Stem Cell Therapy and Congenital Heart Disease
Abstract
:1. Introduction
2. Stem Cells to Improve Cardiac Function in Adult Heart Disease
3. Cell-Based Therapy Experience in Patients with CHD or Heart Failure
4. Translational Cell-Based Research for Cardiac Repair in CHD
5. Conclusions
Acknowledgments
Conflicts of Interest
References
- Hoffman, J.I.; Kaplan, S. The incidence of congenital heart disease. J. Am. Coll. Cardiol. 2002, 39, 1890–1900. [Google Scholar] [CrossRef]
- Khoshnood, B.; Lelong, N.; Houyel, L.; Thieulin, A.C.; Jouannic, J.M.; Magnier, S.; Delezoide, A.L.; Magny, J.F.; Rambaud, C.; Bonnet, D.; et al. Prevalence, timing of diagnosis and mortality of newborns with congenital heart defects: A population-based study. Heart 2012, 98, 1667–1673. [Google Scholar] [CrossRef] [PubMed]
- Rossano, J.W.; Kim, J.J.; Decker, J.A.; Price, J.F.; Zafar, F.; Graves, D.E.; Morales, D.L.; Heinle, J.S.; Bozkurt, B.; Towbin, J.A.; et al. Prevalence, morbidity, and mortality of heart failure-related hospitalizations in children in the United States: A population-based study. J. Card. Fail. 2012, 18, 459–470. [Google Scholar] [CrossRef] [PubMed]
- Rupp, S.; Bauer, J.; von Gerlach, S.; Fichtlscherer, S.; Zeiher, A.M.; Dimmeler, S.; Schranz, D. Pressure overload leads to an increase of cardiac resident stem cells. Basic Res. Cardiol. 2012, 107, 252. [Google Scholar] [CrossRef] [PubMed]
- Bernstein, H.S.; Srivastava, D. Stem cell therapy for cardiac disease. Pediatr. Res. 2012, 71, 491–499. [Google Scholar] [CrossRef] [PubMed]
- De Jong, R.; Houtgraaf, J.H.; Samiei, S.; Boersma, E.; Duckers, H.J. Intracoronary stem cell infusion after acute myocardial infarction: A meta-analysis and update on clinical trials. Circ. Cardiovasc. Interv. 2014, 7, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Delewi, R.; Hirsch, A.; Tijssen, J.G.; Schachinger, V.; Wojakowski, W.; Roncalli, J.; Aakhus, S.; Erbs, S.; Assmus, B.; Tendera, M.; et al. Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: A collaborative meta-analysis. Eur. Heart J. 2014, 35, 989–998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gyongyosi, M.; Wojakowski, W.; Lemarchand, P.; Lunde, K.; Tendera, M.; Bartunek, J.; Marban, E.; Assmus, B.; Henry, T.D.; Traverse, J.H.; et al. Meta-Analysis of Cell-based CaRdiac stUdiEs (ACCRUE) in patients with acute myocardial infarction based on individual patient data. Circ. Res. 2015, 116, 1346–1360. [Google Scholar] [CrossRef] [PubMed]
- Jeevanantham, V.; Butler, M.; Saad, A.; Abdel-Latif, A.; Zuba-Surma, E.K.; Dawn, B. Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: A systematic review and meta-analysis. Circulation 2012, 126, 551–568. [Google Scholar] [CrossRef] [PubMed]
- Lipinski, M.J.; Biondi-Zoccai, G.G.L.; Abbate, A.; Khianey, R.; Sheiban, I.; Bartunek, J.; Vanderheyden, M.; Kim, H.-S.; Kang, H.-J.; Strauer, B.E.; et al. Impact of intracoronary cell therapy on left ventricular function in the setting of acute myocardial infarction: A collaborative systematic review and meta-analysis of controlled clinical trials. J. Am. Coll. Cardiol. 2007, 50, 1761–1767. [Google Scholar] [CrossRef] [PubMed]
- Martin-Rendon, E.; Brunskill, S.J.; Hyde, C.J.; Stanworth, S.J.; Mathur, A.; Watt, S.M. Autologous bone marrow stem cells to treat acute myocardial infarction: A systematic review. Eur. Heart J. 2008, 29, 1807–1818. [Google Scholar] [CrossRef] [PubMed]
