Short-Term Percutaneous Mechanical Circulatory Support in Acute Coronary Syndrome with Cardiogenic Shock: Which Device to Choose?
Abstract
1. Introduction
2. Search Strategy and Selection Criteria
3. Cardiogenic Shock


4. Intra-Aortic Balloon Pump
5. Microaxial Flow Pump
6. Venoarterial Extracorporeal Membrane Oxygenation
7. Left Ventricular Unloading Strategies During VA-ECMO
8. Other Mechanical Cardiac Support Devices
9. Practical Algorithm for Device Selection and Timing
10. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Waksman, R.; Pahuja, M.; van Diepen, S.; Proudfoot, A.G.; Morrow, D.; Spitzer, E.; Nichol, G.; Weisfeldt, M.L.; Moscucci, M.; Lawler, P.R.; et al. Standardized Definitions for Cardiogenic Shock Research and Mechanical Circulatory Support Devices: Scientific Expert Panel From the Shock Academic Research Consortium (SHARC). Circulation 2023, 148, 1113–1126. [Google Scholar] [CrossRef]
- Thiele, H.; de Waha-Thiele, S.; Freund, A.; Zeymer, U.; Desch, S.; Fitzgerald, S. Management of Cardiogenic Shock. EuroIntervention 2021, 17, 451–465. [Google Scholar] [CrossRef]
- Lüsebrink, E.; Binzenhöfer, L.; Adamo, M.; Lorusso, R.; Mebazaa, A.; Morrow, D.A.; Price, S.; Jentzer, J.C.; Brodie, D.; Combes, A.; et al. Cardiogenic Shock. Lancet 2024, 404, 2006–2020. [Google Scholar] [CrossRef]
- Aissaoui, N.; Puymirat, E.; Delmas, C.; Ortuno, S.; Durand, E.; Bataille, V.; Drouet, E.; Bonello, L.; Bonnefoy-Cudraz, E.; Lesmeles, G.; et al. Trends in Cardiogenic Shock Complicating Acute Myocardial Infarction. Eur. J. Heart Fail. 2020, 22, 664–672. [Google Scholar] [CrossRef]
- Fraccaro, C.; Karam, N.; Möllmann, H.; Bleiziffer, S.; Bonaros, N.; Teles, R.C.; Carrilho Ferreira, P.; Chieffo, A.; Czerny, M.; Donal, E.; et al. Transcatheter Interventions for Left-Sided Valvular Heart Disease Complicated by Cardiogenic Shock: A Consensus Statement from the European Association of Percutaneous Cardiovascular Interventions (EAPCI) in Collaboration with the Association for Acute Ca. EuroIntervention 2023, 19, 634–651. [Google Scholar] [CrossRef]
- Helgestad, O.K.L.; Josiassen, J.; Hassager, C.; Jensen, L.O.; Holmvang, L.; Udesen, N.L.J.; Schmidt, H.; Berg Ravn, H.; Moller, J.E. Contemporary Trends in Use of Mechanical Circulatory Support in Patients with Acute MI and Cardiogenic Shock. Open Heart 2020, 7, e001214. [Google Scholar] [CrossRef]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef] [PubMed]
- Rao, S.V.; O’Donoghue, M.L.; Ruel, M.; Rab, T.; Tamis-Holland, J.E.; Alexander, J.H.; Baber, U.; Baker, H.; Cohen, M.G.; Cruz-Ruiz, M.; et al. 2025 ACC/AHA/ACEP/NAEMSP/SCAI Guideline for the Management of Patients With Acute Coronary Syndromes. J. Am. Coll. Cardiol. 2025, 85, 2135–2237. [Google Scholar] [CrossRef]
- Baran, D.A.; Grines, C.L.; Bailey, S.; Burkhoff, D.; Hall, S.A.; Henry, T.D.; Hollenberg, S.M.; Kapur, N.K.; O’Neill, W.; Ornato, J.P.; et al. SCAI Clinical Expert Consensus Statement on the Classification of Cardiogenic Shock: This Document Was Endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Societ. Catheter. Cardiovasc. Interv. 2019, 94, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Rajan, R.; Al Jarallah, M.; Daoulah, A.; Panduranga, P.; Elmahrouk, A.; Mohamed Al Rawahi, A.S.; Al Maashani, S.; Aloui, H.M.; Aldossari, M.A.; Yousif, N.; et al. The Utility and Validation of SCAI-CSWG Stages in Patients With Acute Myocardial Infarction-Related Cardiogenic Shock. J. Soc. Cardiovasc. Angiogr. Interv. 2025, 4. [Google Scholar] [CrossRef] [PubMed]
- Hanson, I.D.; Rusia, A.; Palomo, A.; Tawney, A.; Pow, T.; Dixon, S.R.; Meraj, P.; Sievers, E.; Johnson, M.; Wohns, D.; et al. Treatment of Acute Myocardial Infarction and Cardiogenic Shock: Outcomes of the RECOVER III Postapproval Study by Society of Cardiovascular Angiography and Interventions Shock Stage. J. Am. Heart Assoc. 2024, 13, 1–13. [Google Scholar] [CrossRef]
