrossRef]
- Tardiff, J.C.; Carrier, L.; Bers, D.M.; Poggesi, C.; Ferrantini, C.; Copini, R.; Maier, L.S.; Ashrafian, H.; Huke, S.; van der Velden, J. Targets for therapy in sarcomeric cardiomyopathies. Cardiovasc. Res. 2015, 105, 457–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamel, S.M.; Koopman, C.D.; Kruse, F.; Willekers, S.; Chocron, S.; Bakkers, J. A Heterozygous Mutation in Cardiac Troponin T Promotes Ca2+ Dysregulation and Adult Cardiomyopathy in Zebrafish. J. Cardiovasc. Dev. Dis. 2021, 8, 46. https://doi.org/10.3390/jcdd8040046
Kamel SM, Koopman CD, Kruse F, Willekers S, Chocron S, Bakkers J. A Heterozygous Mutation in Cardiac Troponin T Promotes Ca2+ Dysregulation and Adult Cardiomyopathy in Zebrafish. Journal of Cardiovascular Development and Disease. 2021; 8(4):46. https://doi.org/10.3390/jcdd8040046
Chicago/Turabian StyleKamel, Sarah M., Charlotte D. Koopman, Fabian Kruse, Sven Willekers, Sonja Chocron, and Jeroen Bakkers. 2021. "A Heterozygous Mutation in Cardiac Troponin T Promotes Ca2+ Dysregulation and Adult Cardiomyopathy in Zebrafish" Journal of Cardiovascular Development and Disease 8, no. 4: 46. https://doi.org/10.3390/jcdd8040046