- Ye, Z.; Zhang, B.L.; Zhao, X.X.; Qin, Y.W.; Wu, H.; Cao, J.; Zhang, J.L.; Hu, J.Q.; Zheng, X.; Xu, R.L. Intracoronary infusion of bone marrow-derived mononuclear cells contributes to longstanding improvements of left ventricular performance and remodelling after acute myocardial infarction: A meta-analysis. Heart Lung Circ. 2012, 21, 725–733. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Sun, A.; Zhang, S.; Yao, K.; Wu, C.; Fu, M.; Wang, K.; Zou, Y.; Ge, J. Efficacy and safety of intracoronary autologous bone marrow-derived cell transplantation in patients with acute myocardial infarction: Insights from randomized controlled trials with 12 or more months follow-up. Clin. Cardiol. 2010, 33, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, H.; Porapakkham, P.; Sata, Y.; Haas, S.J.; Itescu, S.; Forbes, A.; Krum, H. Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: A meta-analysis of randomized control trials. Eur. J. Heart Fail. 2012, 14, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Strauer, B.E.; Brehm, M.; Zeus, T.; Köstering, M.; Hernandez, A.; Sorg, R.V.; Kögler, G.; Wernet, P. Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation 2002, 106, 1913–1918. [Google Scholar] [CrossRef] [PubMed]
- Assmus, B.; Schachinger, V.; Teupe, C.; Britten, M.; Lehmann, R.; Dobert, N.; Grunwald, F.; Aicher, A.; Urbich, C.; Martin, H.; et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 2002, 106, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Schachinger, V.; Assmus, B.; Britten, M.B.; Honold, J.; Lehmann, R.; Teupe, C.; Abolmaali, N.D.; Vogl, T.J.; Hofmann, W.K.; Martin, H.; et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction: Final one-year results of the TOPCARE-AMI Trial. J. Am. Coll. Cardiol. 2004, 44, 1690–1699. [Google Scholar] [CrossRef] [PubMed]
- Meyer, G.P.; Wollert, K.C.; Lotz, J.; Steffens, J.; Lippolt, P.; Fichtner, S.; Hecker, H.; Schaefer, A.; Arseniev, L.; Hertenstein, B.; et al. Intracoronary bone marrow cell transfer after myocardial infarction: Eighteen months’ follow-up data from the randomized, controlled BOOST (BOne marrOw transfer to enhance ST-elevation infarct regeneration) trial. Circulation 2006, 113, 1287–1294. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.S.; Shearer, R.L.; Capowski, E.E.; Wright, L.S.; Wallace, K.A.; McMillan, E.L.; Zhang, S.C.; Gamm, D.M. Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc. Natl. Acad. Sci. USA 2009, 106, 16698–16703. [Google Scholar] [CrossRef] [PubMed]
- Wollert, K.C.; Meyer, G.P.; Lotz, J.; Ringes Lichtenberg, S.; Lippolt, P.; Breidenbach, C.; Fichtner, S.; Korte, T.; Hornig, B.; Messinger, D.; et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: The BOOST randomised controlled clinical trial. Lancet 2004, 364, 141–148. [Google Scholar] [CrossRef]
- Ge, J.; Li, Y.; Qian, J.; Shi, J.; Wang, Q.; Niu, Y.; Fan, B.; Liu, X.; Zhang, S.; Sun, A.; et al. Efficacy of emergent transcatheter transplantation of stem cells for treatment of acute myocardial infarction (TCT-STAMI). Heart 2006, 92, 1764–1767. [Google Scholar] [CrossRef] [PubMed]
- Assmus, B.; Rolf, A.; Erbs, S.; Elsasser, A.; Haberbosch, W.; Hambrecht, R.; Tillmanns, H.; Yu, J.; Corti, R.; Mathey, D.G.; et al. Clinical outcome 2 years after intracoronary administration of bone marrow-derived progenitor cells in acute myocardial infarction. Circ. Heart Fail. 2010, 3, 89–96. [Google Scholar] [CrossRef] [PubMed]
- Beitnes, J.O.; Gjesdal, O.; Lunde, K.; Solheim, S.; Edvardsen, T.; Arnesen, H.; Forfang, K.; Aakhus, S. Left ventricular systolic and diastolic function improve after acute myocardial infarction treated with acute percutaneous coronary intervention, but are not influenced by intracoronary injection of autologous mononuclear bone marrow cells: A 3 year serial echocardiographic sub-study of the randomized-controlled ASTAMI study. Eur. J. Echocardiogr. 2011, 12, 98–106. [Google Scholar] [PubMed]