- Jentzer, J.C.; van Diepen, S.; Barsness, G.W.; Henry, T.D.; Menon, V.; Rihal, C.S.; Naidu, S.S.; Baran, D.A. Cardiogenic Shock Classification to Predict Mortality in the Cardiac Intensive Care Unit. J. Am. Coll. Cardiol. 2019, 74, 2117–2128. [Google Scholar] [CrossRef] [PubMed]
- Naidu, S.S.; Baran, D.A.; Jentzer, J.C.; Hollenberg, S.M.; van Diepen, S.; Basir, M.B.; Grines, C.L.; Diercks, D.B.; Hall, S.; Kapur, N.K.; et al. SCAI SHOCK Stage Classification Expert Consensus Update: A Review and Incorporation of Validation Studies. J. Am. Coll. Cardiol. 2022, 79, 933–946. [Google Scholar] [CrossRef]
- Laghlam, D.; Benghanem, S.; Ortuno, S.; Bouabdallaoui, N.; Manzo-Silberman, S.; Hamzaoui, O.; Aissaoui, N. Management of Cardiogenic Shock: A Narrative Review. Ann. Intensive Care 2024, 14, 45. [Google Scholar] [CrossRef] [PubMed]
- Kantrowitz, A. Origins of Intraaortic Balloon Pumping. Ann. Thorac. Surg. 1990, 50, 672–674. [Google Scholar] [CrossRef]
- Geppert, A.; Mashayekhi, K.; Huber, K. The Use of Mechanical Circulatory Support in Elective High-Risk Percutaneous Coronary Interventions: A Literature-Based Review. Eur. Heart J. Open 2024, 4, 1–9. [Google Scholar] [CrossRef]
- González, L.S.; Chaney, M.A. Intraaortic Balloon Pump Counterpulsation, Part I: History, Technical Aspects, Physiologic Effects, Contraindications, Medical Applications/Outcomes. Anesth. Analg. 2020, 131, 776–791. [Google Scholar] [CrossRef]
- Gillespie, L.E.; Lane, B.H.; Shaw, C.R.; Gorder, K.; Grisoli, A.; Lavallee, M.; Gobble, O.; Vidosh, J.; Deimling, D.; Ahmad, S.; et al. The Intra-Aortic Balloon Pump: A Focused Review of Physiology, Transport Logistics, Mechanics, and Complications. J. Soc. Cardiovasc. Angiogr. Interv. 2024, 3, 101337. [Google Scholar] [CrossRef] [PubMed]
- Nakata, J.; Yamamoto, T.; Saku, K.; Ikeda, Y.; Unoki, T.; Asai, K. Mechanical Circulatory Support in Cardiogenic Shock. J. Intensive Care 2023, 11, 64. [Google Scholar] [CrossRef]
- Prondzinsky, R.; Lemm, H.; Swyter, M.; Wegener, N.; Unverzagt, S.; Carter, J.M.; Russ, M.; Schlitt, A.; Buerke, U.; Christoph, A.; et al. Intra-Aortic Balloon Counterpulsation in Patients with Acute Myocardial Infarction Complicated by Cardiogenic Shock: The Prospective, Randomized IABP SHOCK Trial for Attenuation of Multiorgan Dysfunction Syndrome*. Crit. Care Med. 2010, 38, 152–160. [Google Scholar] [CrossRef]
- Patel, M.R.; Smalling, R.W.; Thiele, H.; Barnhart, H.X.; Zhou, Y.; Chandra, P.; Chew, D.; Cohen, M.; French, J.; Perera, D.; et al. Intra-Aortic Balloon Counterpulsation and Infarct Size in Patients With Acute Anterior Myocardial Infarction Without Shock. JAMA 2011, 306, 1329. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Neumann, F.-J.; Ferenc, M.; Olbrich, H.-G.; Hausleiter, J.; Richardt, G.; Hennersdorf, M.; Empen, K.; Fuernau, G.; et al. Intraaortic Balloon Support for Myocardial Infarction with Cardiogenic Shock. N. Engl. J. Med. 2012, 367, 1287–1296. [Google Scholar] [CrossRef]
- Thiele, H.; Zeymer, U.; Thelemann, N.; Neumann, F.-J.; Hausleiter, J.; Abdel-Wahab, M.; Meyer-Saraei, R.; Fuernau, G.; Eitel, I.; Hambrecht, R.; et al. Intraaortic Balloon Pump in Cardiogenic Shock Complicating Acute Myocardial Infarction. Circulation 2019, 139, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Glazier, J.J.; Kaki, A. The Impella Device: Historical Background, Clinical Applications and Future Directions. Int. J. Angiol. 2019, 28, 118–123. [Google Scholar] [CrossRef]
- Panuccio, G.; Neri, G.; Macrì, L.M.; Salerno, N.; De Rosa, S.; Torella, D. Use of Impella Device in Cardiogenic Shock and Its Clinical Outcomes: A Systematic Review and Meta-Analysis. IJC Heart Vasc. 2022, 40, 101007. [Google Scholar] [CrossRef]
- Saito, S.; Okubo, S.; Matsuoka, T.; Hirota, S.; Yokoyama, S.; Kanazawa, Y.; Takei, Y.; Tezuka, M.; Tsuchiya, G.; Konishi, T.; et al. Impella—Current Issues and Future Expectations for the Percutaneous, Microaxial Flow Left Ventricular Assist Device. J. Cardiol. 2024, 83, 228–235. [Google Scholar] [CrossRef]
