Comparison of Surgical Treatment Outcomes in Patients with Symptomatic Severe Aortic Valve Stenosis Using the Perceval Sutureless Bioprosthesis Versus a Conventional Biological Valve
Abstract
1. Introduction
2. Materials and Methods
- Indication for elective AVR with a bioprosthesis (via full sternotomy, mini-sternotomy, or right anterior mini-thoracotomy);
- Age > 65 years;
- Severe AS with New York Heart Association (NYHA) class ≥ II symptoms;
- Critical aortic stenosis on preoperative echocardiography: aortic valve area ≤ 1.0 cm2 (or indexed area < 0.6 cm2/m2), mean gradient > 40 mmHg, peak velocity > 4 m/s, or Doppler velocity index < 0.25;
- Sinotubular junction-to-annulus diameter ratio ≤ 1.3;
- Aortic root dimensions suitable for a Perceval valve (annulus 19–27 mm);
- Signed informed consent.
- Urgent or emergency cases;
- Concomitant procedures other than CABG (e.g., other valve or ascending aorta surgeries);
- Presence of an ascending aortic aneurysm or dissection;
- Congenital unicuspid or bicuspid aortic valve (Sievers type 0);
- Sinotubular junction-to-annulus diameter ratio > 1.3;
- Aortic annulus size < 19 mm or >27 mm;
- History of ST-elevation myocardial infarction (STEMI), Non-ST-elevation myocardial infarction (NSTEMI) or stroke within the last 30 days;
- Active endocarditis, myocarditis, or sepsis;
- Cardiogenic shock necessitating mechanical support;
- Known allergies to nickel or nickel–titanium alloys;
- Inability to provide informed consent.
2.1. Operative Technique
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ACC | Aortic Cross-Clamp |
AS | Aortic Stenosis |
AVR | Aortic Valve Replacement |
AVR + CABG | Aortic Valve Replacement plus Coronary Artery Bypass Grafting |
BMI | Body Mass Index |
BSA | Body Surface Area |
CABG | Coronary Artery Bypass Grafting |
CPB | Cardiopulmonary Bypass |
CT or MDCT | (Multi-Detector) Computed Tomography |
DVI | Doppler Velocity Index |
EF/LVEF | Ejection Fraction/Left Ventricular Ejection Fraction |
ICU | Intensive Care Unit |
LVEF | Left Ventricular Ejection Fraction |
NYHA | New York Heart Association |
SD | Standard Deviation |
STS | Society of Thoracic Surgeons |
SU-AVR | Sutureless Aortic Valve Replacement |
TEE | Transesophageal Echocardiography |
TTE | Transthoracic Echocardiography |
Vmax | Peak Aortic Jet Velocity |
References
- Carabello, B.A.; Paulus, W.J. Aortic stenosis. Lancet 2009, 373, 956–966. [Google Scholar] [CrossRef]
- Nishimura, R.A.; Otto, C.M.; Bonow, R.O.; Carabello, B.A.; Erwin, J.P., 3rd; Guyton, R.A.; O’Gara, P.T.; Ruiz, C.E.; Skubas, N.J.; Sorajja, P.; et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J. Am. Coll. Cardiol. 2014, 63, e57–e185. [Google Scholar] [CrossRef]
- Khot, U.N.; Novaro, G.M.; Popović, Z.B.; Mills, R.M.; Thomas, J.D.; Tuzcu, E.M.; Hammer, D.; Nissen, S.E.; Francis, G.S. Nitroprusside in critically ill patients with left ventricular dysfunction and aortic stenosis. N. Engl. J. Med. 2003, 348, 1756–1763. [Google Scholar] [CrossRef]
