Fast-Track Extubation After Cardiac Surgery: A Narrative Review
Abstract
1. Introduction
2. Epidemiology of Cardiac Surgery
3. Enhanced Recovery After Cardiac Surgery
4. Fast-Track Cardiac Anesthesia
5. Perioperative Management
5.1. Patient Selection
5.2. Intraoperative Implementation
5.3. Postoperative Implementation
6. Discussion
7. Future Directions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ERAS | Enhanced recovery after surgery |
| HLOS | Hospital length of stay |
| ICU | Intensive care unit |
| FTE | Fast-track extubation |
| FTCA | Fast-track cardiac anesthesia |
| CABG | Coronary artery bypass graft |
| COPD | Chronic obstructive pulmonary disease |
| MET | Metabolic Equivalent of Task |
| LIP | Licensed Independent Practitioner |
| SBT | Spontaneous Breathing Trial |
| EuroSCORE | European System for Cardiac Operative Risk Evaluation |
| TAVR | Transcatheter Aortic Valve Replacement |
| STS | Society of Thoracic Surgeons |
| PACU | Post-anesthesia care unit |
| CPB | Cardiopulmonary bypass |
| ANZROD | Australian and New Zealand risk of death model |
| RASS | Richmond Agitation Sedation Scale |
| NSAID | Non-steroidal anti-inflammatory drug |
References
- Altman, A.D.; Helpman, L.; McGee, J.; Samouëlian, V.; Auclair, M.H.; Brar, H.; Nelson, G.S. Enhanced recovery after surgery: Implementing a new standard of surgical care. CMAJ 2019, 191, E469–E475. [Google Scholar] [CrossRef]
- Helwani, M.A.; Copeland, C.; Ridley, C.H.; Kaiser, H.A.; De Wet, C.J. A 3-hour fast-track extubation protocol for early extubation after cardiac surgery. JTCVS Open 2022, 12, 299–305. [Google Scholar] [CrossRef]
- Zahid, M.A.; Yousuf, M.S.; Ahmed, S.S.; Hamid, M. Frequency of Fast Track Extubation and Factors Affecting its Success in Adult Cardiac Surgery Patients: A Retrospective Analysis. Ann. Card. Anaesth. 2025, 28, 292–297. [Google Scholar] [CrossRef]
- Taylor, M.; Apparau, D.; Mosca, R.; Nwaejike, N. Does early extubation after cardiac surgery lead to a reduction in intensive care unit length of stay? Interact. Cardiovasc. Thorac. Surg. 2022, 34, 731–734. [Google Scholar] [CrossRef]
- Rahimi, S.; Abdi, A.; Salari, N.; Shohaimi, S.; Naghibeiranvand, M. Factors associated with long-term mechanical ventilation in patients undergoing cardiovascular surgery. BMC Cardiovasc. Disord. 2023, 23, 276. [Google Scholar] [CrossRef]
- Cannella, L.; Casey, I. Fast-Track Extubation Protocol for Adult Cardiac Surgery Patients to Reduce Intubation Times and Length of Stay in the Intensive Care Unit. Crit. Care Nurse 2025, 45, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Lima, C.A.; Ritchrmoc, M.K.; Leite, W.S.; Silva, D.; Lima, W.A.; Campos, S.L.; Andrade, A.D. Impact of fast-track management on adult cardiac surgery: Clinical and hospital outcomes. Rev. Bras. Ter. Intensiv. 2019, 31, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Cove, M.E.; Ying, C.; Taculod, J.M.; Oon, S.E.; Oh, P.; Kollengode, R.; MacLaren, G.; Tan, C.S. Multidisciplinary Extubation Protocol in Cardiac Surgical Patients Reduces Ventilation Time and Length of Stay in the Intensive Care Unit. Ann. Thorac. Surg. 2016, 102, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, P.; Constantine, A.; Costola, G.; Mele, S.; Shore, D.; Dimopoulos, K.; Aw, T.C. Ultra-Fast-Track Extubation in Adult Congenital Heart Surgery. J. Am. Heart Assoc. 2021, 10, e020201. [Google Scholar] [CrossRef]
- Nicolotti, D.; Grossi, S.; Nicolini, F.; Gallingani, A.; Rossi, S. Difficult Respiratory Weaning after Cardiac Surgery: A Narrative Review. J. Clin. Med. 2023, 12, 497. [Google Scholar] [CrossRef]
- Ahmad, F.B.; Anderson, R.N. The Leading Causes of Death in the US for 2020. JAMA 2021, 325, 1829–1830. [Google Scholar] [CrossRef]
- National Center for Health Statistics. National Health Interview Survey (NHIS). Respondent-Reported Prevlance of Heart Disease in Adults Aged 18 and over, by Selected Characteristics. 2021. Available online: https://www.cdc.gov/nchs/data/hus/2020-2021/hdprv.pdf (accessed on 3 February 2025).