- Pappalardo, F.; Møller, J.E. STATUS QUO 2020: What Have We Learned so Far in Temporary Mechanical Circulatory Support? Use of Impella beyond the Cathlab: Open Issues and Clinical Needs. Eur. Heart J. Suppl. 2021, 23, A1–A2. [Google Scholar] [CrossRef] [PubMed]
- Seyfarth, M.; Sibbing, D.; Bauer, I.; Fröhlich, G.; Bott-Flügel, L.; Byrne, R.; Dirschinger, J.; Kastrati, A.; Schömig, A. A Randomized Clinical Trial to Evaluate the Safety and Efficacy of a Percutaneous Left Ventricular Assist Device Versus Intra-Aortic Balloon Pumping for Treatment of Cardiogenic Shock Caused by Myocardial Infarction. J. Am. Coll. Cardiol. 2008, 52, 1584–1588. [Google Scholar] [CrossRef]
- Ouweneel, D.M.; Eriksen, E.; Sjauw, K.D.; van Dongen, I.M.; Hirsch, A.; Packer, E.J.S.; Vis, M.M.; Wykrzykowska, J.J.; Koch, K.T.; Baan, J.; et al. Percutaneous Mechanical Circulatory Support Versus Intra-Aortic Balloon Pump in Cardiogenic Shock After Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2017, 69, 278–287. [Google Scholar] [CrossRef]
- Karami, M.; Eriksen, E.; Ouweneel, D.M.; Claessen, B.E.; Vis, M.M.; Baan, J.; Beijk, M.; Packer, E.J.S.; Sjauw, K.D.; Engstrom, A.; et al. Long-Term 5-Year Outcome of the Randomized IMPRESS in Severe Shock Trial: Percutaneous Mechanical Circulatory Support vs. Intra-Aortic Balloon Pump in Cardiogenic Shock after Acute Myocardial Infarction. Eur. Heart J. Acute Cardiovasc. Care 2021, 10, 1009–1015. [Google Scholar] [CrossRef]
- Bochaton, T.; Huot, L.; Elbaz, M.; Delmas, C.; Aissaoui, N.; Farhat, F.; Mewton, N.; Bonnefoy, E. Mechanical Circulatory Support with the Impella® LP5.0 Pump and an Intra-Aortic Balloon Pump for Cardiogenic Shock in Acute Myocardial Infarction: The IMPELLA-STIC Randomized Study. Arch. Cardiovasc. Dis. 2020, 113, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Møller, J.E.; Engstrøm, T.; Jensen, L.O.; Eiskjær, H.; Mangner, N.; Polzin, A.; Schulze, P.C.; Skurk, C.; Nordbeck, P.; Clemmensen, P.; et al. Microaxial Flow Pump or Standard Care in Infarct-Related Cardiogenic Shock. N. Engl. J. Med. 2024, 390, 1382–1393. [Google Scholar] [CrossRef] [PubMed]
- Møller, J.E.; Beske, R.P.; Engstrøm, T.; Jensen, L.O.; Eiskjær, H.; Mangner, N.; Polzin, A.; Schulze, P.C.; Skurk, C.; Nordbeck, P.; et al. Long-Term Outcomes of the DanGer Shock Trial. N. Engl. J. Med. 2025, 393, 1037–1038. [Google Scholar] [CrossRef]
- Schrage, B.; Ibrahim, K.; Loehn, T.; Werner, N.; Sinning, J.M.; Pappalardo, F.; Pieri, M.; Skurk, C.; Lauten, A.; Landmesser, U.; et al. Impella Support for Acute Myocardial Infarction Complicated by Cardiogenic Shock: Matched-Pair Iabp-Shock II Trial 30-Day Mortality Analysis. Circulation 2019, 139, 1249–1258. [Google Scholar] [CrossRef]
- Billig, S.; Zayat, R.; Yelenski, S.; Nix, C.; Bennek-Schoepping, E.; Hochhausen, N.; Derwall, M. The Self-Expandable Impella CP (ECP) as a Mechanical Resuscitation Device. Bioengineering 2024, 11, 456. [Google Scholar] [CrossRef]
- Anderson, M.B.; Goldstein, J.; Milano, C.; Morris, L.D.; Kormos, R.L.; Bhama, J.; Kapur, N.K.; Bansal, A.; Garcia, J.; Baker, J.N.; et al. Benefits of a Novel Percutaneous Ventricular Assist Device for Right Heart Failure: The Prospective RECOVER RIGHT Study of the Impella RP Device. J. Heart Lung Transp. 2015, 34, 1549–1560. [Google Scholar] [CrossRef]
- Dhruva, S.S.; Ross, J.S.; Mortazavi, B.J.; Hurley, N.C.; Krumholz, H.M.; Curtis, J.P.; Berkowitz, A.P.; Masoudi, F.A.; Messenger, J.C.; Parzynski, C.S.; et al. Use of Mechanical Circulatory Support Devices Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock. JAMA Netw. Open 2021, 4, e2037748. [Google Scholar] [CrossRef]
- Bartlett, R.H. The Story of ECMO. Anesthesiology 2024, 140, 578–584. [Google Scholar] [CrossRef]
- Tonna, J.E.; Abrams, D.; Brodie, D.; Greenwood, J.C.; RUBIO Mateo-Sidron, J.A.; Usman, A.; Fan, E. Management of Adult Patients Supported with Venovenous Extracorporeal Membrane Oxygenation (VV ECMO): Guideline from the Extracorporeal Life Support Organization (ELSO). ASAIO J. 2021, 67, 601–610. [Google Scholar] [CrossRef]