- Vahanian, A.; Alfieri, O.; Andreotti, F.; Antunes, M.J.; Barón-Esquivias, G.; Baumgartner, H.; Borger, M.A.; Carrel, T.P.; De Bonis, M.; Evangelista, A.; et al. Guidelines on the management of valvular heart disease (version 2012): The Joint Task Force on the Management of Valvular Heart Disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. J. Cardiothorac. Surg. 2012, 42, S1–S44. [Google Scholar] [CrossRef]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef]
- Edwards, W.S.; Smith, L. Aortic valve replacement with a subcoronary ball valve. Surg. Forum 1958, 9, 309–313. [Google Scholar]
- Berretta, P.; Andreas, M.; Meuris, B.; Langenaeken, T.; Solinas, M.; Concistrè, G.; Kappert, U.; Arzt, S.; Santarpino, G.; Nicoletti, A.; et al. Sutureless and rapid deployment versus sutured aortic valve replacement: A propensity-matched comparison from the Sutureless and Rapid Deployment International Registry. Eur. J. Cardiothorac. Surg. 2022, 62, 309–313. [Google Scholar] [CrossRef]
- Sá, M.P.; Jabagi, H.; Dokollari, A.; Awad, A.K.; Van den Eynde, J.; Malin, J.H.; Sicouri, S.; Torregrossa, G.; Ruhparwar, A.; Weymann, A.; et al. Early and late outcomes of surgical aortic valve replacement with sutureless and rapid-deployment valves versus transcatheter aortic valve implantation: Meta-analysis with reconstructed time-to-event data of matched studies. Catheter. Cardiovasc. Interv. 2022, 99, 1886–1896. [Google Scholar] [CrossRef] [PubMed]
- Iung, B.; Vahanian, A. Epidemiology of valvular heart disease in the adult. Nat. Rev. Cardiol. 2011, 8, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Fialka, N.M.; El-Andari, R.; Wang, S.; Dokollari, A.; Kent, W.D.T.; Fatehi Hassanabad, A. The Perceval Sutureless Bioprosthetic Aortic Valve: Evolution of Surgical Valve Technology. Innovations 2024, 19, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Vasanthan, V.; Kent, W.; Gregory, A.; Maitland, A.; Cutrara, C.; Bouchard, D.; Asch, F.; Adams, C. Perceval Valve Implantation: Technical Details and Echocardiographic Assessment. Ann. Thorac. Surg. 2019, 107, e223–e225. [Google Scholar] [CrossRef]
- Ensminger, S.; Fujita, B.; Bauer, T.; Möllmann, H.; Beckmann, A.; Bekeredjian, R.; Bleiziffer, S.; Landwehr, S.; Hamm, C.W.; Mohr, F.W.; et al. Rapid Deployment Versus Conventional Bioprosthetic Valve Replacement for Aortic Stenosis. J. Am. Coll. Cardiol. 2018, 71, 1417–1428. [Google Scholar] [CrossRef]
- Powell, R.; Pelletier, M.P.; Chu, M.W.A.; Bouchard, D.; Melvin, K.N.; Adams, C. The Perceval Sutureless Aortic Valve: Review of Outcomes, Complications, and Future Direction. Innovations 2017, 12, 155–173. [Google Scholar] [CrossRef]
