Myocardial Infarction in the Young: Aetiology, Emerging Risk Factors, and the Role of Novel Biomarkers
Abstract
:1. Introduction
2. Aetiology
2.1. Atherothrombotic MI
2.1.1. Pathophysiology
2.1.2. Coronary Plaque Features in Premature CAD
2.2. Myocardial Infarction with Non-Obstructive Coronary Arteries
2.3. Non-Atherosclerotic Coronary-Related MI
2.3.1. Spontaneous Coronary Artery Dissection
2.3.2. Coronary Vasospasm
2.3.3. Coronary Embolism and Hypercoagulability
2.3.4. Coronary Artery Vasculitis
3. Risk Factors for Acute Myocardial Infarction in Younger Populations
3.1. Traditional Cardiovascular Risk Factors
3.1.1. Smoking
3.1.2. Lipid Disorders
3.1.3. Obesity
3.2. Non-Traditional Risk Factors
3.2.1. Substance Misuse
3.2.2. Chronic Inflammation and Autoimmune Diseases
3.3. Female-Specific Risk Factors
3.4. Psychosocial Risk Factors
3.5. Environmental Risk Factors
4. Role of Novel Biomarkers
4.1. Lipoprotein(a)
4.2. High-Sensitivity C-Reactive Protein
4.3. Apolipoproteins
4.4. Homocysteine
4.5. Gut Microbiome
5. Impact of Risk Factors on Outcomes in Young MI
6. Public Health Implications and Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mensah, G.A.; Fuster, V.; Murray, C.J.; Roth, G.A.; Global Burden of Cardiovascular Diseases and Risks Collaborators. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.-P.; Zeitouni, M.; Procopi, N.; Hulot, J.-S.; Silvain, J.; Kerneis, M.; Thomas, D.; Lattuca, B.; Barthelemy, O.; Lavie-Badie, Y.; et al. Long-Term Evolution of Premature Coronary Artery Disease. J. Am. Coll. Cardiol. 2019, 74, 1868–1878. [Google Scholar] [CrossRef] [PubMed]
- Arora, S.; Stouffer, G.A.; Kucharska-newton, A.M.; Qamar, A.; Vaduganathan, M.; Pandey, A.; Mph, D.L.B.; Caughey, M.C. Twenty Year Trends and Sex Differences in Young Adults Hospitalized with Acute Myocardial Infarction. Circulation 2019, 139, 1047–1056. [Google Scholar] [CrossRef]
- Zeitouni, M.; Clare, R.M.; Chiswell, K.; Abdulrahim, J.; Shah, N.; Pagidipati, N.P.; Shah, S.H.; Roe, M.T.; Patel, M.R.; Jones, W.S. Risk Factor Burden and Long-Term Prognosis of Patients with Premature Coronary Artery Disease. J. Am. Heart Assoc. 2020, 9, e017712. [Google Scholar] [CrossRef]
- Rallidis, L.S.; Xenogiannis, I.; Brilakis, E.S.; Bhatt, D.L. Causes, Angiographic Characteristics, and Management of Premature Myocardial Infarction: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 2431–2449. [Google Scholar] [CrossRef]
- Zasada, W.; Bobrowska, B.; Plens, K.; Dziewierz, A.; Siudak, Z.; Surdacki, A.; Dudek, D.; Bartuś, S. Acute myocardial infarction in young patients. Kardiol. Pol. 2021, 79, 1093–1098. [Google Scholar] [CrossRef] [PubMed]
- Ambroziak, M.; Niewczas-Wieprzowska, K.; Maicka, A.; Budaj, A. Younger age of patients with myocardial infarction is associated with a higher number of relatives with a history of premature atherosclerosis. BMC Cardiovasc. Disord. 2020, 20, 410. [Google Scholar] [CrossRef]
- Kazi, S.N.; Von Huben, A.; Marschner, S.; Chong, J.J.; Denniss, A.R.; Ong, A.T.; Chow, C.K. Trends in Modifiable Risk Factors Amongst First Presentation ST Elevation Myocardial Infarction Patients in a Large Longitudinal Registry. Heart Lung Circ. 2023, 32, 480–486. [Google Scholar] [CrossRef]
- Krittanawong, C.; Khawaja, M.; Tamis-Holland, J.E.; Girotra, S.; Rao, S.V. Acute Myocardial Infarction: Etiologies and Mimickers in Young Patients. J. Am. Heart Assoc. 2023, 12, e029971. [Google Scholar] [CrossRef]
- Libby, P.; Theroux, P. Pathophysiology of coronary artery disease. Circulation 2005, 111, 3481–3488. [Google Scholar] [CrossRef]
- Arbustini, E.; Bello, B.D.; Morbini, P.; Burke, A.P.; Bocciarelli, M.; Specchia, G.; Virmani, R. Plaque erosion is a major substrate for coronary thrombosis in acute myocardial infarction. Heart 1999, 82, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature 2011, 473, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Kitulwatte, I.D.; Pollanen, M.S. A Comparative Study of Coronary Atherosclerosis in Young and Old. Am. J. Forensic Med. Pathol. 2015, 36, 323–326. [Google Scholar] [CrossRef]
- Ruiz-García, J.; Lerman, A.; Weisz, G.; Maehara, A.; Mintz, G.S.; Fahy, M.; Xu, K.; Lansky, A.J.; Cristea, E.; Farah, T.G.; et al. Age- and gender-related changes in plaque composition in patients with acute coronary syndrome: The PROSPECT study. EuroIntervention 2012, 8, 929–938. [Google Scholar] [CrossRef]