- Lorusso, R.; Shekar, K.; MacLaren, G.; Schmidt, M.; Pellegrino, V.; Meyns, B.; Haft, J.; Vercaemst, L.; Pappalardo, F.; Bermudez, C.; et al. ELSO Interim Guidelines for Venoarterial Extracorporeal Membrane Oxygenation in Adult Cardiac Patients. ASAIO J. 2021, 67, 827–844. [Google Scholar] [CrossRef] [PubMed]
- McDonagh, T.A.; Metra, M.; Adamo, M.; Baumbach, A.; Böhm, M.; Burri, H.; Čelutkiene, J.; Chioncel, O.; Cleland, J.G.F.; Coats, A.J.S.; et al. 2021 ESC Guidelines for the Diagnosis and Treatment of Acute and Chronic Heart Failure. Eur. Heart J. 2021, 42, 3599–3726. [Google Scholar] [CrossRef]
- Brunner, S.; Guenther, S.P.W.; Lackermair, K.; Peterss, S.; Orban, M.; Boulesteix, A.-L.; Michel, S.; Hausleiter, J.; Massberg, S.; Hagl, C. Extracorporeal Life Support in Cardiogenic Shock Complicating Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 73, 2355–2357. [Google Scholar] [CrossRef]
- Zeymer, U.; Freund, A.; Hochadel, M.; Ostadal, P.; Belohlavek, J.; Rokyta, R.; Massberg, S.; Brunner, S.; Lüsebrink, E.; Flather, M.; et al. Venoarterial Extracorporeal Membrane Oxygenation in Patients with Infarct-Related Cardiogenic Shock: An Individual Patient Data Meta-Analysis of Randomised Trials. The Lancet 2023, 402, 1338–1346. [Google Scholar] [CrossRef]
- Ostadal, P.; Rokyta, R.; Karasek, J.; Kruger, A.; Vondrakova, D.; Janotka, M.; Naar, J.; Smalcova, J.; Hubatova, M.; Hromadka, M.; et al. Extracorporeal Membrane Oxygenation in the Therapy of Cardiogenic Shock: Results of the ECMO-CS Randomized Clinical Trial. Circulation 2023, 147, 454–464. [Google Scholar] [CrossRef] [PubMed]
- Thiele, H.; Zeymer, U.; Akin, I.; Behnes, M.; Rassaf, T.; Mahabadi, A.A.; Lehmann, R.; Eitel, I.; Graf, T.; Seidler, T.; et al. Extracorporeal Life Support in Infarct-Related Cardiogenic Shock. N. Eng. J. Med. 2023, 389, 1286–1297. [Google Scholar] [CrossRef]
- Banning, A.S.; Sabaté, M.; Orban, M.; Gracey, J.; López-Sobrino, T.; Massberg, S.; Kastrati, A.; Bogaerts, K.; Adriaenssens, T.; Berry, C.; et al. Venoarterial Extracorporeal Membrane Oxygenation or Standard Care in Patients with Cardiogenic Shock Complicating Acute Myocardial Infarction: The Multicentre, Randomised EURO SHOCK Trial. EuroIntervention 2023, 19, 482–492. [Google Scholar] [CrossRef]
- Desch, S.; Zeymer, U.; Akin, I.; Behnes, M.; Duerschmied, D.; Rassaf, T.; Mahabadi, A.A.; Lehmann, R.; Eitel, I.; Graf, T.; et al. Routine Extracorporeal Life Support in Infarct-Related Cardiogenic Shock: 1-Year Results of the ECLS-SHOCK Trial. Eur. Heart J. 2024, 45, 4200–4203. [Google Scholar] [CrossRef]
- Feistritzer, H.-J.; Zeymer, U.; Ouarrak, T.; Akin, I.; Rassaf, T.; Lehmann, R.; Eitel, I.; Seidler, T.; Skurk, C.; Clemmensen, P.; et al. Different Mechanical Circulatory Support Strategies for Infarct-Related Cardiogenic Shock. JACC Cardiovasc. Interv. 2025, 18, 691–701. [Google Scholar] [CrossRef]
- Møller, J.E.; Hassager, C.; Bonello, L.; Delmas, C.; Pappalardo, F. Pump Flow Setting and Assessment of Unloading in Clinical Practice. Eur. Heart J. Suppl. 2021, 23, A23–A26. [Google Scholar] [CrossRef] [PubMed]
- Pappalardo, F.; Schulte, C.; Pieri, M.; Schrage, B.; Contri, R.; Soeffker, G.; Greco, T.; Lembo, R.; Müllerleile, K.; Colombo, A.; et al. Concomitant Implantation of Impella® on Top of Veno-Arterial Extracorporeal Membrane Oxygenation May Improve Survival of Patients with Cardiogenic Shock. Eur. J. Heart Fail. 2017, 19, 404–412. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.C.; Lim, Y.; Lee, S.H.; Shin, Y.; Ahn, J.H.; Hyun, D.Y.; Cho, K.H.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; et al. Early Left Ventricular Unloading or Conventional Approach After Venoarterial Extracorporeal Membrane Oxygenation: The EARLY-UNLOAD Randomized Clinical Trial. Circulation 2023, 148, 1570–1581. [Google Scholar] [CrossRef]
- Belohlavek, J.; Hunziker, P.; Donker, D.W. Left Ventricular Unloading and the Role of ECpella. Eur. Heart J. Suppl. 2021, 23, A27–A34. [Google Scholar] [CrossRef]