- Lunde, K.; Solheim, S.; Forfang, K.; Arnesen, H.; Brinch, L.; Bjornerheim, R.; Ragnarsson, A.; Egeland, T.; Endresen, K.; Ilebekk, A.; et al. Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells: Safety, clinical outcome, and serial changes in left ventricular function during 12-months’ follow-up. J. Am. Coll. Cardiol. 2008, 51, 674–676. [Google Scholar] [CrossRef] [PubMed]
- Huikuri, H.V.; Kervinen, K.; Niemelä, M.; Ylitalo, K.; Säily, M.; Koistinen, P.; Savolainen, E.-R.; Ukkonen, H.; Pietilä, M.; Airaksinen, J.K.E.; et al. Effects of intracoronary injection of mononuclear bone marrow cells on left ventricular function, arrhythmia risk profile, and restenosis after thrombolytic therapy of acute myocardial infarction. Eur. Heart J. 2008, 29, 2723–2732. [Google Scholar] [CrossRef] [PubMed]
- Yousef, M.; Schannwell, C.M.; Kostering, M.; Zeus, T.; Brehm, M.; Strauer, B.E. The BALANCE Study: Clinical benefit and long-term outcome after intracoronary autologous bone marrow cell transplantation in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 2009, 53, 2262–2269. [Google Scholar] [CrossRef] [PubMed]
- Wohrle, J.; von Scheidt, F.; Schauwecker, P.; Wiesneth, M.; Markovic, S.; Schrezenmeier, H.; Hombach, V.; Rottbauer, W.; Bernhardt, P. Impact of cell number and microvascular obstruction in patients with bone-marrow derived cell therapy: Final results from the randomized, double-blind, placebo controlled intracoronary Stem Cell therapy in patients with Acute Myocardial Infarction (SCAMI) trial. Clin. Res. Cardiol. 2013, 102, 765–770. [Google Scholar] [PubMed]
- Roncalli, J.; Mouquet, F.; Piot, C.; Trochu, J.N.; Le Corvoisier, P.; Neuder, Y.; Le Tourneau, T.; Agostini, D.; Gaxotte, V.; Sportouch, C.; et al. Intracoronary autologous mononucleated bone marrow cell infusion for acute myocardial infarction: Results of the randomized multicenter BONAMI trial. Eur. Heart J. 2011, 32, 1748–1757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mansour, S.; Roy, D.C.; Bouchard, V.; Stevens, L.M.; Gobeil, F.; Rivard, A.; Leclerc, G.; Reeves, F.; Noiseux, N. One-Year safety analysis of the COMPARE-AMI Trial: Comparison of intracoronary injection of CD133+ bone marrow stem cells to placebo in patients after acute myocardial infarction and left ventricular eysfunction. Bone Marrow Res. 2011, 2011, 385124. [Google Scholar] [CrossRef] [PubMed]
- Traverse, J.H.; Henry, T.D.; Ellis, S.G.; Pepine, C.J.; Willerson, J.T.; Zhao, D.X.; Forder, J.R.; Byrne, B.J.; Hatzopoulos, A.K.; Penn, M.S.; et al. Effect of intracoronary delivery of autologous bone marrow mononuclear cells 2 to 3 weeks following acute myocardial infarction on left ventricular function: The LateTIME randomized trial. JAMA 2011, 306, 2110–2119. [Google Scholar] [CrossRef] [PubMed]
- Traverse, J.H.; Henry, T.D.; Pepine, C.J.; Willerson, J.T.; Zhao, D.X.; Ellis, S.G.; Forder, J.R.; Anderson, R.D.; Hatzopoulos, A.K.; Penn, M.S.; et al. Effect of the use and timing of bone marrow mononuclear cell delivery on left ventricular function after acute myocardial infarction: The TIME randomized trial. JAMA 2012, 308, 2380–2389. [Google Scholar] [CrossRef] [PubMed]
- Piepoli, M.F.; Vallisa, D.; Arbasi, C.; Cavanna, L.; Cerri, L.; Mori, M.; Passerini, F.; Tommasi, L.; Rossi, A.; Capucci, A. Two year follow-up results of the CARDIAC (CARDIomyoplasty by Autologous intraCoronary bone marrow in acute myocardial infarction) randomised controlled trial. Int. J. Cardiol. 2013, 168, e132. [Google Scholar] [CrossRef] [PubMed]
- Strauer, B.E.; Brehm, M.; Zeus, T.; Bartsch, T.; Schannwell, C.; Antke, C.; Sorg, R.V.; Kogler, G.; Wernet, P.; Muller, H.W.; et al. Regeneration of human infarcted heart muscle by intracoronary autologous bone marrow cell transplantation in chronic coronary artery disease: The IACT Study. J. Am. Coll. Cardiol. 2005, 46, 1651–1658. [Google Scholar] [CrossRef] [PubMed]