- Murzi, M.; Cerillo, A.G.; Gilmanov, D.; Concistrè, G.; Farneti, P.; Glauber, M.; Solinas, M. Exploring the learning curve for minimally invasive sutureless aortic valve replacement. J. Thorac. Cardiovasc. Surg. 2016, 152, 1537–1546.e1. [Google Scholar] [CrossRef]
- Phan, K.; Tsai, Y.C.; Niranjan, N.; Bouchard, D.; Carrel, T.P.; Dapunt, O.E.; Eichstaedt, H.C.; Fischlein, T.; Gersak, B.; Glauber, M.; et al. Sutureless aortic valve replacement: A systematic review and meta-analysis. Ann. Cardiothorac. Surg. 2015, 4, 100–111. [Google Scholar] [CrossRef]
- Schizas, N.; Samiotis, I.; Nazou, G.; Iliopoulos, D.C.; Anagnostopoulos, I.; Kousta, M.; Papaioannou, N.; Argiriou, M.; Dedeilias, P. Perceval-S over time. Clinical outcomes after ten years of usage. J. Cardiothorac. Surg. 2024, 19, 192. [Google Scholar] [CrossRef] [PubMed]
- Sangani, N.K.; Suri, R.M. Sutureless Aortic Valve Implantation. Oper. Tech. Thorac. Cardiovasc. Surg. 2013, 18, 288–304. [Google Scholar] [CrossRef]
- Glauber, M.; Miceli, A.; di Bacco, L. Sutureless and rapid deployment valves: Implantation technique from A to Z—The Perceval valve. Ann. Cardiothorac. Surg. 2020, 9, 330–340. [Google Scholar] [CrossRef] [PubMed]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef]
- Shrestha, M.; Folliguet, T.; Meuris, B.; Dibie, A.; Bara, C.; Herregods, M.C.; Khaladj, N.; Hagl, C.; Flameng, W.; Laborde, F.; et al. Sutureless Perceval S aortic valve replacement: A multicenter, prospective pilot trial. J. Heart Valve Dis. 2009, 18, 698–702. [Google Scholar] [PubMed]
- Di Eusanio, M.; Phan, K.; Berretta, P.; Carrel, T.P.; Andreas, M.; Santarpino, G.; Di Bartolomeo, R.; Folliguet, T.; Meuris, B.; Mignosa, C.; et al. Sutureless and Rapid-Deployment Aortic Valve Replacement International Registry (SURD-IR): Early results from 3343 patients. Eur. J. Cardiothorac. Surg. 2018, 54, 768–773. [Google Scholar] [CrossRef] [PubMed]
- Mikus, E.; Calvi, S.; Tavazzi, L.; Brega, C.; Tripodi, A.; Pin, M.; Manfrini, M.; Zucchetta, F.; Tenti, E.; Albertini, A. Pacemaker need after sutureless aortic valve replacement: The role of the learning curve. J. Cardiovasc. Med. 2021, 22, 133–138. [Google Scholar] [CrossRef]
- Shrestha, M.; Maeding, I.; Höffler, K.; Koigeldiyev, N.; Marsch, G.; Siemeni, T.; Fleissner, F.; Haverich, A. Aortic valve replacement in geriatric patients with small aortic roots: Are sutureless valves the future? Interact. Cardiovasc. Thorac. Surg. 2013, 17, 778–782. [Google Scholar] [CrossRef]
- Nguyen, A.; Fortin, W.; Mazine, A.; Bouchard, D.; Carrier, M.; El Hamamsy, I.; Lamarche, Y.; Demers, P. Sutureless aortic valve replacement in patients who have bicuspid aortic valve. J. Thorac. Cardiovasc. Surg. 2015, 150, 851–857. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Ghita, C.; Makkinejad, A.; Green, C.; Wu, X. Early outcomes of the Y-incision technique to enlarge the aortic annulus 3 to 4 valve sizes. J. Thorac. Cardiovasc. Surg. 2024, 167, 1196–1205.e2. [Google Scholar] [CrossRef]