- Xie, J.; Qi, J.; Mao, H.; Wang, N.; Ye, X.; Zhou, L.; Tong, G.; Yang, J.; Pan, H.; Huang, J. Coronary plaque tissue characterization in patients with premature coronary artery disease. Int. J. Cardiovasc. Imaging 2020, 36, 1003–1011. [Google Scholar] [CrossRef]
- Barbero, U.; Scacciatella, P.; Iannaccone, M.; D’Ascenzo, F.; Niccoli, G.; Colombo, F.; Ugo, F.; Colangelo, S.; Mancone, M.; Calcagno, S.; et al. Culprit plaque characteristics in younger versus older patients with acute coronary syndromes: An optical coherence tomography study from the FORMIDABLE registry. Catheter. Cardiovasc. Interv. 2018, 92, E1–E8. [Google Scholar] [CrossRef]
- Fang, C.; Dai, J.; Zhang, S.; Wang, Y.; Wang, J.; Li, L.; Wang, Y.; Yu, H.; Wei, G.; Zhang, X.; et al. Culprit lesion morphology in young patients with ST-segment elevated myocardial infarction: A clinical, angiographic and optical coherence tomography study. Atherosclerosis 2019, 289, 94–100. [Google Scholar] [CrossRef]
- Girish, M.; Gupta, M.D.; Maehara, A.; Matsumura, M.; Bansal, A.; Kunal, S.; Batra, V.; Mohanty, A.; Qamar, A.; Mintz, G.S.; et al. OCT-based comparative evaluation of culprit lesion morphology in very young versus older adult patients with STEMI. AsiaIntervention 2024, 10, 177–185. [Google Scholar] [CrossRef]
- Seegers, L.M.; Araki, M.; Nakajima, A.; Yonetsu, T.; Minami, Y.; Ako, J.; Soeda, T.; Kurihara, O.; Higuma, T.; Kimura, S.; et al. Sex Differences in Culprit Plaque Characteristics Among Different Age Groups in Patients with Acute Coronary Syndromes. Circ. Cardiovasc. Interv. 2022, 15, e011612. [Google Scholar] [CrossRef]
- Kaul, U.; Sethi, R.; Roy, S.; Goel, P.; Chouhan, N.S.; Vijayvergiya, R.; Narang, M.; Priyadarshini; Baruah, D.; Mathew, R. Morphological characterization of coronary plaques in young indian patients with acute coronary syndrome: A multicentric study. Indian Heart J. 2024, 76, 370–375. [Google Scholar] [CrossRef]
- Juan-Salvadores, P.; Díaz, V.A.J.; de Araujo, A.R.G.; Carreño, C.I.; González, A.G.; Garcia, C.V.; Alonso, J.A.B.; Isorna, F.C.; Romo, A.I. Clinical Features and Long-Term Outcomes in Very Young Patients with Myocardial Infarction with Non-Obstructive Coronary Arteries. J. Interv. Cardiol. 2022, 2022, 9584527. [Google Scholar] [CrossRef] [PubMed]
- Sawano, M.; Lu, Y.; Caraballo, C.; Mahajan, S.; Dreyer, R.; Lichtman, J.H.; D’onofrio, G.; Spatz, E.; Khera, R.; Onuma, O.; et al. Sex Difference in Outcomes of Acute Myocardial Infarction in Young Patients. J. Am. Coll. Cardiol. 2023, 81, 1797–1806. [Google Scholar] [CrossRef] [PubMed]
- Saw, J.; Aymong, E.; Mancini, G.J.; Sedlak, T.; Starovoytov, A.; Ricci, D. Nonatherosclerotic coronary artery disease in young women. Can. J. Cardiol. 2014, 30, 814–819. [Google Scholar] [CrossRef]
- Dang, Q.M.; Psaltis, P.J.; Burgess, S.; Chandrasekhar, J.; Mukherjee, S.; Kritharides, L.; Jepson, N.; Fairley, S.; Ihdayhid, A.; Layland, J.; et al. The Australian-New Zealand spontaneous coronary artery dissection cohort study: Predictors of major adverse cardiovascular events and recurrence. Eur. Heart J. 2025, ehaf097. [Google Scholar] [CrossRef]
- Hayes, S.N.; Tweet, M.S.; Adlam, D.; Kim, E.S.H.; Gulati, R.; Price, J.E.; Rose, C.H. Spontaneous Coronary Artery Dissection: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 961–984. [Google Scholar] [CrossRef]
- Nishiguchi, T.; Tanaka, A.; Ozaki, Y.; Taruya, A.; Fukuda, S.; Taguchi, H.; Iwaguro, T.; Ueno, S.; Okumoto, Y.; Akasaka, T. Prevalence of spontaneous coronary artery dissection in patients with acute coronary syndrome. Eur. Heart J. Acute Cardiovasc. Care 2016, 5, 263–270. [Google Scholar] [CrossRef]
- Marrazzo, G.; Palermi, S.; Pastore, F.; Ragni, M.; De Luca, M.; Gambardella, M.; Quaranta, G.; Messalli, G.; Riegler, L.; Pergola, V.; et al. Multimodality Imaging Approach to Spontaneous Coronary Artery Dissection. J. Clin. Med. 2022, 12, 154. [Google Scholar] [CrossRef]
- Yaker, Z.S.; Lincoff, A.M.; Cho, L.; Ellis, S.G.; Ziada, K.M.; Zieminski, J.J.; Gulati, R.; Gersh, B.J.; Holmes, D.; Raphael, C.E. Coronary spasm and vasomotor dysfunction as a cause of MINOCA. EuroIntervention 2024, 20, e123–e134. [Google Scholar] [CrossRef]