- Assmus, B.; Honold, J.; Schächinger, V.; Britten, M.B.; Fischer-Rasokat, U.; Lehmann, R.; Teupe, C.; Pistorius, K.; Martin, H.; Abolmaali, N.D.; et al. Transcoronary transplantation of progenitor cells after myocardial infarction. N. Engl. J. Med. 2006, 355, 1222–1232. [Google Scholar] [CrossRef] [PubMed]
- Strauer, B.E.; Yousef, M.; Schannwell, C.M. The acute and long-term effects of intracoronary Stem cell Transplantation in 191 patients with chronic heARt failure: The STAR-heart study. Eur. J. Heart Fail. 2010, 12, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.; Reguero, J.J.; Calvo, D.; de la Torre, A.; Fernandez, A.; Castro, M.G.; de la Tassa, C.M.; del Valle, M. Prevalence of positive ECG criteria in young competitive athletes: A single region experience. Eur. Heart J. 2008, 29, 680–681. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro dos Santos, R.; Rassi, S.; Feitosa, G.; Grecco, O.T.; Rassi, A.; da Cunha, A.B.; de Carvalho, V.B.; Guarita-Souza, L.C.; de Oliveira, W.; Tura, B.R.; et al. Cell therapy in chagas cardiomyopathy (Chagas Arm of the Multicenter Randomized Trial of Cell Therapy in Cardiopathies Study): A multicenter randomized trial. Circulation 2012, 125, 2454–2461. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.; Bhargava, B.; Narang, R.; Ray, R.; Mohanty, S.; Gulati, G.; Kumar, L.; Airan, B.; Venugopal, P. The ABCD (Autologous Bone Marrow Cells in Dilated Cardiomyopathy) trial a long-term follow-up study. J. Am. Coll. Cardiol. 2010, 55, 1643–1644. [Google Scholar] [CrossRef] [PubMed]
- Seth, S.; Narang, R.; Bhargava, B.; Ray, R.; Mohanty, S.; Gulati, G.; Kumar, L.; Reddy, K.S.; Venugopal, P. Percutaneous intracoronary cellular cardiomyoplasty for nonischemic cardiomyopathy: Clinical and histopathological results: The first-in-man ABCD (Autologous bone marrow cells in dilated cardiomyopathy) trial. J. Am. Coll. Cardiol. 2006, 48, 2350–2351. [Google Scholar] [CrossRef] [PubMed]
- Vrtovec, B.; Poglajen, G.; Lezaic, L.; Sever, M.; Domanovic, D.; Cernelc, P.; Socan, A.; Schrepfer, S.; Torre-Amione, G.; Haddad, F.; et al. Effects of intracoronary CD34+ stem cell transplantation in nonischemic dilated cardiomyopathy patients: 5-year follow-up. Circ. Res. 2013, 112, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Rupp, S.; Bauer, J.; Tonn, T.; Schächinger, V.; Dimmeler, S.; Zeiher, A.M.; Schranz, D. Intracoronary administration of autologous bone marrow-derived progenitor cells in a critically ill two-yr-old child with dilated cardiomyopathy. Pediatr. Transpl. 2009, 13, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Rupp, S.; Zeiher, A.M.; Dimmeler, S.; Tonn, T.; Bauer, J.; Jux, C.; Akintuerk, H.; Schranz, D. A regenerative strategy for heart failure in hypoplastic left heart syndrome: Intracoronary administration of autologous bone marrow-derived progenitor cells. J. Heart Lung Transpl. 2010, 29, 574–577. [Google Scholar] [CrossRef] [PubMed]
- Rupp, S.; Jux, C.; Bönig, H.; Bauer, J.; Tonn, T.; Seifried, E.; Dimmeler, S.; Zeiher, A.M.; Schranz, D. Intracoronary bone marrow cell application for terminal heart failure in children. Cardiol. Young 2012, 22, 558–563. [Google Scholar] [CrossRef] [PubMed]
- Olgunturk, R.; Kula, S.; Sucak, G.T.; Ozdogan, M.E.; Erer, D.; Saygili, A. Peripheric stem cell transplantation in children with dilated cardiomyopathy: Preliminary report of first two cases. Pediatr. Transpl. 2010, 14, 257–260. [Google Scholar] [CrossRef]
