Non-Invasive Mapping of Ventricular Action Potential Reconstructed from Contactless Magnetocardiographic Recordings in Intact and Conscious Guinea Pigs
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Experimental Setup and Measurement Techniques
2.2.1. Unshielded MCG Recording Protocol and Postprocessing
2.2.2. Epicardial MAP Recording with the Amagnetic Catheter Technique
2.2.3. Reconstruction of the Ventricular Action Potential from uMCG Signals
2.2.4. Preliminary Validation of the Magnetically rVAPw by Comparison with Simultaneously Recorded eVMAP
2.2.5. Statistical Analysis
3. Results
3.1. uMCG Postprocessing and Ventricular Action Potential Waveform Reconstruction
3.2. Preliminary Validation of the Magnetically rVAPw by Comparison with Simultaneously Recorded eVMAP
3.3. Magnetic Action Potential Reconstruction at Different Ages
3.4. Comparison Between Magnetically Reconstructed Action Potential in the Anaesthetized and Awake Conditions
3.5. Comparison Between Magnetic Action Potential Reconstruction in Males and Females
4. Discussion
5. Limitations and Lessons Learned
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MCG | Magnetocardiography |
uMCG | Unshielded MCG |
rVAPw | reconstructed Ventricular Action Potential waveform |
GPs | Guinea pigs |
eVMAP | epicardial Ventricular Monophasic Action Potential |
AP | Action Potential |
fT | femtotesla |
kHz | Kilohertz |
CAM | Current Arrow Map |
MFD | Magnetic Field Distribution |
3D | Three-dimensional |
EMD | Effective Magnetic Dipole |
msec | Milliseconds |
HR | Heart Rate |
References
- Hoffman, B.F.; Cranefield, P.F.; Lepeschkin, E.; Surawicz, B.; Herrlich, H.C. Comparison of cardiac monophasic action potentials recorded by intracellular and suction electrodes. Am. J. Physiol.-Leg. Content 1959, 196, 1297–1301. [Google Scholar] [CrossRef]
- Laughner, J.I.; Ng, F.S.; Sulkin, M.S.; Arthur, R.M.; Efimov, I.R. Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. Am. J. Physiol.-Heart Circ. Physiol. 2012, 303, H753–H765. [Google Scholar] [CrossRef]
- O’sHea, C.; Winter, J.; Kabir, S.N.; O’rEilly, M.; Wells, S.P.; Baines, O.; Sommerfeld, L.C.; Correia, J.; Lei, M.; Kirchhof, P.; et al. High resolution optical mapping of cardiac electrophysiology in pre-clinical models. Sci. Data 2022, 9, 135. [Google Scholar] [CrossRef]
- Seibertz, F.; Rapedius, M.; Fakuade, F.E.; Tomsits, P.; Liutkute, A.; Cyganek, L.; Becker, N.; Majumder, R.; Clauß, S.; Fertig, N.; et al. A modern automated patch-clamp approach for high throughput electrophysiology recordings in native cardiomyocytes. Commun. Biol. 2022, 5, 969. [Google Scholar] [CrossRef]
- Korsgren, M.; Leskinen, E.; Sjöstrand, U.; Varnauskas, E. Intracardiac Recording of Monophasic Action Potentials in the Human Heart. Scand. J. Clin. Lab. Investig. 1966, 18, 561–564. [Google Scholar] [CrossRef] [PubMed]
- Olsson, B.; Varnauskas, E.; Korsgren, M. Further improved method for measuring monophasic action potentials of the intact human heart. J. Electrocardiol. 1971, 4, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Fenici, R.; Bellocci, F.; Zecchi, P. Monophasic action potential of human heart. Preliminary results with a new technique. Acta Medica Rom. 1973, 11, 300–312. [Google Scholar]