- Slavich, M.; Patel, R.S. Coronary artery spasm: Current knowledge and residual uncertainties. Int. J. Cardiol. Heart Vasc. 2016, 10, 47–53. [Google Scholar] [CrossRef]
- Matta, A.; Bouisset, F.; Lhermusier, T.; Campelo-Parada, F.; Elbaz, M.; Carrié, D.; Roncalli, J. Coronary Artery Spasm: New Insights. J. Interv. Cardiol. 2020, 2020, 5894586. [Google Scholar] [CrossRef]
- Popovic, B.; Agrinier, N.; Bouchahda, N.; Pinelli, S.; Maigrat, C.H.; Metzdorf, P.A.; Suty, C.S.; Juillière, Y.; Camenzind, E. Coronary Embolism Among ST-Segment-Elevation Myocardial Infarction Patients: Mechanisms and Management. Circ. Cardiovasc. Interv. 2018, 11, e005587. [Google Scholar] [CrossRef] [PubMed]
- Shibata, T.; Kawakami, S.; Noguchi, T.; Tanaka, T.; Asaumi, Y.; Kanaya, T.; Nagai, T.; Nakao, K.; Fujino, M.; Nagatsuka, K.; et al. Prevalence, Clinical Features, and Prognosis of Acute Myocardial Infarction Attributable to Coronary Artery Embolism. Circulation 2015, 132, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Nazir, S.; Tachamo, N.; Lohani, S.; Hingorani, R.; Poudel, D.R.; Donato, A. Acute myocardial infarction and antiphospholipid antibody syndrome: A systematic review. Coron. Artery Dis. 2017, 28, 332–335. [Google Scholar] [CrossRef]
- Ceasovschih, A.; Mantzouranis, E.; Dimitriadis, K.; Sorodoc, V.; Vlachakis, P.K.; Karanikola, A.-E.; Theofilis, P.; Koutsopoulos, G.; Drogkaris, S.; Andrikou, I.; et al. Coronary artery thromboembolism as a cause of myocardial infarction with non-obstructive coronary arteries (MINOCA). Hell. J. Cardiol. 2024, 79, 70–83. [Google Scholar] [CrossRef]
- Kleber, F.X.; Hauschild, T.; Schulz, A.; Winkelmann, A.; Bruch, L. Epidemiology of Myocardial Infarction Caused by Presumed Paradoxical Embolism via a Patent Foramen Ovale. Circ. J. 2017, 81, 1484–1489. [Google Scholar] [CrossRef]
- Matthew, J.; Koster, K.J.W. Vasculitis of the Coronary Arteries. Latest in Cardiology. 2019. Available online: https://www.acc.org/latest-in-cardiology/articles/2019/03/13/06/50/vasculitis-of-the-coronary-arteries (accessed on 23 January 2025).
- Khanna, S.; Garikapati, K.; Goh, D.S.L.; Cho, K.; Lo, P.; Bhojaraja, M.V.; Tarafdar, S. Coronary artery vasculitis: A review of current literature. BMC Cardiovasc. Disord. 2021, 21, 7. [Google Scholar] [CrossRef]
- Miloslavsky, E.; Unizony, S. The heart in vasculitis. Rheum. Dis. Clin. N. Am. 2014, 40, 11–26. [Google Scholar] [CrossRef]
- Pagnoux, C.; Guillevin, L. Cardiac involvement in small and medium-sized vessel vasculitides. Lupus 2005, 14, 718–722. [Google Scholar] [CrossRef]
- Stone, N.J.; Smith, S.C., Jr.; Orringer, C.E.; Rigotti, N.A.; Navar, A.M.; Khan, S.S.; Jones, D.W.; Goldberg, R.; Mora, S.; Blaha, M.; et al. Managing Atherosclerotic Cardiovascular Risk in Young Adults: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2022, 79, 819–836. [Google Scholar] [CrossRef]
- Yang, J.; Biery, D.W.; Singh, A.; Divakaran, S.; DeFilippis, E.M.; Wu, W.Y.; Klein, J.; Hainer, J.; Ramsis, M.; Natarajan, P.; et al. Risk Factors and Outcomes of Very Young Adults Who Experience Myocardial Infarction: The Partners YOUNG-MI Registry. Am. J. Med. 2020, 133, 605–612.e1. [Google Scholar] [CrossRef]
- Ando, H.; Yamaji, K.; Kohsaka, S.; Ishii, H.; Sakakura, K.; Goto, R.; Nakano, Y.; Takashima, H.; Ikari, Y.; Amano, T. Clinical Presentation and In-Hospital Outcomes of Acute Myocardial Infarction in Young Patients: Japanese Nationwide Registry. JACC Asia 2022, 2, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.D.; Batra, V.; Muduli, S.; Mp, G.; Kunal, S.; Bansal, A.; Gautam, A.; Malhotra, R.K.; Goyal, D.; Qamar, A.; et al. Epidemiological profile and clinical outcomes of very young (<35 years) and young (35–50 years) patients with STEMI: Insights from the NORIN STEMI registry. Indian Heart J. 2024, 76, 128–132. [Google Scholar] [CrossRef]
- Chachar, T.S.; Noor, H.A.; AlAnsari, N.F.; Masood, A.; Alraee, A.; Amin, H.; Yousif, N. Clinical Characteristics and Outcomes of ST-Elevation Myocardial Infarction in Young Patients: A Single-Center Experience. Cureus 2024, 16, e53688. [Google Scholar] [CrossRef]