- Nguyen, T.C.; George, I. Beyond the hammer: The future of cardiothoracic surgery. J. Thorac. Cardiovasc. Surg. 2015, 149, 675–677. [Google Scholar] [CrossRef]
- Feng, T.R.; White, R.S.; Gaber-Baylis, L.K.; Turnbull, Z.A.; Rong, L.Q. Coronary artery bypass graft readmission rates and risk factors—A retrospective cohort study. Int. J. Surg. 2018, 54, 7–17. [Google Scholar] [CrossRef]
- Tsao, C.W.; Aday, A.W.; Almarzooq, Z.I.; Anderson, C.A.M.; Arora, P.; Avery, C.L.; Baker-Smith, C.M.; Beaton, A.Z.; Boehme, A.K.; Buxton, A.E.; et al. Heart Disease and Stroke Statistics-2023 Update: A Report from the American Heart Association. Circulation 2023, 147, e93–e621. [Google Scholar] [CrossRef]
- Cribier, A.; Eltchaninoff, H.; Bash, A.; Borenstein, N.; Tron, C.; Bauer, F.; Derumeaux, G.; Anselme, F.; Laborde, F.; Leon, M.B. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis: First human case description. Circulation 2002, 106, 3006–3008. [Google Scholar] [CrossRef]
- (STS), The Society of Thoracic Surgeons. STS Congenital Heart Surgery Data Summary: All Patients: STS Period Ending 12/31/2018. 2019. Available online: https://www.sts.org/sites/default/files/Congenital-STSExecSummary_AllPatients.pdf (accessed on 20 February 2025).
- Senst, B.; Kumar, A.; Diaz, R.R. Cardiac Surgery. In StatPearls [Internet]; StatPearls Publishing: Orlando, FL, USA, 2022. [Google Scholar]
- Lawton, J.S.; Tamis-Holland, J.E.; Bangalore, S.; Bates, E.R.; Beckie, T.M.; Bischoff, J.M.; Bittl, J.A.; Cohen, M.G.; DiMaio, J.M.; Don, C.W.; et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2022, 145, e4–e17. [Google Scholar] [CrossRef] [PubMed]
- Alkhouli, M.; Alqahtani, F.; Kalra, A.; Gafoor, S.; Alhajji, M.; Alreshidan, M.; Holmes, D.R.; Lerman, A. Trends in Characteristics and Outcomes of Patients Undergoing Coronary Revascularization in the United States, 2003–2016. JAMA Netw. Open 2020, 3, e1921326. [Google Scholar] [CrossRef]
- Caldonazo, T.; Kirov, H.; Riedel, L.L.; Gaudino, M.; Doenst, T. Comparing CABG and PCI across the globe based on current regional registry evidence. Sci. Rep. 2022, 12, 22164. [Google Scholar] [CrossRef]
- Sattartabar, B.; Ajam, A.; Pashang, M.; Jalali, A.; Sadeghian, S.; Mortazavi, H.; Mansourian, S.; Bagheri, J.; Karimi, A.A.; Hosseini, K. Sex and age difference in risk factor distribution, trend, and long-term outcome of patients undergoing isolated coronary artery bypass graft surgery. BMC Cardiovasc. Disord. 2021, 21, 460. [Google Scholar] [CrossRef] [PubMed]
- Coisne, A.; Lancellotti, P.; Habib, G.; Garbi, M.; Dahl, J.S.; Barbanti, M.; Vannan, M.A.; Vassiliou, V.S.; Dudek, D.; Chioncel, O.; et al. ACC/AHA and ESC/EACTS Guidelines for the Management of Valvular Heart Diseases: JACC Guideline Comparison. J. Am. Coll. Cardiol. 2023, 82, 721–734. [Google Scholar] [CrossRef] [PubMed]
- Bonow, R.O.; Carabello, B.A.; Chatterjee, K.; de Leon, A.C., Jr.; Faxon, D.P.; Freed, M.D.; Gaasch, W.H.; Lytle, B.W.; Nishimura, R.A.; O’Gara, P.T.; et al. 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to revise the 1998 guidelines for the management of patients with valvular heart disease). Endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol 2008, 52, e1–e142. [Google Scholar] [CrossRef]
- Maganti, K.; Rigolin, V.H.; Sarano, M.E.; Bonow, R.O. Valvular heart disease: Diagnosis and management. Mayo Clin. Proc. 2010, 85, 483–500. [Google Scholar] [CrossRef] [PubMed]
- Carabello, B.A. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. Curr. Cardiol. Rep. 2011, 13, 173–174. [Google Scholar] [CrossRef] [PubMed]
- EuroSCORE. EuroSCORE II Calculator. Available online: https://www.euroscore.org/index.php?id=17 (accessed on 17 January 2024).
- (STS), The Society of Thoracic Surgeons. STS Short-Term/Operative Risk Calculator Adult Cardiac Surgery Database—All Procedures. Available online: https://acsdriskcalc.research.sts.org/ (accessed on 17 January 2024).