- Wang, G.-X.; Zhang, S.; Xu, F. The Y-incision with a new roof technique to enlarge the aortic root. JTCVS Tech. 2025, 31, 34–38. [Google Scholar] [CrossRef]
- Berretta, P.; Andreas, M.; Carrel, T.P.; Solinas, M.; Teoh, K.; Fischlein, T.; Santarpino, G.; Folliguet, T.; Villa, E.; Meuris, B.; et al. Minimally invasive aortic valve replacement with sutureless and rapid deployment valves: A report from an international registry (Sutureless and Rapid Deployment International Registry). Eur. J. Cardiothorac. Surg. 2019, 56, 793–799. [Google Scholar] [CrossRef]
- Gilmanov, D.; Miceli, A.; Ferrarini, M.; Farneti, P.; Murzi, M.; Solinas, M.; Glauber, M. Aortic valve replacement through right anterior minithoracotomy: Can sutureless technology improve clinical outcomes? Ann. Thorac. Surg. 2014, 98, 1585–1592. [Google Scholar] [CrossRef]
- Glauber, M.; Di Bacco, L.; Cuenca, J.; Di Bartolomeo, R.; Baghai, M.; Zakova, D.; Fischlein, T.; Troise, G.; Viganò, G.; Solinas, M. Minimally Invasive Aortic Valve Replacement with Sutureless Valves: Results from an International Prospective Registry. Innovations 2020, 15, 120–130. [Google Scholar] [CrossRef]
- Miceli, A.; Gilmanov, D.; Murzi, M.; Marchi, F.; Ferrarini, M.; Cerillo, A.G.; Quaini, E.; Solinas, M.; Berti, S.; Glauber, M. Minimally invasive aortic valve replacement with a sutureless valve through a right anterior mini-thoracotomy versus transcatheter aortic valve implantation in high-risk patients. Eur. J. Cardiothorac. Surg. 2016, 49, 960–965. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, M.; Folliguet, T.A.; Pfeiffer, S.; Meuris, B.; Carrel, T.; Bechtel, M.; Flameng, W.J.; Fischlein, T.; Laborde, F.; Haverich, A. Aortic valve replacement and concomitant procedures with the Perceval valve: Results of European trials. Ann. Thorac. Surg. 2014, 98, 1294–1300. [Google Scholar] [CrossRef]
- Müller, H.; Szalkiewicz, P.; Benedikt, P.; Ratschiller, T.; Schachner, B.; Schröckenstein, S.; Zierer, A. Single-center real-world data and technical considerations from 100 consecutive patients treated with the Perceval aortic bioprosthesis. Front. Cardiovasc. Med. 2024, 11, 1417617. [Google Scholar] [CrossRef]
- Lamberigts, M.; Szecel, D.; Rega, F.; Verbrugghe, P.; Dubois, C.; Meuris, B. Sutureless aortic valves in isolated and combined procedures: Thirteen years of experience in 784 patients. J. Thorac. Cardiovasc. Surg. 2024, 167, 1724–1732.e1. [Google Scholar] [CrossRef]
- Englberger, L.; Carrel, T.P.; Doss, M.; Sadowski, J.; Bartus, K.; Eckstein, F.F.; Asch, F.M.; Martens, S. Clinical performance of a sutureless aortic bioprosthesis: Five-year results of the 3f Enable long-term follow-up study. J. Thorac. Cardiovasc. Surg. 2014, 148, 1681–1687. [Google Scholar] [CrossRef]