- Kumar, R.; Ammar, A.; Qayyum, D.; Mujtaba, M.; Siddiqui, M.N.; Khan, M.Q.; Rahooja, K.; Rasool, M.; Samad, M.; Khan, N.; et al. Increasing Incidence of ST-Elevation Acute Coronary Syndrome in Young South Asian Population, a Challenge for the World? An Assessment of Clinical and Angiographic Patterns and Hospital Course of Premature Acute Myocardial Infarction. Am. J. Cardiol. 2023, 205, 190–197. [Google Scholar] [CrossRef]
- Khraishah, H.; Karout, L.; Jeong, S.Y.; Alahmad, B.; AlAshqar, A.; Belanger, M.J.; Welty, F.K.; Michos, E.D.; Albaghdadi, M. Clinical characteristics and cardiovascular outcomes among young patients with acute myocardial infarction in Kerala, India: A secondary analysis of ACS QUIK trial. Atheroscler. Plus 2022, 50, 25–31. [Google Scholar] [CrossRef]
- Christiansen, M.K.; Jensen, J.M.; Brøndberg, A.K.; Bøtker, H.E.; Jensen, H.K. Cardiovascular risk factor control is insufficient in young patients with coronary artery disease. Vasc. Health Risk Manag. 2016, 12, 219–227. [Google Scholar] [CrossRef]
- Mahendiran, T.; Hoepli, A.; Foster-Witassek, F.; Rickli, H.; Roffi, M.; Eberli, F.; Pedrazzini, G.; Jeger, R.; Radovanovic, D.; Fournier, S. Twenty-year trends in the prevalence of modifiable cardiovascular risk factors in young acute coronary syndrome patients hospitalized in Switzerland. Eur. J. Prev. Cardiol. 2023, 30, 1504–1512. [Google Scholar] [CrossRef]
- Lv, J.; Ni, L.; Liu, K.; Gao, X.; Yang, J.; Zhang, X.; Ye, Y.; Dong, Q.; Fu, R.; Sun, H.; et al. Clinical Characteristics, Prognosis, and Gender Disparities in Young Patients with Acute Myocardial Infarction. Front. Cardiovasc. Med. 2021, 8, 720378. [Google Scholar] [CrossRef]
- Biery, D.W.; Berman, A.N.; Singh, A.; Divakaran, S.; DeFilippis, E.M.; Collins, B.L.; Gupta, A.; Fatima, A.; Qamar, A.; Klein, J.; et al. Association of Smoking Cessation and Survival Among Young Adults with Myocardial Infarction in the Partners YOUNG-MI Registry. JAMA Netw. Open 2020, 3, e209649. [Google Scholar] [CrossRef]
- Kotseva, K.; Wood, D.; De Bacquer, D.; De Backer, G.; Rydén, L.; Jennings, C.; Gyberg, V.; Amouyel, P.; Bruthans, J.; Castro Conde, A.; et al. EUROASPIRE IV: A European Society of Cardiology survey on the lifestyle, risk factor and therapeutic management of coronary patients from 24 European countries. Eur. J. Prev. Cardiol. 2016, 23, 636–648. [Google Scholar] [CrossRef]
- Vikulova, D.N.; Trinder, M.; Mancini, G.J.; Pimstone, S.N.; Brunham, L.R. Familial Hypercholesterolemia, Familial Combined Hyperlipidemia, and Elevated Lipoprotein(a) in Patients with Premature Coronary Artery Disease. Can. J. Cardiol. 2021, 37, 1733–1742. [Google Scholar] [CrossRef] [PubMed]
- Bogsrud, M.P.; Øyri, L.K.; Halvorsen, S.; Atar, D.; Leren, T.P.; Holven, K.B. Prevalence of genetically verified familial hypercholesterolemia among young (<45 years) Norwegian patients hospitalized with acute myocardial infarction. J. Clin. Lipidol. 2020, 14, 339–345. [Google Scholar] [PubMed]
- Matsis, K.; Holley, A.; Al-Sinan, A.; Matsis, P.; Larsen, P.D.; A Harding, S. Differing Clinical Characteristics Between Young and Older Patients Presenting with Myocardial Infarction. Heart Lung Circ. 2017, 26, 566–571. [Google Scholar] [CrossRef]
- King, S.J.; Patel, R.; Arora, S.; Stouffer, G.A. Risk Factors, Use of Revascularization, and Outcomes in Young Adults with ST-Elevation Myocardial Infarction. Am. J. Cardiol. 2024, 225, 142–150. [Google Scholar] [CrossRef]
- DeFilippis, E.M.; Singh, A.; Divakaran, S.; Gupta, A.; Collins, B.L.; Biery, D.; Qamar, A.; Fatima, A.; Ramsis, M.; Pipilas, D.; et al. Cocaine and Marijuana Use Among Young Adults with Myocardial Infarction. J. Am. Coll. Cardiol. 2018, 71, 2540–2551. [Google Scholar] [CrossRef]
- Gresnigt, F.M.; Hulshof, M.; Franssen, E.J.; Vanhommerig, J.W.; de Lange, D.W.; Riezebos, R.K. Recreational drug use among young, hospitalized patients with acute coronary syndrome: A retrospective study. Toxicol. Rep. 2022, 9, 1993–1999. [Google Scholar] [CrossRef]
- Liang, M.-T.; Pang, Y.; Gao, L.-L.; Han, L.-J.; Yao, H.-C. Clinical risk factors and outcomes of young patients with acute ST segment elevation myocardial infarction: A retrospective study. BMC Cardiovasc. Disord. 2023, 23, 353. [Google Scholar] [CrossRef]