- Grimard, B.H.; Safford, R.E.; Burns, E.L. Aortic Stenosis: Diagnosis and Treatment. Am. Fam. Physician 2016, 93, 371–378. [Google Scholar]
- Lindroos, M.; Kupari, M.; Heikkilä, J.; Tilvis, R. Prevalence of aortic valve abnormalities in the elderly: An echocardiographic study of a random population sample. J. Am. Coll. Cardiol. 1993, 21, 1220–1225. [Google Scholar] [CrossRef]
- Roberts, W.C.; Ko, J.M. Frequency by decades of unicuspid, bicuspid, and tricuspid aortic valves in adults having isolated aortic valve replacement for aortic stenosis, with or without associated aortic regurgitation. Circulation 2005, 111, 920–925. [Google Scholar] [CrossRef] [PubMed]
- Lindman, B.R.; Clavel, M.A.; Mathieu, P.; Iung, B.; Lancellotti, P.; Otto, C.M.; Pibarot, P. Calcific aortic stenosis. Nat. Rev. Dis. Primers 2016, 2, 16006. [Google Scholar] [CrossRef] [PubMed]
- Zoghbi, W.A.; Enriquez-Sarano, M.; Foster, E.; Grayburn, P.A.; Kraft, C.D.; Levine, R.A.; Nihoyannopoulos, P.; Otto, C.M.; Quinones, M.A.; Rakowski, H.; et al. Recommendations for evaluation of the severity of native valvular regurgitation with two-dimensional and Doppler echocardiography. J. Am. Soc. Echocardiogr. 2003, 16, 777–802. [Google Scholar] [CrossRef]
- Kligfield, P. Heart Disease: A textbook of Cardiovascular Medicine, 5/E, edited by Eugene Braunwald, W.B. Saunders, Philadelphia (1997) 2143 pages, illustrated, $125.00 ISBN: 9-7216-5666-8. Clin. Cardiol. 2009, 21, 147–148. [Google Scholar] [CrossRef]
- Enriquez-Sarano, M.; Tajik, A.J. Clinical practice. Aortic regurgitation. N. Engl. J. Med. 2004, 351, 1539–1546. [Google Scholar] [CrossRef]
- Dujardin, K.S.; Enriquez-Sarano, M.; Schaff, H.V.; Bailey, K.R.; Seward, J.B.; Tajik, A.J. Mortality and morbidity of aortic regurgitation in clinical practice. A long-term follow-up study. Circulation 1999, 99, 1851–1857. [Google Scholar] [CrossRef] [PubMed]
- Zeng, X.; Levine, R.A.; Hua, L.; Morris, E.L.; Kang, Y.; Flaherty, M.; Morgan, N.V.; Hung, J. Diagnostic value of vena contracta area in the quantification of mitral regurgitation severity by color Doppler 3D echocardiography. Circ. Cardiovasc. Imaging 2011, 4, 506–513. [Google Scholar] [CrossRef]
- Otto, C.M.; Nishimura, R.A.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Gentile, F.; Jneid, H.; Krieger, E.V.; Mack, M.; McLeod, C.; et al. 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: Executive Summary: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2021, 143, e35–e71. [Google Scholar] [CrossRef]
- Gammie, J.S.; Sheng, S.; Griffith, B.P.; Peterson, E.D.; Rankin, J.S.; O’Brien, S.M.; Brown, J.M. Trends in mitral valve surgery in the United States: Results from the Society of Thoracic Surgeons Adult Cardiac Surgery Database. Ann. Thorac. Surg. 2009, 87, 1431–1437, discussion 1437–1439. [Google Scholar] [CrossRef]
- Jaffe, R.A. Anesthesiologist’s Manual of Surgical Procedures, 6th ed.; Lippincott Williams & Wilkins, a Wolters Kluwer Business: Ambler, PA, USA, 2020. [Google Scholar]
- Gebauer, A.; Petersen, J.; Konertz, J.; Brickwedel, J.; Schulte-Uentrop, L.; Reichenspurner, H.; Girdauskas, E. Enhanced Recovery After Cardiac Surgery: Where Do We Stand? Curr. Anesthesiol. Rep. 2021, 11, 501–506. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Gan, T.J.; Qin, G.; Wang, L.; Zhu, M.; Zhang, Z.; Pan, Y.; Ye, Z.; Zhang, F.; et al. Enhanced recovery after surgery pathway for patients undergoing cardiac surgery: A randomized clinical trial. Eur. J. Cardiothorac. Surg. 2018, 54, 491–497. [Google Scholar] [CrossRef]
- Petersen, J.; Kloth, B.; Konertz, J.; Kubitz, J.; Schulte-Uentrop, L.; Ketels, G.; Reichenspurner, H.; Girdauskas, E. Economic impact of enhanced recovery after surgery protocol in minimally invasive cardiac surgery. BMC Health Serv. Res. 2021, 21, 254. [Google Scholar] [CrossRef]