- Schrage, B.; Becher, P.M.; Bernhardt, A.; Bezerra, H.; Blankenberg, S.; Brunner, S.; Colson, P.; Cudemus Deseda, G.; Dabboura, S.; Eckner, D.; et al. Left Ventricular Unloading Is Associated With Lower Mortality in Patients With Cardiogenic Shock Treated With Venoarterial Extracorporeal Membrane Oxygenation. Circulation 2020, 142, 2095–2106. [Google Scholar] [CrossRef]
- Atti, V.; Narayanan, M.A.; Patel, B.; Balla, S.; Siddique, A.; Lundgren, S.; Velagapudi, P. A Comprehensive Review of Mechanical Circulatory Support Devices. Heart Int. 2022, 16, 37. [Google Scholar] [CrossRef]
- Balthazar, T.; Vandenbriele, C.; Verbrugge, F.H.; Den Uil, C.; Engström, A.; Janssens, S.; Rex, S.; Meyns, B.; Van Mieghem, N.; Price, S.; et al. Managing Patients With Short-Term Mechanical Circulatory Support. J. Am. Coll. Cardiol. 2021, 77, 1243–1256. [Google Scholar] [CrossRef] [PubMed]
- Vranckx, P.; Meliga, E.; De Jaegere, P.; Van den Ent, M.; Regar, E.; Serruys, P. The TandemHeart®, Percutaneous Transseptal Left Ventricular Assist Device: A Safeguard in High-Risk Percutaneous Coronary Interventions. The Six-Year Rotterdam Experience. EuroIntervention 2008, 4, 331–337. [Google Scholar] [CrossRef] [PubMed]
- Burkhoff, D.; Cohen, H.; Brunckhorst, C.; O’Neill, W.W. A Randomized Multicenter Clinical Study to Evaluate the Safety and Efficacy of the TandemHeart Percutaneous Ventricular Assist Device versus Conventional Therapy with Intraaortic Balloon Pumping for Treatment of Cardiogenic Shock. Am. Heart J. 2006, 152, 469.e1–469.e8. [Google Scholar] [CrossRef] [PubMed]
- George, T.J.; Sheasby, J.; Kabra, N.; DiMaio, J.M.; Rawitscher, D.A.; Afzal, A. Temporary Right Ventricular Assist Device Support for Acute Right Heart Failure: A Single-Center Experience. J. Surg. Res. 2023, 282, 15–21. [Google Scholar] [CrossRef]
- Møller, J.E.; Thiele, H.; Morrow, D.; Kjærgaard, J.; Hassager, C. Mechanical Circulatory Support: When, How, and for Whom. Eur. Heart J. 2025, 46, 1480–1492. [Google Scholar] [CrossRef]
- Buda, K.G.; Hryniewicz, K.; Eckman, P.M.; Basir, M.B.; Cowger, J.A.; Alaswad, K.; Mukundan, S.; Sandoval, Y.; Elliott, A.; Brilakis, E.S.; et al. Early vs. Delayed Mechanical Circulatory Support in Patients with Acute Myocardial Infarction and Cardiogenic Shock. Eur. Heart J. Acute Cardiovasc. Care 2024, 13, 390–397. [Google Scholar] [CrossRef]
- Tarantini, G.; Panza, A.; Lorenzoni, G.; Gregori, D.; Masiero, G. Breaking Down Cardiogenic Shock: An Analytical Reflection on the DanGer-SHOCK and ECLS-SHOCK Trials. Am. J. Cardiol. 2025, 236, 30–33. [Google Scholar] [CrossRef]
- Sinha, S.S.; Morrow, D.A.; Kapur, N.K.; Kataria, R.; Roswell, R.O. 2025 Concise Clinical Guidance: An ACC Expert Consensus Statement on the Evaluation and Management of Cardiogenic Shock: A Report of the American College of Cardiology Solution Set Oversight Committee. J. Am. Coll. Cardiol. 2025, 85, 1618–1641. [Google Scholar] [CrossRef]
- Tehrani, B.N.; Truesdell, A.G.; Sherwood, M.W.; Desai, S.; Tran, H.A.; Epps, K.C.; Singh, R.; Psotka, M.; Shah, P.; Cooper, L.B.; et al. Standardized Team-Based Care for Cardiogenic Shock. J. Am. Coll. Cardiol. 2019, 73, 1659–1669. [Google Scholar] [CrossRef]
- Lupu, L.; Stone, G.W.; Cilia, L.; Thiele, H.; Daggubati, R.; Kereiakes, D.J.; Rab, T.; Rinaldi, M.J.; Vetrovec, G.W.; Waksman, R. Beyond the Guidelines: Expert Perspectives on the Management of AMI-Related Cardiogenic Shock from the Cardiovascular Research Technologies (CRT) 2025 Meeting. Cardiovasc. Revascularization Med. 2025, 75, 3–7. [Google Scholar] [CrossRef]
- Kapur, N.K.; Alkhouli, M.A.; DeMartini, T.J.; Faraz, H.; George, Z.H.; Goodwin, M.J.; Hernandez-Montfort, J.A.; Iyer, V.S.; Josephy, N.; Kalra, S.; et al. Unloading the Left Ventricle Before Reperfusion in Patients With Anterior ST-Segment–Elevation Myocardial Infarction. Circulation 2019, 139, 337–346. [Google Scholar] [CrossRef]