- Vyas, A.; Desai, R.; Went, T.R.; Wiltshire, D.; Priyadarshni, S.; Shalaby, M.; Khalife, W. Cardiovascular Disease Burden and Major Adverse Cardiac Events in Young Black Patients: A National Analysis of 2 Cohorts 10 Years Apart (2017 Versus 2007). J. Am. Heart Assoc. 2023, 12, e029895. [Google Scholar] [CrossRef]
- Kazi, S.; Chong, J.J.H.; Chow, C.K. Inflammation: The next target for secondary prevention in coronary artery disease. Med. J. Aust. 2024, 220, 115–120. [Google Scholar] [CrossRef]
- Pearson, T.A.; Mensah, G.A.; Alexander, R.W.; Anderson, J.L.; Cannon, R.O., 3rd; Criqui, M.; Fadl, Y.Y.; Fortmann, S.P.; Hong, Y.; Myers, G.L.; et al. Markers of inflammation and cardiovascular disease: Application to clinical and public health practice: A statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 2003, 107, 499–511. [Google Scholar] [CrossRef]
- Cederström, S.; Jernberg, T.; Samnegård, A.; Johansson, F.; Silveira, A.; Tornvall, P.; Lundman, P. Inflammatory biomarkers and long-term outcome in young patients three months after a first myocardial infarction. Cytokine 2024, 182, 156696. [Google Scholar] [CrossRef] [PubMed]
- Weber, B.; Biery, D.W.; Singh, A.; Divakaran, S.; Berman, A.N.; Wu, W.Y.; Brown, J.M.; Hainer, J.; Nasir, K.; Liao, K.; et al. Association of inflammatory disease and long-term outcomes among young adults with myocardial infarction: The Mass General Brigham YOUNG-MI Registry. Eur. J. Prev. Cardiol. 2022, 29, 352–359. [Google Scholar] [CrossRef] [PubMed]
- Ajeganova, S.; Hafström, I.; Frostegård, J. Patients with SLE have higher risk of cardiovascular events and mortality in comparison with controls with the same levels of traditional risk factors and intima-media measures, which is related to accumulated disease damage and antiphospholipid syndrome: A case-control study over 10 years. Lupus Sci. Med. 2021, 8, e000454. [Google Scholar]
- Smith, A.; Karahasan, A.; Yi, D.; Yapabandara, S.; Elhindi, J.; Fernandez-Penas, P.; Chow, C.; Zaman, S. Biologic Therapy and Cardiometabolic Risk in Psoriasis: A Retrospective Review. Dermatol. Ther. 2025, 15, 201–212. [Google Scholar] [CrossRef]
- Gelfand, J.M.; Neimann, A.L.; Shin, D.B.; Wang, X.; Margolis, D.J.; Troxel, A.B. Risk of myocardial infarction in patients with psoriasis. JAMA 2006, 296, 1735–1741. [Google Scholar] [CrossRef]
- King, S.; Chow, C.K.; Eberhard, J. Oral health and cardiometabolic disease: Understanding the relationship. Intern. Med. J. 2022, 52, 198–205. [Google Scholar] [CrossRef]
- Australian Institute of Health and Welfare. National Oral Health Plan 2015–2024: Performance Monitoring Report; AIHW: Canberra, Australia, 2020. [Google Scholar]
- Dreyer, R.P.; Sciria, C.; Spatz, E.S.; Safdar, B.; Gail D’Onofrio; Krumholz, H.M. Young Women with Acute Myocardial Infarction: Current Perspectives. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e003480. [Google Scholar] [CrossRef]
- Chandrasekhar, J.; Gill, A.; Mehran, R. Acute myocardial infarction in young women: Current perspectives. Int. J. Womens Health 2018, 10, 267–284. [Google Scholar] [CrossRef]
- Leifheit-Limson, E.C.; Gail D’Onofrio; Daneshvar, M.; Geda, M.; Bueno, H.; Spertus, J.A.; Krumholz, H.M.; Lichtman, J.H. Sex Differences in Cardiac Risk Factors, Perceived Risk, and Health Care Provider Discussion of Risk and Risk Modification Among Young Patients with Acute Myocardial Infarction: The VIRGO Study. J. Am. Coll. Cardiol. 2015, 66, 1949–1957. [Google Scholar] [CrossRef]
- Hyun, K.; Negrone, A.; Redfern, J.; Atkins, E.; Chow, C.; Kilian, J.; Rajaratnam, R.; Brieger, D. Gender Difference in Secondary Prevention of Cardiovascular Disease and Outcomes Following the Survival of Acute Coronary Syndrome. Heart Lung Circ. 2021, 30, 121–127. [Google Scholar] [CrossRef]
- Pilote, L.; Karp, I. GENESIS-PRAXY (GENdEr and Sex determInantS of cardiovascular disease: From bench to beyond-Premature Acute Coronary SYndrome). Am. Heart J. 2012, 163, 741–746.e2. [Google Scholar] [CrossRef] [PubMed]
- Khoja, A.; Andraweera, P.H.; Tavella, R.; Gill, T.K.; Dekker, G.A.; Roberts, C.T.; Edwards, S.; Arstall, M.A. Pregnancy Complications Are Associated with Premature Coronary Artery Disease: Linking Three Cohorts. J. Womens Health 2023, 32, 1208–1218. [Google Scholar] [CrossRef] [PubMed]