- Yazdchi, F.; Hirji, S.; Harloff, M.; McGurk, S.; Morth, K.; Zammert, M.; Shook, D.; Varelmann, D.; Shekar, P.; Kaneko, T.; et al. Enhanced Recovery After Cardiac Surgery: A Propensity-Matched Analysis. Semin. Thorac. Cardiovasc. Surg. 2022, 34, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Vu, J.V.; Lussiez, A. Smoking Cessation for Preoperative Optimization. Clin. Colon. Rectal Surg. 2023, 36, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Loria, C.M.; Zborek, K.; Millward, J.B.; Anderson, M.P.; Richardson, C.M.; Namburi, N.; Faiza, Z.; Timsina, L.R.; Lee, L.S. Enhanced recovery after cardiac surgery protocol reduces perioperative opioid use. JTCVS Open 2022, 12, 280–296. [Google Scholar] [CrossRef]
- Grant, M.C.; Crisafi, C.; Alvarez, A.; Arora, R.C.; Brindle, M.E.; Chatterjee, S.; Ender, J.; Fletcher, N.; Gregory, A.J.; Gunaydin, S.; et al. Perioperative Care in Cardiac Surgery: A Joint Consensus Statement by the Enhanced Recovery After Surgery (ERAS) Cardiac Society, ERAS International Society, and The Society of Thoracic Surgeons (STS). Ann. Thorac. Surg. 2024, 117, 669–689. [Google Scholar] [CrossRef]
- Wong, D.T.; Cheng, D.C.; Kustra, R.; Tibshirani, R.; Karski, J.; Carroll-Munro, J.; Sandler, A. Risk factors of delayed extubation, prolonged length of stay in the intensive care unit, and mortality in patients undergoing coronary artery bypass graft with fast-track cardiac anesthesia: A new cardiac risk score. Anesthesiology 1999, 91, 936–944. [Google Scholar] [CrossRef]
- Wong, W.T.; Lai, V.K.; Chee, Y.E.; Lee, A. Fast-track cardiac care for adult cardiac surgical patients. Cochrane Database Syst. Rev. 2016, 9, Cd003587. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Xie, G.; Lin, Y.; Chen, L.; Lin, Z.; You, X.; Xie, X.; Dong, D.; Zheng, X.; Li, D.; et al. A systematic review and meta-analysis of the effects of early mobilization therapy in patients after cardiac surgery. Medicine 2021, 100, e25314. [Google Scholar] [CrossRef] [PubMed]
- Moradian, S.T.; Najafloo, M.; Mahmoudi, H.; Ghiasi, M.S. Early mobilization reduces the atelectasis and pleural effusion in patients undergoing coronary artery bypass graft surgery: A randomized clinical trial. J. Vasc. Nurs. 2017, 35, 141–145. [Google Scholar] [CrossRef] [PubMed]
- Borges, M.G.B.; Borges, D.L.; Ribeiro, M.O.; Lima, L.S.S.; Macedo, K.C.M.; Nina, V. Early Mobilization Prescription in Patients Undergoing Cardiac Surgery: Systematic Review. Braz. J. Cardiovasc. Surg. 2022, 37, 227–238. [Google Scholar] [CrossRef]
- Wang, G.; Niu, J.; Li, Z.; Lv, H.; Cai, H. The efficacy and safety of dexmedetomidine in cardiac surgery patients: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0202620. [Google Scholar] [CrossRef]
- Klompas, M.; Branson, R.; Cawcutt, K.; Crist, M.; Eichenwald, E.C.; Greene, L.R.; Lee, G.; Maragakis, L.L.; Powell, K.; Priebe, G.P.; et al. Strategies to prevent ventilator-associated pneumonia, ventilator-associated events, and nonventilator hospital-acquired pneumonia in acute-care hospitals: 2022 Update. Infect. Control Hosp. Epidemiol. 2022, 43, 687–713. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Xu, Z.; Wang, Y.; Chen, L.; Bai, Y.; Xie, W.; Wu, Q. Early identification of delayed extubation following cardiac surgery: Development and validation of a risk prediction model. Front. Cardiovasc. Med. 2022, 9, 1002768. [Google Scholar] [CrossRef]
- García-Delgado, M.; Navarrete-Sánchez, I.; Colmenero, M. Preventing and managing perioperative pulmonary complications following cardiac surgery. Curr. Opin. Anaesthesiol. 2014, 27, 146–152. [Google Scholar] [CrossRef]
- Chan, J.L.; Miller, J.G.; Murphy, M.; Greenberg, A.; Iraola, M.; Horvath, K.A. A Multidisciplinary Protocol-Driven Approach to Improve Extubation Times After Cardiac Surgery. Ann. Thorac. Surg. 2018, 105, 1684–1690. [Google Scholar] [CrossRef]