- Lacis, A.; Erglis, A. Intramyocardial administration of autologous bone marrow mononuclear cells in a critically ill child with dilated cardiomyopathy. Cardiol. Young 2011, 21, 110–112. [Google Scholar] [CrossRef] [PubMed]
- Bergmane, I.; Lacis, A.; Lubaua, I.; Jakobsons, E.; Erglis, A. Follow-up of the patients after stem cell transplantation for pediatric dilated cardiomyopathy. Pediatr. Transpl. 2013, 17, 266–270. [Google Scholar] [CrossRef] [PubMed]
- Limsuwan, A.; Pienvichit, P.; Limpijankit, T.; Khowsathit, P.; Hongeng, S.; Pornkul, R.; Siripornpitak, S.; Boonbaichaiyapruk, S. Transcoronary bone marrow-derived progenitor cells in a child with myocardial infarction: First pediatric experience. Clin. Cardiol. 2010, 33, E7–E12. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, H.M.; Qureshi, M.Y.; Peral, S.C.; O’Leary, P.W.; Olson, T.M.; Cetta, F.; Nelson, T.J. Regenerative therapy for hypoplastic left heart syndrome: First report of intraoperative intramyocardial injection of autologous umbilical-cord blood–derived cells. J. Thorac. Cardiovasc. Surg. 2015, 149, e35–e37. [Google Scholar] [CrossRef] [PubMed]
- Tarui, S.; Ishigami, S.; Ousaka, D.; Kasahara, S.; Ohtsuki, S.; Sano, S.; Oh, H. Transcoronary infusion of cardiac progenitor cells in hypoplastic left heart syndrome: Three-year follow-up of the Transcoronary Infusion of Cardiac Progenitor Cells in Patients With Single-Ventricle Physiology (TICAP) trial. J. Thorac. Cardiovasc. Surg. 2015, 150, 1198.e2–1208.e2. [Google Scholar] [CrossRef] [PubMed]
- Cantero Peral, S.; Burkhart, H.M.; Oommen, S.; Yamada, S.; Nyberg, S.L.; Li, X.; O’Leary, P.W.; Terzic, A.; Cannon, B.C.; Nelson, T.J. Safety and feasibility for pediatric cardiac regeneration using epicardial delivery of autologous umbilical cord blood-derived mononuclear cells established in a porcine model system. Stem Cells Transl. Med. 2015, 4, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Davies, B.; Elwood, N.J.; Li, S.; Cullinane, F.; Edwards, G.A.; Newgreen, D.F.; Brizard, C.P. Human cord blood stem cells enhance neonatal right ventricular function in an ovine model of right ventricular training. Ann. Thorac. Surg. 2010, 89, 585.e4–593.e4. [Google Scholar] [CrossRef] [PubMed]
- Oommen, S.; Yamada, S.; Peral, S.; Campbell, K.; Bruinsma, E.; Terzic, A.; Nelson, T. Human umbilical cord blood-derived mononuclear cells improve murine ventricular function upon intramyocardial delivery in right ventricular chronic pressure overload. Stem Cell Res. Ther. 2015, 6, 50. [Google Scholar] [CrossRef] [PubMed]
- Yerebakan, C.; Sandica, E.; Prietz, S.; Klopsch, C.; Ugurlucan, M.; Kaminski, A.; Abdija, S.; Lorenzen, B.; Boltze, J.; Nitzsche, B.; et al. Autologous umbilical cord blood mononuclear cell transplantation preserves right ventricular function in a novel model of chronic right ventricular volume overload. Cell Transpl. 2009, 18, 855–868. [Google Scholar] [CrossRef] [PubMed]
- Behfar, A.; Crespo-Diaz, R.; Terzic, A.; Gersh, B.J. Cell therapy for cardiac repair—Lessons from clinical trials. Nat. Rev. Cardiol. 2014, 11, 232–246. [Google Scholar] [CrossRef] [PubMed]
- Dimmeler, S.; Leri, A. Aging and disease as modifiers of efficacy of cell therapy. Circ. Res. 2008, 102, 1319–1330. [Google Scholar] [CrossRef] [PubMed]
- Edelberg, J.M.; Tang, L.; Hattori, K.; Lyden, D.; Rafii, S. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ. Res. 2002, 90, E89–E93. [Google Scholar] [CrossRef] [PubMed]
- Toma, C.; Pittenger, M.F.; Cahill, K.S.; Byrne, B.J.; Kessler, P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 2002, 105, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Gnecchi, M.; Zhang, Z.; Ni, A.; Dzau, V.J. Paracrine mechanisms in adult stem cell signaling and therapy. Circ. Res. 2008, 103, 1204–1219. [Google Scholar] [CrossRef] [PubMed]