- Marschner, S.; von Huben, A.; Zaman, S.; Reynolds, H.R.; Lee, V.; Choudhary, P.; Mehta, L.S.; Chow, C.K. Pregnancy-related cardiovascular conditions and outcomes in a United States Medicaid population. Heart 2022, 108, 1524–1529. [Google Scholar] [CrossRef] [PubMed]
- Park, K.; Wei, J.; Minissian, M.; Merz, C.N.B.; Pepine, C.J. Adverse Pregnancy Conditions, Infertility, and Future Cardiovascular Risk: Implications for Mother and Child. Cardiovasc. Drugs Ther. 2015, 29, 391–401. [Google Scholar] [CrossRef]
- Marschner, S.; Pant, A.; Henry, A.; Maple-Brown, L.J.; Moran, L.; Cheung, N.W.; Chow, C.K.; Zaman, S. Cardiovascular risk management following gestational diabetes and hypertensive disorders of pregnancy: A narrative review. Med. J. Aust. 2023, 218, 484–491. [Google Scholar] [CrossRef]
- Jones, E.J.P.; Hernandez, T.L.; Edmonds, J.K.; Ferranti, E.P.P. Continued Disparities in Postpartum Follow-Up and Screening Among Women with Gestational Diabetes and Hypertensive Disorders of Pregnancy: A Systematic Review. J. Perinat. Neonatal Nurs. 2019, 33, 136–148. [Google Scholar] [CrossRef]
- Manzo-Silberman, S.; Couturaud, F.; Bellemain-Appaix, A.; Vautrin, E.; Gompel, A.; Drouet, L.; Marliere, S.; Sollier, C.B.D.; Uhry, S.; Eltchaninoff, H.; et al. Characteristics of Young Women Presenting with Acute Myocardial Infarction: The Prospective, Multicenter, Observational Young Women Presenting Acute Myocardial Infarction in France Study. J. Am. Heart Assoc. 2024, 13, e034456. [Google Scholar] [CrossRef]
- Lee, J.J.; Cook-Wiens, G.; Johnson, B.D.; Braunstein, G.D.; Berga, S.L.; Stanczyk, F.Z.; Pepine, C.J.; Merz, C.N.B.; Shufelt, C.L. Age at Menarche and Risk of Cardiovascular Disease Outcomes: Findings from the National Heart Lung and Blood Institute-Sponsored Women’s Ischemia Syndrome Evaluation. J. Am. Heart Assoc. 2019, 8, e012406. [Google Scholar] [CrossRef]
- Dabaghi, G.G.; Pourmoghaddas, A.; Rad, M.R.; Zarepur, E.; Mohammadifard, N.; Azdaki, N.; Salehi, N.; Solati, K.; Ghaffari, S.; Salari, A.; et al. Age at menarche and risk of premature coronary artery disease: Results from Iran premature coronary disease (IPAD) study. Arch. Gynecol. Obstet. 2024, 311, 135–143. [Google Scholar] [CrossRef]
- Sagris, M.; Antonopoulos, A.S.; Theofilis, P.; Oikonomou, E.; Siasos, G.; Tsalamandris, S.; Antoniades, C.; Brilakis, E.S.; Kaski, J.C.; Tousoulis, D. Risk factors profile of young and older patients with myocardial infarction. Cardiovasc. Res. 2022, 118, 2281–2292. [Google Scholar] [CrossRef]
- Okafor, C.M.; Zhu, C.; Raparelli, V.; Murphy, T.E.; Arakaki, A.; D’onofrio, G.; Tsang, S.W.; Smith, M.N.; Lichtman, J.H.; Spertus, J.A.; et al. Association of Sociodemographic Characteristics with 1-Year Hospital Readmission Among Adults Aged 18 to 55 Years with Acute Myocardial Infarction. JAMA Netw Open 2023, 6, e2255843. [Google Scholar] [CrossRef] [PubMed]
- Hamad, R.; Penko, J.; Kazi, D.S.; Coxson, P.; Guzman, D.; Wei, P.C.; Mason, A.; Wang, E.A.; Goldman, L.; Fiscella, K.; et al. Association of Low Socioeconomic Status with Premature Coronary Heart Disease in US Adults. JAMA Cardiol. 2020, 5, 899–908. [Google Scholar] [CrossRef] [PubMed]
- Nagata, J.M.; Vittinghoff, E.; Cheng, C.M.; Dooley, E.E.; Lin, F.; Rana, J.S.; Sidney, S.; Lewis, C.E.; Gabriel, K.P. Television Viewing from Young Adulthood to Middle Age and Premature Cardiovascular Disease Events: A Prospective Cohort Study. J. Gen. Intern. Med. 2024, 39, 2780–2787. [Google Scholar] [CrossRef] [PubMed]
- Chow, C.K.; Lock, K.; Teo, K.; Subramanian, S.; McKee, M.; Yusuf, S. Environmental and societal influences acting on cardiovascular risk factors and disease at a population level: A review. Int. J. Epidemiol. 2009, 38, 1580–1594. [Google Scholar] [CrossRef]
- Abdul-Rahman, T.; Roy, P.; Bliss, Z.S.B.; Mohammad, A.; Corriero, A.C.; Patel, N.T.; Wireko, A.A.; Shaikh, R.; Faith, O.E.; Arevalo-Rios, E.C.E.; et al. The impact of air quality on cardiovascular health: A state of the art review. Curr. Probl. Cardiol. 2024, 49, 102174. [Google Scholar] [CrossRef]
- Beelen, R.; Stafoggia, M.; Raaschou-Nielsen, O.; Andersen, Z.J.; Xun, W.W.; Katsouyanni, K.; Dimakopoulou, K.; Brunekreef, B.; Weinmayr, G.; Hoffmann, B. Long-term exposure to air pollution and cardiovascular mortality: An analysis of 22 European cohorts. Epidemiology 2014, 25, 368–378. [Google Scholar] [CrossRef]