- Gandhi, K.D.; Moras, E.C.; Niroula, S.; Lopez, P.D.; Aggarwal, D.; Bhatia, K.; Balboul, Y.; Daibes, J.; Correa, A.; Dominguez, A.C.; et al. Left Ventricular Unloading With Impella Versus IABP in Patients With VA-ECMO: A Systematic Review and Meta-Analysis. Am. J. Cardiol. 2023, 208, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Ezad, S.M.; Ryan, M.; Donker, D.W.; Pappalardo, F.; Barrett, N.; Camporota, L.; Price, S.; Kapur, N.K.; Perera, D. Unloading the Left Ventricle in Venoarterial ECMO: In Whom, When, and How? Circulation 2023, 147, 1237–1250. [Google Scholar] [CrossRef] [PubMed]
- Bogerd, M.; ten Berg, S.; Peters, E.J.; Vlaar, A.P.J.; Engström, A.E.; Otterspoor, L.C.; Jung, C.; Westermann, D.; Pöss, J.; Thiele, H.; et al. Impella and Venoarterial Extracorporeal Membrane Oxygenation in Cardiogenic Shock Complicating Acute Myocardial Infarction. Eur. J. Heart Fail. 2023, 25, 2021–2031. [Google Scholar] [CrossRef]
- De Ferrari, T.; Pistelli, L.; Franzino, M.; Molinero, A.E.; De Santis, G.A.; Di Carlo, A.; Vetta, G.; Parlavecchio, A.; Fimiani, L.; Picci, A.; et al. MI2AMI-CS: A Meta-Analysis Comparing Impella and IABP Outcomes in Acute Myocardial Infarction-Related Cardiogenic Shock. Int. J. Cardiol. 2024, 414, 132411. [Google Scholar] [CrossRef] [PubMed]
- Beer, B.N.; Kellner, C.; Goßling, A.; Sundermeyer, J.; Besch, L.; Dettling, A.; Kirchhof, P.; Blankenberg, S.; Bernhardt, A.M.; Brunner, S.; et al. Complications in Patients with Cardiogenic Shock on Veno-Arterial Extracorporeal Membrane Oxygenation Therapy: Distribution and Relevance. Results from an International, Multicentre Cohort Study. Eur. Heart J. Acute Cardiovasc. Care 2024, 13, 203–212. [Google Scholar] [CrossRef]
- Schuster, A.; Faulkner, M.; Zeymer, U.; Ouarrak, T.; Eitel, I.; Desch, S.; Hasenfuß, G.; Thiele, H. Economic Implications of Intra-Aortic Balloon Support for Myocardial Infarction with Cardiogenic Shock: An Analysis from the IABP-SHOCK II-Trial. Clin. Res. Cardiol. 2015, 104, 566–573. [Google Scholar] [CrossRef] [PubMed]
- Moller, J.E.; Thiele, H.; Zeymer, U.; Proudfoot, A.; Hassager, C. Mechanical Circulatory Support for Patients with Infarct-Related Cardiogenic Shock: A State-of-the-Art Review. Heart 2025, 111, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Augustin, K.J.; Wieruszewski, P.M.; McLean, L.; Leiendecker, E.; Ramakrishna, H. Analysis of the 2023 European Multidisciplinary Consensus Statement on the Management of Short-Term Mechanical Circulatory Support of Cardiogenic Shock in Adults in the Intensive Cardiac Care Unit. J. Cardiothorac. Vasc. Anesth. 2024, 38, 1786–1801. [Google Scholar] [CrossRef] [PubMed]




| Cardiology Societies | Recommendation |
|---|---|
| ACC, AHA, SCAI (2025) | In patients with mechanical complications of ACS, short-term MCS devices are reasonable for hemodynamic stabilization as a bridge to surgery (CoR 2a, LOE B-NR) |
| ACC, AHA, SCAI (2025) | In selected patients with STEMI and severe or refractory CS, insertion of a microaxial intravascular flow pump is reasonable to reduce death (CoR 2a, LOE BR). |
| ESC (2023) | In patients with ACS and severe/refractory CS, short-term mechanical circulatory support may be considered (CoR IIb, LOE C). |
| ESC (2023) | IABP should be considered in patients with hemodynamic instability/cardiogenic shock due to ACS-related mechanical complications (CoR IIa, LOE C). |
| ESC (2023) | The routine use of an IABP in ACS patients with CS and without mechanical complications is not recommended (CoR III, LOR B) |
| ACC, AHA, SCAI (2025) | In patients with AMI and cardiogenic shock, the routine use of IABP or VA-ECMO is not recommended due to a lack of survival benefit (CoR 3, LOE B-R) |
| IABP | Impella | VA-ECMO | |
|---|---|---|---|
| Pump mechanism | Balloon inflation-deflation | Axial-flow continuous pump | Centrifugal-flow continuous pump |
| Cannula placement | Descending thoracic aorta | Left ventricle-to-Ascending Aorta (CP/5.5); Right Atrium-to-Pulmonary Artery (RP) | Right Atrium-to-Aorta |
| Peripheral resistance | Decreased | Mildly increased | Increased |
| Cardiac output | 0.5–1 L/min | 2.5–5.5 L/min | 4–7 L/min |
| Arterial femoral access | 7–8 Fr | 13 Fr (2.5), 14 Fr (CP), 21 Fr (5.0 and 5.5), 9 Fr (ECP) | 14–22 Fr |