- Subramaniam, K.; DeAndrade, D.S.; Mandell, D.R.; Althouse, A.D.; Manmohan, R.; Esper, S.A.; Varga, J.M.; Badhwar, V. Predictors of operating room extubation in adult cardiac surgery. J. Thorac. Cardiovasc. Surg. 2017, 154, 1656–1665.e1652. [Google Scholar] [CrossRef] [PubMed]
- Costescu, F.; Slinger, P. Preoperative Pulmonary Evaluation. Curr. Anesthesiol. Rep. 2018, 8, 52–58. [Google Scholar] [CrossRef]
- Spivack, S.D.; Shinozaki, T.; Albertini, J.J.; Deane, R. Preoperative Prediction of Postoperative Respiratory Outcome: Coronary Artery Bypass Grafting. Chest 1996, 109, 1222–1230. [Google Scholar] [CrossRef]
- Raslau, D.; Bierle, D.M.; Stephenson, C.R.; Mikhail, M.A.; Kebede, E.B.; Mauck, K.F. Preoperative Cardiac Risk Assessment. Mayo Clin. Proc. 2020, 95, 1064–1079. [Google Scholar] [CrossRef]
- Bossone, E.; Cademartiri, F.; AlSergani, H.; Chianese, S.; Mehta, R.; Capone, V.; Ruotolo, C.; Tarrar, I.H.; Frangiosa, A.; Vriz, O.; et al. Preoperative Assessment and Management of Cardiovascular Risk in Patients Undergoing Non-Cardiac Surgery: Implementing a Systematic Stepwise Approach during the COVID-19 Pandemic Era. J. Cardiovasc. Dev. Dis. 2021, 8, 126. [Google Scholar] [CrossRef]
- Parlow, J.L.; Ahn, R.; Milne, B. Obesity is a risk factor for failure of "fast track" extubation following coronary artery bypass surgery. Can. J. Anaesth. 2006, 53, 288–294. [Google Scholar] [CrossRef]
- Tiganila, R.; McCoy, C.; Gilbert, R.; Raco, J. The safety of immediate extubation, and factors associated with delayed extubation, in cardiac surgical patients receiving fast-track cardiac anesthesia: An integrative review. Can. J. Respir. Ther. 2023, 59, 8–19. [Google Scholar] [CrossRef]
- Breithaupt, T. Postoperative Glycemic Control in Cardiac Surgery Patients. Bayl. Univ. Med. Cent. Proc. 2010, 23, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Young, R. Perioperative fluid and electrolyte management in cardiac surgery: A review. J. Extra Corpor. Technol. 2012, 44, P20–P26. [Google Scholar] [PubMed]
- Nashef, S.A.; Roques, F.; Michel, P.; Gauducheau, E.; Lemeshow, S.; Salamon, R. European system for cardiac operative risk evaluation (EuroSCORE). Eur. J. Cardiothorac. Surg. 1999, 16, 9–13. [Google Scholar] [CrossRef]
- Jacobs, J.P.; Shahian, D.M.; Badhwar, V.; Thibault, D.P.; Thourani, V.H.; Rankin, J.S.; Kurlansky, P.A.; Bowdish, M.E.; Cleveland, J.C., Jr.; Furnary, A.P.; et al. The Society of Thoracic Surgeons 2021 Adult Cardiac Surgery Risk Models for Multiple Valve Operations. Ann. Thorac. Surg. 2022, 113, 511–518. [Google Scholar] [CrossRef]
- Sanchez Leon, R.M.; Rajaraman, A.; Kubwimana, M.N. Optimizing Nutritional Status of Patients Prior to Major Surgical Intervention. Methodist. Debakey Cardiovasc. J. 2023, 19, 85–96. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.; Nesterova, E.; Lomivorotov, V.; Efremov, S.; Goetzenich, A.; Benstoem, C.; Zamyatin, M.; Chourdakis, M.; Heyland, D.; Stoppe, C. Current Evidence about Nutrition Support in Cardiac Surgery Patients-What Do We Know? Nutrients 2018, 10, 597. [Google Scholar] [CrossRef] [PubMed]
- Salzmann, S.; Salzmann-Djufri, M.; Wilhelm, M.; Euteneuer, F. Psychological Preparation for Cardiac Surgery. Curr. Cardiol. Rep. 2020, 22, 172. [Google Scholar] [CrossRef] [PubMed]
- Snyder, A.G. Psychological assessment of the patient undergoing bariatric surgery. Ochsner J. 2009, 9, 144–148. [Google Scholar]
- Johnston, L.; Jackson, K.; Hilton, C.; Graham, Y. The forgotten patient: A psychological perspective on the implementation of bariatric surgery guidelines. Obes. Sci. Pract. 2023, 9, 538–547. [Google Scholar] [CrossRef]
- Puskas, J.D.; Kilgo, P.D.; Thourani, V.H.; Lattouf, O.M.; Chen, E.; Vega, J.D.; Cooper, W.; Guyton, R.A.; Halkos, M. The society of thoracic surgeons 30-day predicted risk of mortality score also predicts long-term survival. Ann. Thorac. Surg. 2012, 93, 26–33, discussion 25–33. [Google Scholar] [CrossRef]