- Franz, M.R. Current status of monophasic action potential recording: Theories, measurements and interpretations. Cardiovasc. Res. 1999, 41, 25–40. [Google Scholar] [CrossRef]
- Chinyere, I.R.; Hutchinson, M.; Moukabary, T.; Lancaster, J.; Goldman, S.; Juneman, E. Monophasic action potential amplitude for substrate mapping. Am. J. Physiol.-Heart Circ. Physiol. 2019, 317, H667–H673. [Google Scholar] [CrossRef] [PubMed]
- Fenici, R.R.; Melillo, G. Biomagnetically localizable multipurpose catheter and method for MCG guided intracardiac electrophysiology, biopsy and ablation of cardiac arrhythmias. Int. J. Cardiovasc. Imaging 1991, 7, 207–215. [Google Scholar] [CrossRef]
- Fenici, R.R.; Covino, M.; Cellerino, C.; Di Lillo, M.; De Filippo, M.C.; Melillo, G. Magnetocardiographically-guided catheter ablation. J. Interv. Cardiol. 1995, 8, 825–836. [Google Scholar] [CrossRef]
- Moore, H.J.; Franz, M.R. Monophasic Action Potential Recordings in Humans. J. Cardiovasc. Electrophysiol. 2007, 18, 787–790. [Google Scholar] [CrossRef]
- Schmidt, M.M.; Iaizzo, P.A. The Visible Heart® project and methodologies: Novel use for studying cardiac monophasic action potentials and evaluating their underlying mechanisms. Expert Rev. Med. Devices 2018, 15, 467–477. [Google Scholar] [CrossRef]
- Franz, M.R. (Ed.) Monophasic Action Potentials: Bridging Cell and Bedside, 1st ed.; Futura Publishing Company Inc.: Armonk, NY, USA, 2000. [Google Scholar]
- Fenici, R. Biomagnetically Localizable Multipurpose Catheter and Method for Magnetocardiographic Guided Intracardiac Mapping, Biopsy and Ablation of Cardiac Arrhythmias. US-5056517-A, 15 October 1991. Available online: https://ppubs.uspto.gov/pubwebapp/static/pages/ppubsbasic.html (accessed on 21 August 2025).
- Brisinda, D.; Caristo, M.E.; Fenici, R. Contactless magnetocardiographic mapping in anesthetized Wistar rats: Evidence of age-related changes of cardiac electrical activity. Am. J. Physiol.-Heart Circ. Physiol. 2006, 291, H368–H378. [Google Scholar] [CrossRef]
- Meloni, A.M.; Fenici, R.; Brisinda, D. Contactless magnetocardiographic study of ventricular repolarization in intact Wistar rats: Evidence of gender-related differences. Basic Res. Cardiol. 2004, 99, 193–203. [Google Scholar] [CrossRef]
- Brisinda, D.; Caristo, M.E.; Fenici, R. Longitudinal study of cardiac electrical activity in anesthetized guinea pigs by contactless magnetocardiography. Physiol. Meas. 2007, 28, 773–792. [Google Scholar] [CrossRef]
- Jensen, K.; Skarsfeldt, M.A.; Stærkind, H.; Arnbak, J.; Balabas, M.V.; Olesen, S.-P.; Bentzen, B.H.; Polzik, E.S. Magnetocardiography on an isolated animal heart with a room-temperature optically pumped magnetometer. Sci. Rep. 2018, 8, 16218. [Google Scholar] [CrossRef] [PubMed]
- Jensen, K.; Bentzen, B.H.; Polzik, E.S. Small Animal Biomagnetism Applications. In Flexible High Performance Magnetic Field Sensors; Springer International Publishing: Cham, Switzerland, 2022; pp. 33–48. [Google Scholar]