- Nguyen, A.; Fortin, W.; Mazine, A.; Bouchard, D.; Demers, P. Sutureless Aortic Valve Replacement Using the Perceval S Prosthesis: Should Bicuspid Disease be a Contraindication? Can. J. Cardiol. 2014, 30, S238. [Google Scholar] [CrossRef]
- Verlinden, J.; Bové, T.; de Kerchove, L.; Baert, J.; Radermecker, M.; Durieux, R.; Gutermann, H.; Van Kerrebroeck, C.; Szecel, D.; Meuris, B. Early Conduction Disorders After Aortic Valve Replacement with the Sutureless Perceval Prosthesis. Ann. Thorac. Surg. 2022, 113, 1911–1917. [Google Scholar] [CrossRef] [PubMed]
- Moscarelli, M.; Santarpino, G.; Athanasiou, T.; Mastroroberto, P.; Fattouch, K.; Nasso, G.; Speziale, G. A pooled analysis of pacemaker implantation after Perceval sutureless aortic valve replacement. Interact. Cardiovasc. Thorac. Surg. 2021, 33, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Fischlein, T.; Folliguet, T.; Meuris, B.; Shrestha, M.L.; Roselli, E.E.; McGlothlin, A.; Kappert, U.; Pfeiffer, S.; Corbi, P.; Lorusso, R. Sutureless versus conventional bioprostheses for aortic valve replacement in severe symptomatic aortic valve stenosis. J. Thorac. Cardiovasc. Surg. 2021, 161, 920–932. [Google Scholar] [CrossRef]
- Lorusso, R.; Folliguet, T.; Shrestha, M.; Meuris, B.; Kappetein, A.P.; Roselli, E.; Klersy, C.; Nozza, M.; Verhees, L.; Larracas, C.; et al. Sutureless versus Stented Bioprostheses for Aortic Valve Replacement: The Randomized PERSIST-AVR Study Design. Thorac. Cardiovasc. Surg. 2020, 68, 114–123. [Google Scholar] [CrossRef]
- Szecel, D.; Eurlings, R.; Rega, F.; Verbrugghe, P.; Meuris, B. Perceval Sutureless Aortic Valve Implantation: Midterm Outcomes. Ann. Thorac. Surg. 2021, 111, 1331–1337. [Google Scholar] [CrossRef]
- Sievers, H.H.; Schmidtke, C. A classification system for the bicuspid aortic valve from 304 surgical specimens. J. Thorac. Cardiovasc. Surg. 2007, 133, 1226–1233. [Google Scholar] [CrossRef] [PubMed]
- Sian, K.; Li, S.; Selvakumar, D.; Mejia, R. Early results of the Sorin® Perceval S sutureless valve: Systematic review and meta-analysis. J. Thorac. Dis. 2017, 9, 711–724. [Google Scholar] [CrossRef] [PubMed]
- Jolliffe, J.; Moten, S.; Tripathy, A.; Skillington, P.; Tatoulis, J.; Muneretto, C.; Di Bacco, L.; Galvao, H.B.F.; Goldblatt, J. Perceval valve intermediate outcomes: A systematic review and meta-analysis at 5-year follow-up. J. Cardiothorac. Surg. 2023, 18, 129. [Google Scholar] [CrossRef]
- Niinami, H.; Sawa, Y.; Shimokawa, T.; Domoto, S.; Nakamura, Y.; Sakaguchi, T.; Ito, T.; Toda, K.; Amano, A.; Gersak, B. 1-year outcomes of patients implanted with the Perceval sutureless valve: The Japanese post-marketing surveillance study. Heart Vessel. 2023, 38, 949–956. [Google Scholar] [CrossRef] [PubMed]
Characteristic | Sutureless (N = 74) | Stented (N = 159) | p-Value |
---|---|---|---|
Age (years) | 72.61 ± 7.21 | 72.67 ± 7.19 | NS |