- Constantinides, V.A.; Tekkis, P.P.; Fazil, A.; Kaur, K.; Leonard, R.; Platt, M.; Casula, R.; Stanbridge, R.; Darzi, A.; Athanasiou, T. Fast-track failure after cardiac surgery: Development of a prediction model. Crit. Care Med. 2006, 34, 2875–2882. [Google Scholar] [CrossRef]
- Sharma, V.; Rao, V.; Manlhiot, C.; Boruvka, A.; Fremes, S.; Wąsowicz, M. A derived and validated score to predict prolonged mechanical ventilation in patients undergoing cardiac surgery. J. Thorac. Cardiovasc. Surg. 2017, 153, 108–115. [Google Scholar] [CrossRef]
- Trouillet, J.L.; Combes, A.; Vaissier, E.; Luyt, C.E.; Ouattara, A.; Pavie, A.; Chastre, J. Prolonged mechanical ventilation after cardiac surgery: Outcome and predictors. J. Thorac. Cardiovasc. Surg. 2009, 138, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Zhu, F.; Underwood, M.J.; Gomersall, C.D. Fast-track failure after cardiac surgery: External model validation and implications to ICU bed utilization. Crit. Care Med. 2013, 41, 1205–1213. [Google Scholar] [CrossRef]
- Bansal, S.; Thai, H.; Hsu, C.; Sai-Sudhakar, C.; Goldman, S.; Rhenman, B. Fast Track Extubation Post Coronary Artery Bypass Graft: A Retrospective Review of Predictors of Clinical Outcomes*. World J. Cardiovasc. Surg. 2013, 3, 81–86. [Google Scholar] [CrossRef]
- Nguyen, Q.; Coghlan, K.; Hong, Y.; Nagendran, J.; MacArthur, R.; Lam, W. Factors Associated With Early Extubation After Cardiac Surgery: A Retrospective Single-Center Experience. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1964–1970. [Google Scholar] [CrossRef] [PubMed]
- Plümer, H.; Markewitz, A.; Marohl, K.; Bernutz, C.; Weinhold, C. Early extubation after cardiac surgery: A prospective clinical trial including patients at risk. Thorac. Cardiovasc. Surg. 1998, 46, 275–280. [Google Scholar] [CrossRef]
- Bainbridge, D.; Cheng, D. Current evidence on fast track cardiac recovery management. Eur. Heart J. Suppl. 2017, 19, A3–A7. [Google Scholar] [CrossRef]
- van Mastrigt, G.A.; Maessen, J.G.; Heijmans, J.; Severens, J.L.; Prins, M.H. Does fast-track treatment lead to a decrease of intensive care unit and hospital length of stay in coronary artery bypass patients? A meta-regression of randomized clinical trials. Crit. Care Med. 2006, 34, 1624–1634. [Google Scholar] [CrossRef]
- London, M.J.; Shroyer, A.L.; Coll, J.R.; MaWhinney, S.; Fullerton, D.A.; Hammermeister, K.E.; Grover, F.L. Early extubation following cardiac surgery in a veterans population. Anesthesiology 1998, 88, 1447–1458. [Google Scholar] [CrossRef]
- Reddy, S.L.; Grayson, A.D.; Griffiths, E.M.; Pullan, D.M.; Rashid, A. Logistic risk model for prolonged ventilation after adult cardiac surgery. Ann. Thorac. Surg. 2007, 84, 528–536. [Google Scholar] [CrossRef]
- MacLeod, J.B.; D’Souza, K.; Aguiar, C.; Brown, C.D.; Pozeg, Z.; White, C.; Arora, R.C.; Légaré, J.F.; Hassan, A. Fast tracking in cardiac surgery: Is it safe? J. Cardiothorac. Surg. 2022, 17, 69. [Google Scholar] [CrossRef]
- Hessels, L.; Coulson, T.G.; Seevanayagam, S.; Young, P.; Pilcher, D.; Marhoon, N.; Bellomo, R. Development and Validation of a Score to Identify Cardiac Surgery Patients at High Risk of Prolonged Mechanical Ventilation. J. Cardiothorac. Vasc. Anesth. 2019, 33, 2709–2716. [Google Scholar] [CrossRef]
- Kiessling, A.H.; Huneke, P.; Reyher, C.; Bingold, T.; Zierer, A.; Moritz, A. Risk factor analysis for fast track protocol failure. J. Cardiothorac. Surg. 2013, 8, 47. [Google Scholar] [CrossRef]
- Youssefi, P.; Timbrell, D.; Valencia, O.; Gregory, P.; Vlachou, C.; Jahangiri, M.; Edsell, M. Predictors of Failure in Fast-Track Cardiac Surgery. J. Cardiothorac. Vasc. Anesth. 2015, 29, 1466–1471. [Google Scholar] [CrossRef] [PubMed]