- Brisinda, D.; Fenici, P.; Fenici, R. Clinical magnetocardiography: The unshielded bet—Past, present, and future. Front. Cardiovasc. Med. 2023, 10, 1232882. [Google Scholar] [CrossRef] [PubMed]
- Roth, B.J. The magnetocardiogram. Biophys. Rev. 2024, 5, 021305. [Google Scholar] [CrossRef] [PubMed]
- Kandori, A.; Shimizu, W.; Yokokawa, M.; Kamakura, S.; Miyatake, K.; Murakami, M.; Miyashita, T.; Ogata, K.; Tsukada, K. Reconstruction of action potential of repolarization in patients with congenital long-QT syndrome. Phys. Med. Biol. 2004, 49, 2103–2115. [Google Scholar] [CrossRef]
- Fenici, R.; Picerni, M.; Fenici, P.; Brisinda, D. An advanced vision of magnetocardiography as an unrivalled method for a more comprehensive non-invasive clinical electrophysiological assessment. Am. Heart J. Plus Cardiol. Res. Pract. 2025, 52, 100514. [Google Scholar] [CrossRef]
- Brisinda, D.; Sorbo, A.R.; Venuti, A.; Fenici, R. Percutaneous method for single-catheter multiple monophasic action potential recordings during magnetocardiographic mapping in spontaneously breathing rodents. Physiol. Meas. 2012, 33, 521–534. [Google Scholar] [CrossRef]
- National Research Council. Guide for the Care and Use of Laboratory Animals; The National Academies Press: Washington, DC, USA, 1996. [Google Scholar] [CrossRef]
- du Sert, N.P.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; Emerson, M.; et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLoS Biol. 2020, 18, e3000411. [Google Scholar] [CrossRef]
- Fenici, R.; Brisinda, D. First 36-channel System for Clinical Magnetocardiography in Unshielded Hospital Laboratory for Cardiac Electrophysiology. Int. J. Bioelectromagn. 2003, 5, 80–83. [Google Scholar]
- Sorbo, A.R.; Lombardi, G.; La Brocca, L.; Guida, G.; Fenici, R.; Brisinda, D. Unshielded magnetocardiography: Repeatability and reproducibility of automatically estimated ventricular repolarization parameters in 204 healthy subjects. Ann. Noninvasive Electrocardiol. 2017, 23, e12526. [Google Scholar] [CrossRef] [PubMed]
- Hosaka, H.; Cohen, D. Part IV Visual determination of generators of the magnetocardiogram. J. Electrocardiol. 1976, 9, 426–432. [Google Scholar] [CrossRef]
- Veisterä, H.; Fenici, R.; Lötjönen, J. Online Heart Model Creation for Magnetocardiographic Measurements. In Proceedings of the 14th International Conference on Biomagnetism, Boston, MA, USA, 8–12 August 2004; pp. 415–416. [Google Scholar]
- Fenici, R. Patent US6527724—Catheter Guidance by Magnetocardiographic Mapping. 2003. Available online: https://patentscope.wipo.int/search/en/result.jsf?_vid=P22-MF58HH-13176 (accessed on 31 August 2025).
- Fenici, R.R.; Brisinda, D.; Mäkijärvi, M.; Toivonen, L.; Pesola, K.; Nenonen, J.T.; Fenici, P. High resolution MSI-guided multiple monophasic action potential mapping with a single amagnetic catheter. In Biomag; Helsinki University of Technology: Espoo, Finland, 2000. [Google Scholar]
- Fenici, R.; Pesola, K.; Korhonen, P.; Mäkijärvi, M.; Nenonen, J.; Toivonen, L.; Fenici, P.; Katila, T. Magnetocardiographic Pacemapping for Nonfluoroscopic Localization of Intracardiac Electrophysiology Catheters. Pacing Clin. Electrophysiol. 1998, 21, 2492–2499. [Google Scholar] [CrossRef]