| Venous access | None | None | 17–28 Fr |
| Contraindications | |||
| Severe aortic regurgitation | Severe aortic regurgitation | Severe aortic regurgitation | |
| Aortic dissection | Aortic dissection | Aortic dissection | |
| Severe peripheral arterial disease | Severe peripheral arterial disease | Severe peripheral arterial disease | |
| Absolute contraindications to anticoagulation | Absolute contraindications to anticoagulation | ||
| LV thrombus | |||
| Mechanical aortic valve | |||
| Severe aortic stenosis | |||
| General complications | |||
| Moderate/severe bleeding | + | ++ | +++ |
| Vascular complications | + | ++ | +++ |
| Thrombocytopenia | + | + | ++ |
| Hemolysis | + | ++++ | ++ |
| Specific complications | |||
| Spinal cord ischemia | Ventricular arrhythmias | Harlequins syndrome | |
| Device dislocation | Myocardial perforation | Pulmonary edema | |
| Device dislocation | LV dilatation | ||
| LV stasis and thrombus | |||
| Systemic gas embolism | |||
| Clot formation in the circuit |
| Trial (Year) | Sample Size | Intervention vs. Control | Population | Inclusion CS Criteria | Primary Outcome | 30-Day All-Cause Mortality MCS Group | Moderate-to-Severe Bleeding | Peripheral Vascular Complications |
|---|---|---|---|---|---|---|---|---|
| IABP SHOCK I (2010) [20] | 45 | IABP vs. OMT | AMI-CS | Hemodynamic instability and end-organ hypo-perfusion, CI < 2.2 L/min/m2. | No difference in APACHE II score and CI at 4 days | 36.8% | NR | NR |
| IABP SHOCK II, (2012) [22] | 600 | IABP vs. OMT | AMI-CS | Hemodynamic instability and end-organ hypo-perfusion, symptoms and signs of pulmonary congestion, lactate level > 2.0 mmol/L. | No difference in 30-day all-cause mortality | 39.7% | 20.6% | 4.3% |
| ISAR-SHOCK (2008) [28] | 25 | Impella vs. IABP | AMI-CS | Hemodynamic instability and end-organ hypo-perfusion, CI < 2.2 L/min/m2. | Improvement in Cardiac Index after 30 min of support with Impella LP2.5 | 46% in both groups. | NR | NR |
| IMPRESS (2017) [29] | 48 | Impella CP vs. IABP | STEMI-CS | Mechanically ventilated patients with severe CS defined as hemodynamic instability. | No difference in 30-day all-cause mortality | Impella: 46% IABP: 50% | Impella: 13% IABP: 4% | Impella: 1% IABP: 0% |
| DanGer Shock, (2024) [32] | 360 | Impella CP vs. OMT | STEMI-CS | Best corresponds to SCAI stages C, D, or E: Hemodynamic instability and end-organ hypoperfusion, with an arterial lactate level > 2.5 mmol/L, and a LV ejection fraction < 45%. | Significantly lower risk of all-cause mortality at 180 days, in the Impella group | 39.6% | 21.8% | 5.6% |
| ECLS CS AMI, (2019) [42] | 42 | VA-ECMO vs. OMT | AMI-CS | Hemodynamic instability and end-organ hypoperfusion, with an arterial lactate level > 3 mmol/L. | No difference in LV EF at 30 days | 33% | 19% | 10% |
| ECMO-CS (2023) [44] | 122 | VA-ECMO vs. OMT | CS of various causes (65% of which were AMI-related) | Best corresponds to SCAI stages D/E: Rapidly deteriorating shock or severe shock, defined as progressive hemodynamic instability needing vasopressors to maintain SBP > 50 mmHg, arterial lactate > 3 mmol/L, and LVEF <35% or LVEF 35–55% in case of severe mitral regurgitation or aortic stenosis. | No difference in the composite of all-cause mortality, resuscitated circulatory arrest, and implementation of another MCS device at 30 days | 50% | 31% | 13.8% |
| EURO-SHOCK (2023) [46] | 35 | VA-ECMO vs. OMT | AMI-CS | Hemodynamic instability and end-organ hypoperfusion, clinical signs of pulmonary congestion, arterial lactate > 2 mmol/L. | No difference in 30-day and 12-month all-cause mortality | 43.8% | 36% | 21% |
| ECLS-SHOCK (2023) [45] | 420 | VA-ECMO vs. OMT | AMI-CS | Hemodynamic instability and end-organ hypoperfusion, arterial lactate > 3 mmol/L. | No difference in 30-day all-cause mortality | 47.8% | 23.4% | 11% |
| Device | Main RCTs (Year) | Typical SCAI Stage/Severity | Population Highlights | Timing of MCS | Primary Outcome and Trend | Practical Implications |