- Waseem, Z.; Lindner, J.; Sgouropoulou, S.; Eibel, S.; Probst, S.; Scholz, M.; Ender, J. Independent Risk Factors for Fast-Track Failure Using a Predefined Fast-Track Protocol in Preselected Cardiac Surgery Patients. J. Cardiothorac. Vasc. Anesth. 2015, 29, 1461–1465. [Google Scholar] [CrossRef] [PubMed]
- Tham, Y.C.; Tian, Z.; Chen, J.; Chia, S.Y.; Chua, K.C.; Sin, K.; Shitalkumar, S. Factors Determining Fast-Track Failure Post Cardiac Surgery. Ann. Heart 2018, 3, 55–59. [Google Scholar]
- Gumus, F.; Polat, A.; Yektas, A.; Totoz, T.; Bagci, M.; Erentug, V.; Alagol, A. Prolonged mechanical ventilation after CABG: Risk factor analysis. J. Cardiothorac. Vasc. Anesth. 2015, 29, 52–58. [Google Scholar] [CrossRef]
- Cislaghi, F.; Condemi, A.M.; Corona, A. Predictors of prolonged mechanical ventilation in a cohort of 5123 cardiac surgical patients. Eur. J. Anaesthesiol 2009, 26, 396–403. [Google Scholar] [CrossRef]
- Totonchi, Z.; Baazm, F.; Chitsazan, M.; Seifi, S.; Chitsazan, M. Predictors of prolonged mechanical ventilation after open heart surgery. J. Cardiovasc. Thorac. Res. 2014, 6, 211–216. [Google Scholar] [CrossRef]
- Apostolakis, E.; Filos, K.S.; Koletsis, E.; Dougenis, D. Lung dysfunction following cardiopulmonary bypass. J. Card. Surg. 2010, 25, 47–55. [Google Scholar] [CrossRef]
- Mittnacht, A.J.; Thanjan, M.; Srivastava, S.; Joashi, U.; Bodian, C.; Hossain, S.; Kin, N.; Hollinger, I.; Nguyen, K. Extubation in the operating room after congenital heart surgery in children. J. Thorac. Cardiovasc. Surg. 2008, 136, 88–93. [Google Scholar] [CrossRef]
- Davidson, J.; Tong, S.; Hancock, H.; Hauck, A.; da Cruz, E.; Kaufman, J. Prospective validation of the vasoactive-inotropic score and correlation to short-term outcomes in neonates and infants after cardiothoracic surgery. Intensive Care Med. 2012, 38, 1184–1190. [Google Scholar] [CrossRef]
- Habib, R.H.; Zacharias, A.; Engoren, M. Determinants of prolonged mechanical ventilation after coronary artery bypass grafting. Ann. Thorac. Surg. 1996, 62, 1164–1171. [Google Scholar] [CrossRef] [PubMed]
- Toraman, F.; Evrenkaya, S.; Yuce, M.; Göksel, O.; Karabulut, H.; Alhan, C. Fast-track recovery in noncoronary cardiac surgery patients. Heart Surg. Forum 2005, 8, 61–64. [Google Scholar] [CrossRef]
- Hendrikx, J.; Timmers, M.; AlTmimi, L.; Hoogma, D.F.; De Coster, J.; Fieuws, S.; Herijgers, P.; Rega, F.; Verbrugghe, P.; Rex, S. Fast-Track Failure After Cardiac Surgery: Risk Factors and Outcome With Long-Term Follow-Up. J. Cardiothorac. Vasc. Anesth. 2022, 36, 2463–2472. [Google Scholar] [CrossRef]
- Ranucci, M.; Baryshnikova, E.; Castelvecchio, S.; Pelissero, G. Major bleeding, transfusions, and anemia: The deadly triad of cardiac surgery. Ann. Thorac. Surg. 2013, 96, 478–485. [Google Scholar] [CrossRef]
- Cheng, D.C. Fast track cardiac surgery pathways: Early extubation, process of care, and cost containment. Anesthesiology 1998, 88, 1429–1433. [Google Scholar] [CrossRef]
- Calef, A.; Castelgrande, R.; Crawley, K.; Dorris, S.; Durham, J.; Lee, K.; Paras, J.; Piazza, K.; Race, A.; Rider, L.; et al. Reversing Neuromuscular Blockade without Nerve Stimulator Guidance in a Postsurgical ICU—An Observational Study. J. Clin. Med. 2023, 12, 3253. [Google Scholar] [CrossRef]
- Blobner, M.; Hunter, J.M.; Meistelman, C.; Hoeft, A.; Hollmann, M.W.; Kirmeier, E.; Lewald, H.; Ulm, K. Use of a train-of-four ratio of 0.95 versus 0.9 for tracheal extubation: An exploratory analysis of POPULAR data. Br. J. Anaesth. 2020, 124, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Taran, Z.; Namadian, M.; Faghihzadeh, S.; Naghibi, T. The Effect of Sedation Protocol Using Richmond Agitation-Sedation Scale (RASS) on Some Clinical Outcomes of Mechanically Ventilated Patients in Intensive Care Units: A Randomized Clinical Trial. J. Caring Sci. 2019, 8, 199–206. [Google Scholar] [CrossRef] [PubMed]