Female, n (%) | 34 (45.9%) | 69 (43.4%) | NS |
Male, n (%) | 40 (54.1%) | 90 (56.6%) | NS |
Weight (kg) | 77.92 ± 8.40 | 75.82 ± 7.60 | NS |
Height (cm) | 165.60 ± 14.50 | 166.86 ± 15.22 | NS |
BMI (kg/m2) | 26.6 ± 4.67 | 28.3 ± 11.53 | NS |
BSA (m2) | 1.81 ± 0.14 | 1.92 ± 0.19 | NS |
Procedure: AVR (isolated) | 61 (82%) | 127 (80%) | NS |
Procedure: AVR + CABG | 13 (18%) | 32 (20%) | NS |
Peak transvalvular gradient (mmHg) | 76 ± 26 | 74 ± 23 | NS |
Mean transvalvular gradient (mmHg) | 52 ± 17 | 52 ± 17 | NS |
Aortic valve area (cm2) | 0.61 ± 0.15 | 0.90 ± 0.24 | <0.05 |
Bicuspid aortic valve, n (%) | 2 (2.7%) | 8 (5.0%) | NS |
NYHA class II | 47 (63.5%) | 89 (56.0%) | NS |
NYHA class III | 27 (36.5%) | 70 (44.0%) | NS |
Coronary artery disease, n (%) | 16 (21.6%) | 33 (20.7%) | NS |
Hypertension, n (%) | 70 (94%) | 122 (76%) | <0.05 |
Diabetes mellitus, n (%) | 33 (44%) | 64 (40%) | NS |
Chronic lung disease, n (%) | 14 (19%) | 32 (20%) | NS |
Neurological disease, n (%) | 9 (12%) | 20 (12.5%) | NS |
Renal impairment, n (%) | 14 (19%) | 22 (14%) | NS |
Peripheral vascular disease, n (%) | 11 (15%) | 16 (10%) | NS |
Dyslipidemia, n (%) | 49 (66%) | 63 (40%) | <0.05 |
Current/previous smoking, n (%) | 50 (67.6%) | 102 (64.1%) | NS |
LVEF < 30%, n (%) | 3 (4%) | 5 (3%) | NS |
LVEF 30–50%, n (%) | 16 (22%) | 28 (18%) | NS |
LVEF > 50%, n (%) | 55 (74%) | 126 (79%) | NS |
EuroSCORE-II | 1.95 ± 0.84 | 1.76 ± 0.94 | NS |
STS score | 1.80 ± 0.74 | 1.54 ± 0.64 | NS |
Characteristic | Sutureless (N = 74) | Stented (N = 159) | p-Value |
---|---|---|---|
CPB time (min) | |||
AVR (isolated) | 83.8 ± 20.6 (n = 61) | 82.7 ± 21.8 (n = 127) | NS |
AVR + CABG | 120.3 ± 38.2 (n = 13) | 101.4 ± 36.5 (n = 32) | < 0.05 |
Full sternotomy | 96.4 ± 44.5 (n = 51) | 97.6 ± 42.8 (n = 137) | NS |
Upper mini-sternotomy | 88.4 ± 21.4 (n = 17) | 89.2 ± 43.6 (n = 22) | NS |
Right anterior thoracotomy | 94.0 ± 9.2 (n = 6) | — (n = 0) | — |
ACC time (min) | |||
AVR (isolated) | 54.5 ± 14.6 (n = 61) | 56.8 ± 11.6 (n = 127) | NS |
AVR + CABG | 92.1 ± 29.3 (n = 13) | 104.5 ± 29.6 (n = 32) | < 0.05 |
Full sternotomy | 65.8 ± 27.6 (n = 51) | 67.6 ± 22.8 (n = 137) | NS |
Upper mini-sternotomy | 53.6 ± 15.8 (n = 17) | 55.4 ± 13.7 (n = 22) | NS |
Right anterior thoracotomy | 64.7 ± 5.9 (n = 6) | — (n = 0) | — |
Distal anastomoses (CABG) | |||
1 graft | 5 (6.8%) | 11 (6.9%) | NS |
2 grafts | 3 (4.0%) | 6 (3.8%) | NS |
3 grafts | 6 (8.1%) | 15 (9.4%) | NS |
Complications | |||
Paravalvular leak (significant) | 3 (4.0%) | 2 (1.3%) | NS |
Neurological dysfunction | 2 (2.7%) | 2 (1.3%) | NS |
Thrombocytopenia | 9 (12.2%) | 11 (6.9%) | NS |
Re-exploration for bleeding | 4 (5.4%) | 11 (6.9%) | NS |
Permanent pacemaker required | 4 (5.4%) | 5 (3.1%) | NS |
24 h chest tube output (mL) | 405 ± 93 | 494 ± 102 | NS |
ICU stay (days) | 2.4 ± 1.9 | 2.7 ± 2.1 | NS |