- Fenici, R.; Nenonen, J.; Pesola, K.; Korhonen, P.; Lotjonen, J.; Makijarvi, M.; Toivonen, L.; Poutanen, V.-P.; Keto, P.; Katila, T. Nonfluoroscopic Localization of an Amagnetic Stimulation Catheter by Multichannel Magnetocardiography. Pacing Clin. Electrophysiol. 1999, 22, 1210–1220. [Google Scholar] [CrossRef] [PubMed]
- Nenonen, J.; Pesola, K.; Lötjönen, J.; Lauerma, K.; Hänninen, H.; Korhonen, P.; Mäkijärvi, M.; Fenici, R.; Katila, T. Cardiomagnetic Source Imaging Studies with Focal and Distributed Source Models. Biomed. Eng. Biomed. Tech. 1999, 44, 135–138. [Google Scholar] [CrossRef]
- Fenici, R.; Brisinda, D. Bridging noninvasive and interventional electroanatomical imaging: Role of magnetocardiography. J. Electrocardiol. 2007, 40, S47–S52. [Google Scholar] [CrossRef]
- Beeler, G.W.; Reuter, H. Reconstruction of the action potential of ventricular myocardial fibres. J. Physiol. 1977, 268, 177–210. [Google Scholar] [CrossRef] [PubMed]
- Lester, R.M. Update on ICH E14/S7B Cardiac Safety Regulations: The Expanded Role of Preclinical Assays and the “Double-Negative” Scenario. Clin. Pharmacol. Drug Dev. 2021, 10, 964–973. [Google Scholar] [CrossRef]
- Turner, J.R.; Karnad, D.R.; Cabell, C.H.; Kothari, S. Recent developments in the science of proarrhythmic cardiac safety of new drugs. Eur. Heart J.–Cardiovasc. Pharmacother. 2016, 3, 118–124. [Google Scholar] [CrossRef]
- Polak, S.; Pugsley, M.K.; Stockbridge, N.; Garnett, C.; Wiśniowska, B. Early Drug Discovery Prediction of Proarrhythmia Potential and Its Covariates. AAPS J. 2015, 17, 1025–1032. [Google Scholar] [CrossRef]
- Lee, W.; Ng, B.; Mangala, M.M.; Perry, M.D.; Subbiah, R.N.; Vandenberg, J.I.; Hill, A.P. Action Potential Morphology Accurately Predicts Proarrhythmic Risk for Drugs With Potential to Prolong Cardiac Repolarization. Circ. Arrhythmia Electrophysiol. 2023, 16, 399–410. [Google Scholar] [CrossRef] [PubMed]
- Mazzanti, A.; Kukavica, D.; Trancuccio, A.; Scilabra, G.G.; Coppini, L.; Pergola, V.; Tempo, E.; Pili, G.; Napolitano, C.; Priori, S.G. Genetics in arrhythmogenic cardiomyopathies: Where are we now and where are we heading to? Eur. Heart J. Suppl. 2025, 27, i98–i102. [Google Scholar] [CrossRef]
- Blackwell, D.J.; Schmeckpeper, J.; Knollmann, B.C. Animal Models to Study Cardiac Arrhythmias. Circ. Res. 2022, 130, 1926–1964. [Google Scholar] [CrossRef]
- Hamlin, R.L.; Kijtawornrat, A.; Keene, B.W.; Hamlin, D.M. QT and RR Intervals in Conscious and Anesthetized Guinea Pigs with Highly Varying RR Intervals and Given QTc-Lengthening Test Articles. Toxicol. Sci. 2003, 76, 437–442. [Google Scholar] [CrossRef]
- Hamlin, R.L.; Kijtawornrat, A.; Simonetti, O.; Roche, B.; Lolly, J.; Schmidt, J. Body surface potentials generated by heart from normal guinea pig. J. Pharmacol. Toxicol. Methods 2007, 56, e13. [Google Scholar] [CrossRef]
- Musso, E.; Stilli, D.; Olivetti, G.; Ricci, R.; Lagrasta, C. (Eds.) Body surface maps in chronically instrumented rats. In Electrocardiology; Elsevier Science Publishers B.V.: Amsterdam, The Netherlands, 1989; pp. 257–260. [Google Scholar]