- Weil, B.R.; Canty, J.M., Jr. Stem cell stimulation of endogenous myocyte regeneration. Clin. Sci. 2013, 125, 109–119. [Google Scholar] [CrossRef] [PubMed]
- Kanashiro-Takeuchi, R.M.; Schulman, I.H.; Hare, J.M. Pharmacologic and genetic strategies to enhance cell therapy for cardiac regeneration. J. Mol. Cell. Cardiol. 2011, 51, 619–625. [Google Scholar] [CrossRef] [PubMed]
Study | Patients/Control | Study Design | Cell Type Infused | Days from Disease to Cells Infusion | Follow-up (Months) | Efficacy Outcomes |
---|---|---|---|---|---|---|
Strauer et al., 2002 [15] | 10/10 | C | MNCs | 5–9 days | 3 | No significant LVEF improvement vs. control. Significant improvement with regard to infarct region, hemodynamics, cardiac geometry, and contractility. |
TOPCARE-AMI trial | ||||||
Assmus et al., 2002 [16] | 9(BM)/11(PB) | R-NC | BM-MNCs & PB-MNCs | 4.3 ± 1.5 days | 4 | LVEF: cell therapy group > non-randomized matched reference group. |
No difference in LVEF between BM and PB groups. | ||||||
Schachinger et al., 2004 [17] | 29(BM)/30(PB) | R-NC | BM-MNCs & PB-MNCs | 4.9 ± 1.5 days | 12 | Cell therapy was associated with significant improvements in LVEF, and significant reductions in LV end-systolic volumes after one year of myocardial infarction. |
BOOST trial | ||||||
Wollert et al., 2004 [20] | 30/30 | RC | MNCs | 4.8 ± 1.3 days | 6 | Improvement in LVEF in bone marrow group. |
Meyer et al., 2006 [18] | 30/30 | RC | MNCs | 4.8 ± 1.3 days | 18 | BM group showed improvement in LVEF at 6 months, not sustainable after 18 months. |
Meyer et al., 2009 [19] | 30/30 | RC | MNCs | 4.8 ± 1.3 days | 60 (28/28 patients) | There is an early improvement of diastolic function without a sustained effect on long-term follow-up. |
TCT-STAMI | ||||||
Ge et al., 2006[21] | 10/10 | R-CDB | MNCs | 1 day | 6 | BM cells after AMI improved cardiac function. |
REPAIR-AMI trial | ||||||
Assmuss et al., 2010 [22] | 101/103 | R-PCDB | MNCs | 4 ± 1 days | 24 | Infusion of BM cells improved LV contractile function and protected against heart failure in the 2 years after stem cell therapy. |
ASTAMI | ||||||
Lunde et al., 2008 [24] | 50/50 | R-PC | MNCs | 6 days | 6, 12, 36 | At 3 years, it was just found a small improvement in exercise time in the BM group, with no other remarkably signs of improvement. |
Beitnes et al., 2011 [23] | ||||||
FINCELL | ||||||
Huikuri et al., 2008 [25] | 40/40 | R-PC | MNCs | 2–6 days | 6 | At 6 months, LVEF increased in the BM group compared with the placebo group. |
BALANCE | ||||||
Yousef et al., 2009 [26] | 62/62 | C | MNCs | 7 ± 2 days | 3, 12, 60 | At 3-months follow-up, BM group showed a significant improvement of LVEF and stroke volume index. The infarct size was significantly reduced by 8%. Those parameters were stable at 12 and 60 months. The mortality was significantly reduced in the BM cell therapy group compared with the control group. |
SCAMI | ||||||
Wohrle et al., 2013 [27] | 29/13 | R-PCDB | MNCs | 5–7 days | 1, 3, 6, 36 | Improvement in LVEF up to 3 years in patients who received high doses of BM cells or without microvascular obstruction. |
BONAMI | ||||||
Roncalli et al., 2011 [28] | 52/49 | RC | MNCs | 9.3 ± 1.7 days | 3 | Improvement of myocardial viability in multivariate analysis. |
COMPARE-AMI | ||||||
Mansour et al., 2011 [29] | 20/20 | R-CDB | MNCs-CD133+ | 6.4 ± 2.2 days | 12 | LVEF significantly improved at four months of follow up and remained higher at 12 months. |
LateTIME | ||||||
Traverse et al., 2011 [30] | 58/29 | R-PCDB | MNCs | 14–21 days | 6 | No improvement in regional function or LVEF. |
TIME | ||||||