- Posadas-Sánchez, R.; Vargas-Alarcón, G.; Cardenas, A.; Texcalac-Sangrador, J.L.; Osorio-Yáñez, C.; Sanchez-Guerra, M. Long-Term Exposure to Ozone and Fine Particulate Matter and Risk of Premature Coronary Artery Disease: Results from Genetics of Atherosclerotic Disease Mexican Study. Biology 2022, 11, 1122. [Google Scholar] [CrossRef]
- Zheng, H.; Vidili, G.; Casu, G.; Navarese, E.P.; Sechi, L.A.; Chen, Y. Microplastics and nanoplastics in cardiovascular disease-a narrative review with worrying links. Front. Toxicol. 2024, 6, 1479292. [Google Scholar] [CrossRef]
- Marfella, R.; Prattichizzo, F.; Sardu, C.; Fulgenzi, G.; Graciotti, L.; Spadoni, T.; D’onofrio, N.; Scisciola, L.; La Grotta, R.; Frigé, C.; et al. Microplastics and Nanoplastics in Atheromas and Cardiovascular Events. N. Engl. J. Med. 2024, 390, 900–910. [Google Scholar] [CrossRef]
- Yandrapalli, S.; Nabors, C.; Goyal, A.; Aronow, W.S.; Frishman, W.H. Modifiable Risk Factors in Young Adults with First Myocardial Infarction. J. Am. Coll. Cardiol. 2019, 73, 573–584. [Google Scholar] [CrossRef]
- Shamaki, G.R.; Safiriyu, I.; Antia, A.; El-Radi, W.K.A.; Tinago, C.B.; Ilonze, O. Prevalence, predictors, and in-hospital outcomes of ST-elevation myocardial infarction among young adults without traditional cardiovascular risk factors in the United States. Am. Heart J. Plus 2024, 43, 100408. [Google Scholar] [CrossRef] [PubMed]
- Juan-Salvadores, P.; Olivas-Medina, D.; Fonseca, L.M.d.l.T.; Veiga, C.; Campanioni, S.; Isorna, F.C.; Romo, A.I.; Díaz, V.A.J. Clinical features and long-term outcomes in patients under 35 years with coronary artery disease: Nested case-control study. Rev. Port. Cardiol. 2024, 44, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Stătescu, C.; Anghel, L.; Benchea, L.-C.; Tudurachi, B.-S.; Leonte, A.; Zăvoi, A.; Zota, I.M.; Prisacariu, C.; Radu, R.; Șerban, I.-L.; et al. A Systematic Review on the Risk Modulators of Myocardial Infarction in the “Young”-Implications of Lipoprotein (a). Int. J. Mol. Sci. 2023, 24, 5927. [Google Scholar] [CrossRef]
- Rallidis, L.S.; Pavlakis, G.; Foscolou, A.; Kotakos, C.; Katsimardos, A.; Drosatos, A.; Zolindaki, M.; Panagiotakos, D.B. High levels of lipoprotein (a) and premature acute coronary syndrome. Atherosclerosis 2018, 269, 29–34. [Google Scholar] [CrossRef]
- Berman, A.N.; Biery, D.W.; Singh, A.; Wu, W.Y.; Divakaran, S.; DeFilippis, E.M.; Hainer, J.; Blaha, M.J.; Cannon, C.; Polk, D.M.; et al. Atherosclerotic cardiovascular disease risk and elevated lipoprotein(a) among young adults with myocardial infarction: The Partners YOUNG-MI Registry. Eur. J. Prev. Cardiol. 2021, 28, e12–e14. [Google Scholar] [CrossRef]
- Jubran, A.; Zetser, A.; Zafrir, B. Lipoprotein(a) screening in young and middle-aged patients presenting with acute coronary syndrome. Cardiol. J. 2019, 26, 511–518. [Google Scholar] [CrossRef]
- Usalp, S.; Altunta, E.; Bagirtan, B.; Karabay, K.O. Comparison of serum lipoprotein(a) levels in young and middle-aged patients presenting for the first time with ST-elevation myocardial infarction: A single-centre study. Cardiovasc. J. Afr. 2023, 34, 1–5. [Google Scholar]
- Buciu, I.C.; Tieranu, E.N.; Pircalabu, A.S.; Zlatian, O.M.; Donoiu, I.; Militaru, C.; Militaru, S.; Militaru, C. The Relationship between Lipoprotein A and the Prevalence of Multivessel Coronary Artery Disease in Young Patients with Acute Myocardial Infarction: An Observational Study. Biomedicines 2024, 12, 2159. [Google Scholar] [CrossRef]
- Speidl, W.S.; Graf, S.; Hornykewycz, S.; Nikfardjam, M.; Niessner, A.; Zorn, G.; Wojta, J.; Huber, K. High-sensitivity C-reactive protein in the prediction of coronary events in patients with premature coronary artery disease. Am. Heart J. 2002, 144, 449–455. [Google Scholar] [CrossRef]
- Song, Y.; Wang, M.; Li, Y.; Lian, Y. The evaluation value of atherogenic index of plasma and high-sensitivity C-reactive protein for the degree of coronary artery lesion in premature coronary artery disease. BMC Cardiovasc. Disord. 2024, 24, 410. [Google Scholar] [CrossRef]