- Suslonova, O.V.; Smirnova, S.L.; Roshchevskaya, I.M. Cardiac Body Surface Potentials in Rats with Experimental Pulmonary Hypertension during Ventricular Depolarization. Bull. Exp. Biol. Med. 2016, 162, 7–10. [Google Scholar] [CrossRef] [PubMed]
- Wikswo, J.P.; Barach, J.P. Possible sources of new information in the magnetocardiogram. J. Theor. Biol. 1982, 95, 721–729. [Google Scholar] [CrossRef]
- Roth, B.; Wikswo, J. Electrically silent magnetic fields. Biophys. J. 1986, 50, 739–745. [Google Scholar] [CrossRef]
- Irimia, A.; Swinney, K.R.; Wikswo, J.P. Partial independence of bioelectric and biomagnetic fields and its implications for encephalography and cardiography. Phys. Rev. E 2009, 79, 051908. [Google Scholar] [CrossRef]
- Roth, B.J. Biomagnetism: The First Sixty Years. Sensors 2023, 23, 4218. [Google Scholar] [CrossRef]
- McBride, K.K.; Roth, B.J.; Sidorov, V.; Wikswo, J.P.; Baudenbacher, F.J. Measurements of Transmembrane Potential and Magnetic Field at the Apex of the Heart. Biophys. J. 2010, 99, 3113–3118. [Google Scholar] [CrossRef]
- Nicoletti, M.; Crispino, A.; Loppini, A.; Gizzi, A.; Chiodo, L.; Cherubini, C.; Filippi, S. Impact of electric spatially discordant alternans on cardiac magnetic field. Phys. Rev. E 2025, 112, 024405. [Google Scholar] [CrossRef]
- Crispino, A.; Nicoletti, M.; Loppini, A.; Gizzi, A.; Chiodo, L.; Cherubini, C.; Filippi, S. Magnetic signature of thermoelectric cardiac dynamics. Phys. Rev. E 2025, 111, L012401. [Google Scholar] [CrossRef] [PubMed]
- Crispino, A.; Loppini, A.; Uzelac, I.; Iravanian, S.; Bhatia, N.K.; Burke, M.; Filippi, S.; Fenton, F.H.; Gizzi, A. A cross species thermoelectric and spatiotemporal analysis of alternans in live explanted hearts using dual voltage-calcium fluorescence optical mapping. Physiol. Meas. 2024, 45, 065001. [Google Scholar] [CrossRef] [PubMed]
- Hamlin, R. The guinea pig in cardiac safety pharmacology. J. Pharmacol. Toxicol. Methods 2007, 55, 1–2. [Google Scholar] [CrossRef]
- Brisinda, D.; Caristo, M.; Fenici, R. Contactless magnetocardiographic study of age- and gender-related variability of ventricular repolarization parameters in guinea pigs. Int. Congr. Ser. 2007, 1300, 443–446. [Google Scholar] [CrossRef]
- Crispino, A.; Loppini, A.; Uzelac, I.; Filippi, S.; Fenton, F.; Gizzi, A. Spatiotemporal Correlation Analysis of Cardiac Activation Patterns in Langendorff-Perfused Human Hearts: Insights for Arrhythmia Prediction. In Proceedings of the 2023 Computing in Cardiology Conference, Atlanta, GA, USA, 1–4 October 2023. [Google Scholar]
- Sun, J.; Zhao, X.; Zhang, X.; Zhang, D.; Zhao, Z.; Yang, J.; Lu, Y. Optimized design of small sized low noise magnetic shielding cylinder. Phys. Scr. 2024, 99, 025975. [Google Scholar] [CrossRef]
- Arai, K.; Kuwahata, A.; Nishitani, D.; Fujisaki, I.; Matsuki, R.; Nishio, Y.; Xin, Z.; Cao, X.; Hatano, Y.; Onoda, S.; et al. Millimetre-scale magnetocardiography of living rats with thoracotomy. Commun. Phys. 2022, 5, 200. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, Y.; Yu, M.; Wang, Y.; Lu, S.; Guo, J.; Luo, G.; Zhao, L.; Yang, P.; Lin, Q.; et al. Ultrasensitive SERF atomic magnetometer with a miniaturized hybrid vapor cell. Microsyst. Nanoeng. 2024, 10, 121. [Google Scholar] [CrossRef]