Traverse et al., 2012 [31] | 3 days: 43/24 | R-PCDB | MNCs | 3 vs. 7 | 6 | No differences on LVEF between BM and placebo groups. |
7 days: 36/17 | ||||||
CARDIAC | ||||||
Piepoli et al., 2013 [32] | 19/19 | RC | CD45+ & MNCs | 4 days | 3, 6, 12, 24 | Significant improvement in LVEF at 12 month follow-up in the BM group, not found at 24 months. |
IACT | ||||||
Strauer et al., 2005 [33] | 18/18 | C | MNCs | 3 months to 9 years | 3 | Improvement in LVEF and reduced infarct size by 30% in the BM group. |
TOPCARE-CHD | ||||||
Assmus et al., 2006 [34] | 24/28/23/PB/BM/Control | RCC | PB-MNCs & BM-MNCs | >90 days (2470 ± 2196 days) | 3 | Significant improvement in LVEF in the BM group at 3-month follow-up. No improvement in the PB group when compared with placebo. |
STAR-heart | ||||||
Strauer et al., 2010 [35] | 191/200 | C | MNCs | 8.5 ± 3.2 years | 3, 12, 60 | At 5-year follow-up, improvement in LVEF and increased survival in the BM group. |
Authors/Year | Disease | Number of Studies Included | Study Design | Total # of Patients Included | Cell Type | Follow-up Duration | Major Adverse Events in Stem Cell Group Compared with Controls |
---|---|---|---|---|---|---|---|
Gyongyosi et al., 2015 [8] | AMI | 12 | RCT | 1252 | BM-MNCs (n = 11) | Mean: 3–12 months | No (1) |
Cardiosphere-derived cells (n = 1) | |||||||
de Jong R et al., 2014 [6] | AMI | 30 | RCT | 2037 (1218 cell therapy vs. 819 controls) | BM-MNCs (n = 22) | Median: 6 months | No (2) |
MSCs (n = 3) | |||||||
BM CD133+ CD34+ (n = 4) | |||||||
Cardiosphere-derived cells (n = 1) | |||||||
Delewi et al., 2014 [7] | AMI | 16 | RCT | 1641 (984 cell therapy vs. 657 controls) | BM-MNCs (n = 13) | 3–6 months | No (3) |
BM-CD34+/CXCR4+ (n = 1) | |||||||
Nucleated BM cells (n = 2) | |||||||
Jeevanantham et al., 2012 [9] | IHD (AMI & CIHD) | 50 (38 IC vs. 12 IM) | RCT (n = 36) | 2625 | BM-MNCs (n = 36) | 3–60 months | No (4) |
BM-CD34+ and or CD133+ (n = 6) | |||||||
CS (n = 14) | Nucleated BM cells (n = 5) | ||||||
BM-MSC and/or endothelial progenitor cells (n = 3) | |||||||
Zimmet et al., 2012 [14] | AMI | 29 (23 IC vs. 6 G-CSF trials) | RCT | 1830 (1470 from IC trials) | BM stem cells | Short-term (3–6 months) | No (5) |
Long-term (12–18 months) | |||||||
Ye et al., 2012 [12] | AMI | 10 | RCT | 757 (394 cell therapy vs. 363 controls) | BM-MNCs | Mean: 1–5 years | No (6) |
Zhang et al., 2009 [13] | AMI | 8 | RCT | 525 | BM stem cells | 1–5 years | No (7) |
Martin-Rendon et al., 2008 [11] | AMI | 13 | RCT | 811 | BM-MNCs | 3–6 months | No |
Lipinski et al., 2007 [10] | AMI | 10 | Controlled trials | 698 | BM stem cells (n = 8) | 3–18 months | No (8) |
PB mononuclear cells (n = 2) |
Study | Patients/Controls | Disease | Study Design | Cell Type and Dosage | Time from Disease to BM Infusion | Follow-up (Months) | Outcome |
---|---|---|---|---|---|---|---|
ABCD trial | |||||||
Seth et al., 2010 [38] | 45/40 | Non-ischemic idiopathic DCM | RC | MNCs 1.68 × 108 | >6 months | 36 | LVEF improved in the BM group by 5.9% from 6-month follow-up with a reduction in end-systolic volumes and no change in end-diastolic volumes. |
Miheart-Chagas | |||||||
Ribeiro dos Santos et al., 2012 [37] | 117/117 | Chronic chagasic cardiomyopathy | R-PC | MNCs 2.2 × 108 | Not available | 6, 12 | No improvement in LVEF |
Mortality was similar in both groups | |||||||
Vrtovec et al., 2013 [40] | 55/55 | Non-ischemic DCM | RC | MNCs CD34+ 113 ± 26 × 106 | >3 months | 60 | Intracoronary BM stem cell infusion was associated with improved LVEF, exercise tolerance, and long-term survival at 5-year follow-up, and lower total mortality, when compared with control group. |
Study/Author | No of Patients | Age of Patients | Entity Cardiac Status | Study Design | Cell Type and Cell Dose | Delivery Route | Follow-up | Outcomes |