|---|---|---|---|---|---|---|
| IABP | IABP-SHOCK I (2010) [20]; IABP-SHOCK II (2012; 2019) [22,23] | Mostly B–C (milder shock); lactate often low-to-moderate | AMI-CS undergoing PCI; high pre-randomization arrest (45%) in IABP-SHOCK II; frequent post-PCI placement | Predominantly post-PCI or delayed | No mortality benefit at 30 days, 1 year, or 6 years; neutral secondary outcomes | Not routine in AMI-CS without mechanical complications; consider in mechanical complications or as adjuncts |
| Impella (CP/5.0) | ISAR-SHOCK (2008) [28]; IMPRESS (2017) [29,30]; DanGer Shock (2024) [32,33] | Predominantly C–D (classic–deteriorating); LV-predominant failure | AMI-CS with PCI; IMPRESS had about 92% pre-randomization arrest; DanGer enrolled STEMI-CS with lactate > 2.5 mmol/L, LVEF < 45% | Early/upfront favored (DanGer); earlier initiation emphasized | ISAR-SHOCK: hemodynamic gain; IMPRESS: no mortality difference; DanGer Shock: lower 180-day mortality vs. standard care | Considered in SCAI C–early D, especially before PCI; greatest benefit before multiorgan failure |
| VA-ECMO | ECLS-SHOCK I (2019) [42]; ECMO-CS (2023) [44]; EURO SHOCK (2023) [46]; ECLS-SHOCK (2023; 2024 1-yr) [45,47] | Often D–E (deteriorating or extremis); frequent post-arrest | AMI-CS with severe hypoperfusion ± respiratory failure; ECLS-SHOCK had about 78% resuscitated; older cohorts; high crossover | Frequently early vs. conservative; many crossovers to ECMO | No routine survival benefit; hemodynamics improved, but mortality unchanged; signal of harm via complications | Reserved for refractory D–E, severe hypoxemia, or post-arrest; plan LV unloading and limb protection |
| Combination (ECPELLA; IABP + ECMO) | RCT evidence ongoing (EARLY-UNLOAD neutral; UNLOAD-ECMO ongoing) | D–E with LV distension or closed AV; inadequate pulsatility on ECMO | ECMO recipients with pulmonary congestion, LV distension, and high LVEDP/PCWP | Adjunctive (after ECMO start) or upfront in select centers | Observational data: physiologic benefit; no definitive mortality benefit yet | Used when ECMO-induced afterload causes LV distension/pulmonary edema; careful selection |
| Other devices (TandemHeart; RV support) | Early small RCTs/series (2006–2008) [54,56]; PROTEK Duo (RV) observational | Selected C–D (LV or RV phenotypes) | TandemHeart: LA–aortic centrifugal support (up to ~5 L/min); PROTEK Duo: RV failure support | Center-dependent; often rescue or bridge | Hemodynamics improved vs. IABP; no mortality advantage; more access complications | Considered in experienced centers for specific phenotypes (LV or isolated RV shock) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Tetaj, N.; Nusca, A.; Piccirillo, F.; Halasz, G.; Gabrielli, D.; Ussia, G.P.; Grigioni, F. Short-Term Percutaneous Mechanical Circulatory Support in Acute Coronary Syndrome with Cardiogenic Shock: Which Device to Choose? J. Cardiovasc. Dev. Dis. 2026, 13, 99. https://doi.org/10.3390/jcdd13020099
Tetaj N, Nusca A, Piccirillo F, Halasz G, Gabrielli D, Ussia GP, Grigioni F. Short-Term Percutaneous Mechanical Circulatory Support in Acute Coronary Syndrome with Cardiogenic Shock: Which Device to Choose? Journal of Cardiovascular Development and Disease. 2026; 13(2):99. https://doi.org/10.3390/jcdd13020099
Chicago/Turabian StyleTetaj, Nardi, Annunziata Nusca, Francesco Piccirillo, Geza Halasz, Domenico Gabrielli, Gian Paolo Ussia, and Francesco Grigioni. 2026. "Short-Term Percutaneous Mechanical Circulatory Support in Acute Coronary Syndrome with Cardiogenic Shock: Which Device to Choose?" Journal of Cardiovascular Development and Disease 13, no. 2: 99. https://doi.org/10.3390/jcdd13020099
APA StyleTetaj, N., Nusca, A., Piccirillo, F., Halasz, G., Gabrielli, D., Ussia, G. P., & Grigioni, F. (2026). Short-Term Percutaneous Mechanical Circulatory Support in Acute Coronary Syndrome with Cardiogenic Shock: Which Device to Choose? Journal of Cardiovascular Development and Disease, 13(2), 99. https://doi.org/10.3390/jcdd13020099