- Nenonen, J.; Pesola, K.; Feneici, R.; Lauerma, K.; Mäkijärvi, M.; Katila, T. Current Density Imaging of Focal Cardiac Sources. Biomed. Eng. Biomed. Tech. 2001, 46, 50–53. [Google Scholar] [CrossRef]
- Mäkelä, T.; Pham, Q.C.; Clarysse, P.; Nenonen, J.; Lötjönen, J.; Sipilä, O.; Hänninen, H.; Lauerma, K.; Knuuti, J.; Katila, T.; et al. A 3-D model-based registration approach for the PET, MR and MCG cardiac data fusion. Med. Image Anal. 2003, 7, 377–389. [Google Scholar] [CrossRef]
- Su, S.; Xu, Z.; He, X.; Zhang, G.; Wu, H.; Gao, Y.; Ma, Y.; Yin, C.; Ruan, Y.; Li, K.; et al. Vector magnetocardiography using compact optically-pumped magnetometers. Heliyon 2024, 10, e29092. [Google Scholar] [CrossRef]
- Bin Im, U.; Kwon, S.S.; Kim, K.; Lee, Y.H.; Park, Y.K.; Youn, C.H.; Shim, E.B. Theoretical analysis of the magnetocardiographic pattern for reentry wave propagation in a three-dimensional human heart model. Prog. Biophys. Mol. Biol. 2008, 96, 339–356. [Google Scholar] [CrossRef] [PubMed]
- Bucelli, M.; Zingaro, A.; Africa, P.C.; Fumagalli, I.; Dede’, L.; Quarteroni, A. A mathematical model that integrates cardiac electrophysiology, mechanics, and fluid dynamics: Application to the human left heart. Int. J. Numer. Methods Biomed. Eng. 2023, 39, e3678. [Google Scholar] [CrossRef]
- Aghasafari, P.; Yang, P.-C.; Kernik, D.C.; Sakamoto, K.; Kanda, Y.; Kurokawa, J.; Vorobyov, I.; E Clancy, C. A deep learning algorithm to translate and classify cardiac electrophysiology. eLife 2021, 10. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, G.; Sorbo, A.R.; Fenici, R.; Brisinda, D. Phantom assessment of unshielded Magnetocardiography repeatability, precision and accuracy in electric sources localization. Ann Hear 2017, 1, 35–40. [Google Scholar]
- Romic, I.G.; Bastiancic, A.L.; Zidan, D.; Mavric, M.; Brusich, S. Case Report: Extraction of a stylet-driven lead for left bundle branch area pacing > 2 years after implantation. Front. Cardiovasc. Med. 2024, 11, 1457025. [Google Scholar] [CrossRef] [PubMed]
- Marmugi, L.; Renzoni, F. Optical Magnetic Induction Tomography of the Heart. Sci. Rep. 2016, 6, 23962. [Google Scholar] [CrossRef] [PubMed]
- Fenici, R.; Picerni, M.; Fenici, P.; Brisinda, D. Non-invasive mapping of ventricular action potential waveforms reconstructed from clinical unshielded magnetocardiography. Potential diagnostic application and current limitations. Am. Heart J. Plus Cardiol. Res. Pract. 2025, 55, 100561. [Google Scholar] [CrossRef] [PubMed]
eVMAP | rVAPw | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
MCG Session | AGE | Weight | HR | Phase 0 | d30% | d50% | d80% | Phase 0 | d30% | d50% | d80% |
months | grams | bpm | msec | msec | msec | msec | msec | msec | msec | msec | |
1 | 29 | 650 | 172 | 19 | 163 | 177 | 195 | 18 | 182 | 214 | 218 |
2 | 29 | 650 | 157 | 14 | 100 | 185 | 208 | 16 | 114 | 169 | 218 |