- García-Delgado, M.; Navarrete, I.; García-Palma, M.J.; Colmenero, M. Postoperative respiratory failure after cardiac surgery: Use of noninvasive ventilation. J. Cardiothorac. Vasc. Anesth. 2012, 26, 443–447. [Google Scholar] [CrossRef]
- Krebs, E.D.; Hawkins, R.B.; Mehaffey, J.H.; Fonner, C.E.; Speir, A.M.; Quader, M.A.; Rich, J.B.; Yarboro, L.T.; Teman, N.R.; Ailawadi, G. Is routine extubation overnight safe in cardiac surgery patients? J. Thorac. Cardiovasc. Surg. 2019, 157, 1533–1542. [Google Scholar] [CrossRef]
- Gregory, A.J. Learning From Failure: The Future of Quality Improvement for Early Extubation. J. Cardiothorac. Vasc. Anesth. 2021, 35, 1971–1973. [Google Scholar] [CrossRef] [PubMed]
- Benoit, M.A.; Bagshaw, S.M.; Norris, C.M.; Zibdawi, M.; Chin, W.D.; Ross, D.B.; van Diepen, S. Postoperative Complications and Outcomes Associated With a Transition to 24/7 Intensivist Management of Cardiac Surgery Patients. Crit. Care Med. 2017, 45, 993–1000. [Google Scholar] [CrossRef]
- Singh, A.; Garg, S.; Gupta, D.; Kaur, N.D. The Feasibility of Routine Early Extubation after Cardiac Surgery Protocol Generalized to a Nascent, Resource-limited Setup. J. Card. Crit. Care TSS 2025, 9, 156–163. [Google Scholar] [CrossRef]
- Dasta, J.F.; McLaughlin, T.P.; Mody, S.H.; Piech, C.T. Daily cost of an intensive care unit day: The contribution of mechanical ventilation. Crit. Care Med. 2005, 33, 1266–1271. [Google Scholar] [CrossRef] [PubMed]
- Arom, K.V.; Emery, R.W.; Petersen, R.J.; Schwartz, M. Cost-effectiveness and predictors of early extubation. Ann. Thorac. Surg. 1995, 60, 127–132. [Google Scholar] [CrossRef]
- Kim, K.M.; Kwak, J.G.; Shin, B.C.; Kim, E.R.; Lee, J.H.; Kim, E.H.; Kim, J.T.; Kim, W.H. Early Experiences with Ultra-Fast-Track Extubation after Surgery for Congenital Heart Disease at a Single Center. Korean J. Thorac. Cardiovasc. Surg. 2018, 51, 247–253. [Google Scholar] [CrossRef]
- Ltaief, Z.; Verdugo-Marchese, M.; Carel, D.; Gunga, Z.; Nowacka, A.; Melly, V.; Addor, V.; Botteau, C.; Hennemann, M.; Lavanchy, L.; et al. Implementation of cardiac enhanced recovery after surgery at Lausanne University Hospital, our roadbook to certification. Interdiscip. Cardiovasc. Thorac. Surg. 2024, 39, ivae118. [Google Scholar] [CrossRef]
- Hendy, A.; DiQuinzo, C.; O’Reilly, M.; Hendy, A.; Vician, M.; Theriault, C.; Chedrawy, E.; Hirsch, G.; Aliter, H. Implementation of enhanced recovery in cardiac surgery: An experimental study with the control group. Asian Cardiovasc. Thorac. Ann. 2023, 31, 88–96. [Google Scholar] [CrossRef]
- Schmid, M.E.; Dolata, L.; König, H.; Stock, S.; Klotz, S.G.R.; Girdauskas, E. An implementation manual for an interprofessional enhanced recovery after surgery protocol in cardiac surgery following international established frameworks. Front. Cardiovasc. Med. 2024, 11, 1392881. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Christophides, A.; DiMaria, S.; Jacob, S.A.; Feit, A.; Oster, J.; Bergese, S. Fast-Track Extubation After Cardiac Surgery: A Narrative Review. J. Cardiovasc. Dev. Dis. 2026, 13, 6. https://doi.org/10.3390/jcdd13010006
Christophides A, DiMaria S, Jacob SA, Feit A, Oster J, Bergese S. Fast-Track Extubation After Cardiac Surgery: A Narrative Review. Journal of Cardiovascular Development and Disease. 2026; 13(1):6. https://doi.org/10.3390/jcdd13010006
Chicago/Turabian StyleChristophides, Alexa, Stephen DiMaria, Sophia Ann Jacob, Andrew Feit, Jonathan Oster, and Sergio Bergese. 2026. "Fast-Track Extubation After Cardiac Surgery: A Narrative Review" Journal of Cardiovascular Development and Disease 13, no. 1: 6. https://doi.org/10.3390/jcdd13010006
APA StyleChristophides, A., DiMaria, S., Jacob, S. A., Feit, A., Oster, J., & Bergese, S. (2026). Fast-Track Extubation After Cardiac Surgery: A Narrative Review. Journal of Cardiovascular Development and Disease, 13(1), 6. https://doi.org/10.3390/jcdd13010006