Hospital stays (days) | 7.6 ± 3.6 | 8.1 ± 2.3 | NS |
30-day (hospital) mortality | 4 (5.9%) | 10 (6.3%) | NS |
Characteristic | Sutureless (N = 74) | Stented (N = 159) | p-Value |
---|---|---|---|
Stroke, n (%) | 0 (0%) | 0 (0%) | NS |
Endocarditis, n (%) | 0 (0%) | 3 (1.9%) | NS |
Neurological event, n (%) * | 3 (4.0%) | 6 (3.8%) | NS |
Thrombocytopenia, n (%) | 15 (20.3%) | 17 (10.7%) | <0.05 |
Paravalvular leak (trivial), n (%) | 4 (5.4%) | 5 (3.1%) | NS |
Peak transvalvular gradient (postop, mmHg) | 22.5 ± 8.1 | 24.5 ± 8.7 | NS |
Mean transvalvular gradient (postop, mmHg) | 11.2 ± 4.3 | 12.6 ± 5.3 | NS |
Peak transvalvular gradient (follow-up, mmHg) | 19 ± 2 | 20 ± 2.1 | NS |
Mean transvalvular gradient (follow-up, mmHg) | 9 ± 2 | 10 ± 2.2 | NS |
NYHA class I (latest) | 48 (64.8%) | 92 (57.8%) | NS |
NYHA class II (latest) | 26 (35.2%) | 67 (42.2%) | NS |
Months After AVR | Overall Survival (%) | Stented Group (%) | Sutureless Group (%) |
---|---|---|---|
1 | 94.0 | 93.7 | 94.6 |
3 | 93.5 | 93.1 | 94.6 |
12 | 90.1 | 88.4 | 91.6 |
24 | 85.0 | 83.7 | 88.3 |
36 | 80.2 | 76.8 | 88.3 |
48 | — | — | 88.3 |
58 | — | — | 88.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazović, D.M.; Karadžić, M.; Vučićević, F.; Marić, G.; Grujić, M.; Đurošev, I.; Kočica, M.J.; Putnik, S.; Cvetković, D. Comparison of Surgical Treatment Outcomes in Patients with Symptomatic Severe Aortic Valve Stenosis Using the Perceval Sutureless Bioprosthesis Versus a Conventional Biological Valve. J. Cardiovasc. Dev. Dis. 2025, 12, 308. https://doi.org/10.3390/jcdd12080308
Lazović DM, Karadžić M, Vučićević F, Marić G, Grujić M, Đurošev I, Kočica MJ, Putnik S, Cvetković D. Comparison of Surgical Treatment Outcomes in Patients with Symptomatic Severe Aortic Valve Stenosis Using the Perceval Sutureless Bioprosthesis Versus a Conventional Biological Valve. Journal of Cardiovascular Development and Disease. 2025; 12(8):308. https://doi.org/10.3390/jcdd12080308
Chicago/Turabian StyleLazović, Dejan M., Milica Karadžić, Filip Vučićević, Gorica Marić, Miloš Grujić, Ivana Đurošev, Mladen J. Kočica, Svetozar Putnik, and Dragan Cvetković. 2025. "Comparison of Surgical Treatment Outcomes in Patients with Symptomatic Severe Aortic Valve Stenosis Using the Perceval Sutureless Bioprosthesis Versus a Conventional Biological Valve" Journal of Cardiovascular Development and Disease 12, no. 8: 308. https://doi.org/10.3390/jcdd12080308
APA StyleLazović, D. M., Karadžić, M., Vučićević, F., Marić, G., Grujić, M., Đurošev, I., Kočica, M. J., Putnik, S., & Cvetković, D. (2025). Comparison of Surgical Treatment Outcomes in Patients with Symptomatic Severe Aortic Valve Stenosis Using the Perceval Sutureless Bioprosthesis Versus a Conventional Biological Valve. Journal of Cardiovascular Development and Disease, 12(8), 308. https://doi.org/10.3390/jcdd12080308