---|---|---|---|---|---|---|---|---|
Rupp S et al., 2009 [41] | 1 | 2 years | DCM | Case report | Autologous BM-MNCs/20 × 106 cells/kg | IC | 6 months | Safe and feasible |
↑ LVEF | ||||||||
↓ NYHA | ||||||||
↓ BNP | ||||||||
Rupp S et al., 2010 [42] | 1 | 11 months | HLHS + mitral stenosis + aortic atresia | Case report | Autologous BM-MNCs | IC | 3 months | Safe and feasible |
↑ LVEF | ||||||||
↓ BNP | ||||||||
Rupp S et al., 2012 [43] | 9 | 4 months–16 years | DCM (n = 6) and CHD (n = 3) | Cohort | Autologous BM-MNCs | IC | 24–52 months | 1 pt = death no procedure-related |
3 pts = heart Tx | ||||||||
5 pts = | ||||||||
↑ LVEF | ||||||||
↓ NYHA | ||||||||
↓ BNP | ||||||||
Olguntürk et al., 2010 [44] | 2 | 6 years, 9 years | DCM | Case reports | Autologous PB-MNCs mobilized with G-CSF/1.96 and 1.27 × 106 cells/kg | IC | 2–6 months | ↑ LVEF |
↓ NYHA | ||||||||
↓ BNP | ||||||||
1 pt was removed of the heart Tx list | ||||||||
Lacis A et al., 2011 [45] | 1 | 4 months | DCM | Case report | Autologous BM-MNCs | IM | 4 months | ↑ LVEF |
Bergmane I et al., 2013 [46] | 7 (6 completed follow-up) | 4 months–17 years | DCM | Cohort | Autologous BM-MNCs | IC | 12 months | Safe and feasible |
↑ LVEF | ||||||||
↓ LVEDV | ||||||||
Limsuwan A et al., 2010 [47] | 1 | 9 years | CHF after MI | Case report | Autologous BM-CD133+/CD34+ mobilized with G-CSF | IC | 3 months | ↑ LVEF ↓ NYHA |
Burkhart H et al., 2014 [48] | 1 | 4 months | HLHS | Case report | Autologous UCB-MNCs/3 × 106 cells/kg | IM | 3 months | ↓ NYHA |
↑ RVEF | ||||||||
↓ BNP | ||||||||
TICAP study, Okayama University, Japan | 14 (7 cell therapy vs. 7 controls) | ≤6 years 1.8 ± 1.5 years | HLHS | Phase 1 Prospective, controlled | Autologous CDC/0.3 × 106 cells/kg | IC | 36 months | Safe and feasible |
↑ RVEF | ||||||||
↓ BNP | ||||||||
PERSEUS trial, Okayama University, Japan | 34 | ≤20 years | Univentricular heart disease | Phase 2 Prospective, randomized-controlled | Autologous CDC/0.3 × 106 cells/kg | IC | 12 months | Ongoing, but not recruiting patients |
NCT01829750 | ||||||||
Mayo Clinic, USA | 10 | ≤18 months | HLHS | Phase 1 | Autologous UCB-MNCs/3 × 106 cells/kg | IM | 6 months | Recruiting patients since 2013 |
NCT01883076 | ||||||||
Duke University, USA | 20 | ≤2 days | HLHS | Phase 1, randomized | Autologous UCB cells 5 × 107 TNC cells/kg | IV | 12 months Focus in neurologic effects | Ongoing, but not recruiting patients |
NCT01445041 | ||||||||
University of Miami, USA | 30 | ≤28 days | HLHS | Phase 1, randomized after first 10 patients | Allogeneic MSCs/2.5 × 105 cells/kg | IM | 12 months | Recruiting patients since 2015 |
NCT02398604 | ||||||||
Mayo Clinic, USA | 10 | 2–30 years | Single RV failure due to CHD | Phase 1 | Autologous BM-MNCs/3 × 106 cells/kg | IC | 24 months | Recruiting patients since 2015 |
NCT02549625 |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nelson, T.J.; Cantero Peral, S. Stem Cell Therapy and Congenital Heart Disease. J. Cardiovasc. Dev. Dis. 2016, 3, 24. https://doi.org/10.3390/jcdd3030024
Nelson TJ, Cantero Peral S. Stem Cell Therapy and Congenital Heart Disease. Journal of Cardiovascular Development and Disease. 2016; 3(3):24. https://doi.org/10.3390/jcdd3030024
Chicago/Turabian StyleNelson, Timothy J., and Susana Cantero Peral. 2016. "Stem Cell Therapy and Congenital Heart Disease" Journal of Cardiovascular Development and Disease 3, no. 3: 24. https://doi.org/10.3390/jcdd3030024
APA StyleNelson, T. J., & Cantero Peral, S. (2016). Stem Cell Therapy and Congenital Heart Disease. Journal of Cardiovascular Development and Disease, 3(3), 24. https://doi.org/10.3390/jcdd3030024