3 | 29 | 650 | 204 | 17 | 72 | 94 | 116 | 22 | 56 | 86 | 140 |
4 | 29 | 650 | 200 | 19 | 66 | 90 | 122 | 29 | 88 | 110 | 142 |
5 | 28 | 615 | 213 | 15 | 61 | 95 | 128 | 21 | 48 | 79 | 119 |
6 | 28 | 615 | 193 | 16 | 89 | 116 | 134 | 19 | 57 | 87 | 126 |
7 | 26 | 422 | 142 | 18 | 91 | 111 | 142 | 30 | 108 | 136 | 175 |
8 | 28 | 600 | 198 | 17 | 53 | 119 | 167 | 29 | 86 | 121 | 151 |
mean | 28.3 | 606.5 | 184.9 | 16.9 ◊ | 86.9 | 123.4 | 151.5 | 23.0 ◊ | 92.4 | 125.3 | 161.1 |
SD | 1.0 | 77.3 | 25.1 | 1.8 | 34.7 | 37.2 | 34.7 | 5.6 | 43.7 | 46.8 | 38.9 |
Age Sessions (months) | |||||||
---|---|---|---|---|---|---|---|
5 | 14 | 26 | |||||
rVAPw | Mean | SD | Mean | SD | Mean | SD | p |
Phase 0 | 19 | 3 | 20 | 2 | 23 | 4 | <0.01 |
D3 d30% | 53 | 16 | 51 | 19 | 50 | 18 | ns |
D4 d30% | 52 | 15 | 51 | 20 | 49 | 17 | ns |
D3 d50% | 82 | 19 | 79 | 23 | 74 | 21 | ns |
D4 d50% | 81 | 19 | 80 | 24 | 72 | 20 | ns |
D3 d80% | 113 | 19 | 111 | 19 | 107 | 19 | ns |
D4 d80% | 112 | 20 | 112 | 21 | 108 | 20 | ns |
HR | 256.3 | 46.7 | 250.7 | 44.7 | 253.1 | 49.0 | ns |
Anaesthetized | Awake | ||||
---|---|---|---|---|---|
rVAPw | Mean | SD | Mean | SD | p |
Phase 0 | 20 | 3 | 20 | 4 | ns |
D3 d30% | 57 | 19 | 41 | 8 | <0.01 |
D4 d30% | 55 | 19 | 44 | 13 | 0.01 |
D3 d50% | 86 | 21 | 67 | 15 | <0.01 |
D4 d50% | 84 | 22 | 69 | 18 | <0.01 |
D3 d80% | 116 | 19 | 102 | 15 | <0.01 |
D4 d80% | 114 | 21 | 106 | 19 | ns |
HR | 257.7 | 46.9 | 245.5 | 43.8 | ns |
Males | Females | ||||
---|---|---|---|---|---|
rVAPw | Mean | SD | Mean | SD | p |
Phase 0 | 20 | 2 | 19 | 2 | ns |
D3 d30% | 48 | 11 | 53 | 24 | ns |
D4 d30% | 51 | 14 | 52 | 25 | ns |
D3 d50% | 77 | 15 | 81 | 28 | ns |
D4 d50% | 79 | 19 | 80 | 29 | ns |
D3 d80% | 112 | 14 | 111 | 24 | ns |
D4 d80% | 114 | 17 | 111 | 24 | ns |
HR | 248.3 | 44.7 | 252.8 | 46.2 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fenici, R.; Picerni, M.; Fenici, P.; Brisinda, D. Non-Invasive Mapping of Ventricular Action Potential Reconstructed from Contactless Magnetocardiographic Recordings in Intact and Conscious Guinea Pigs. J. Cardiovasc. Dev. Dis. 2025, 12, 343. https://doi.org/10.3390/jcdd12090343
Fenici R, Picerni M, Fenici P, Brisinda D. Non-Invasive Mapping of Ventricular Action Potential Reconstructed from Contactless Magnetocardiographic Recordings in Intact and Conscious Guinea Pigs. Journal of Cardiovascular Development and Disease. 2025; 12(9):343. https://doi.org/10.3390/jcdd12090343
Chicago/Turabian StyleFenici, Riccardo, Marco Picerni, Peter Fenici, and Donatella Brisinda. 2025. "Non-Invasive Mapping of Ventricular Action Potential Reconstructed from Contactless Magnetocardiographic Recordings in Intact and Conscious Guinea Pigs" Journal of Cardiovascular Development and Disease 12, no. 9: 343. https://doi.org/10.3390/jcdd12090343
APA StyleFenici, R., Picerni, M., Fenici, P., & Brisinda, D. (2025). Non-Invasive Mapping of Ventricular Action Potential Reconstructed from Contactless Magnetocardiographic Recordings in Intact and Conscious Guinea Pigs. Journal of Cardiovascular Development and Disease, 12(9), 343. https://doi.org/10.3390/jcdd12090343