- Liu, R.; Xu, F.; Ma, Q.; Zhou, Y.; Liu, T. C-Reactive Protein Level Predicts Cardiovascular Risk in Chinese Young Female Population. Oxid. Med. Cell. Longev. 2021, 2021, 6538079. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Qin, S.; Wang, R.; Wang, Y.; Fang, Z. Prognostic factors in young patients with ST-segment elevation myocardial infarction. Coron. Artery Dis. 2023, 34, 298–305. [Google Scholar] [CrossRef] [PubMed]
- Marston, N.A.; Giugliano, R.P.; Melloni, G.E.M.; Park, J.-G.; Morrill, V.; Blazing, M.A.; Ference, B.; Stein, E.; Stroes, E.S.; Braunwald, E.; et al. Association of Apolipoprotein B-Containing Lipoproteins and Risk of Myocardial Infarction in Individuals with and Without Atherosclerosis: Distinguishing Between Particle Concentration, Type, and Content. JAMA Cardiol. 2022, 7, 250–256. [Google Scholar] [CrossRef]
- Aghajani, M.H.; Neishaboori, A.M.; Ahmadzadeh, K.; Toloui, A.; Yousefifard, M. The association between apolipoprotein A-1 plasma level and premature coronary artery disease: A systematic review and meta-analysis. Int. J. Clin. Pract. 2021, 75, e14578. [Google Scholar] [CrossRef]
- Schaffer, A.; Verdoia, M.; Cassetti, E.; Marino, P.; Suryapranata, H.; De Luca, G.; Novara Atherosclerosis Study Group (NAS). Relationship between homocysteine and coronary artery disease. Results from a large prospective cohort study. Thromb. Res. 2014, 134, 288–293. [Google Scholar] [CrossRef]
- Center, T.H.; Sadeghian, S.; Fallahi, F.; Salarifar, M.; Davoodi, G.; Mahmoodian, M.; Fallah, N.; Darvish, S.; Karimi, A. Homocysteine, vitamin B12 and folate levels in premature coronary artery disease. BMC Cardiovasc. Disord. 2006, 6, 38. [Google Scholar]
- Barghash, N.; Elewa, S.; Hamdi, E.; Barghash, A.; El Dine, R. Role of plasma homocysteine and lipoprotein (a) in coronary artery disease. Br. J. Biomed. Sci. 2004, 61, 78–83. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X.; Hu, X.; Niu, H.; Tian, R.; Wang, H.; Pang, H.; Jiang, L.; Qiu, B.; Chen, X.; et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 2019, 7, 68. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef]
- Yoshida, N.; Emoto, T.; Yamashita, T.; Watanabe, H.; Hayashi, T.; Tabata, T.; Hoshi, N.; Hatano, N.; Ozawa, G.; Sasaki, N.; et al. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis. Circulation 2018, 138, 2486–2498. [Google Scholar] [CrossRef]
- Liu, M.; Wang, M.; Peng, T.; Ma, W.; Wang, Q.; Niu, X.; Hu, L.; Qi, B.; Guo, D.; Ren, G.; et al. Gut-microbiome-based predictive model for ST-elevation myocardial infarction in young male patients. Front. Microbiol. 2022, 13, 1031878. [Google Scholar] [CrossRef] [PubMed]
- Kuno, T.; Miyamoto, Y.; Sawano, M.; Kodaira, M.; Numasawa, Y.; Ueda, I.; Suzuki, M.; Noma, S.; Fukuda, K.; Kohsaka, S. Gender Differences in Long-Term Outcomes of Young Patients Who Underwent Percutaneous Coronary Intervention: Long-Term Outcome Analysis from a Multicenter Registry in Japan. Am. J. Cardiol. 2023, 206, 151–160. [Google Scholar] [CrossRef]
Authors | Country | Aim of Study | Study Type | Sample Size | Study Population | Traditional Cardiovascular Risk Factors | Non-Traditional Risk Factors |
---|---|---|---|---|---|---|---|
Matsis, Holley, Al-Sinan et al., 2017 [54] | New Zealand | Compare clinical characteristics in young and older MI patients | Retrospective observational study | Total: 1199 Age ≤ 50 years: 154 | ≤50 years | Hypertension (35.7%) Diabetes (13.6%) Dyslipidaemia (57.1%) Previous MI (10.4%) Family history of premature CAD (48.7%) Former smoker (23.4%) Current smoker (47.4%) Obesity (50.0%) | Not reported |
Yandrapalli, Nabors, Goyal et al., 2019 [92] | USA | Investigate the clinical characteristics of young MI patients | Retrospective cohort study | Total: 1,462,168 Age < 44 years: 280,875 Age 45–59 years: 1,181,282 | <45 years | Hypertension (49.8%) Diabetes (22.6%) Dyslipidaemia (51.7%) Smoker (56.8%) Obesity (20.7%) | Illicit drug use (9.6%) |
Zeitouni, Clare, Chiswell et al., 2020 [4] | USA | Compare risk factor burden and long term prognosis of patients with premature CAD | Retrospective and prospective observational study | Total: 101,061 Age < 50 years: 3655 (3.6%) | <50 years | Hypertension (52.8%) Diabetes (23.8%) Dyslipidaemia (46.4%) Family history of CAD (39.8%) Former smoker (11.4%) Current smoker (49.4%) Obesity (47.1%) | Connective tissue disease (0.7%) History of cancer (5.3%) Chronic inflammatory disease (2.3%) |
Yang, Biery, Singh et al., 2020 [41] | USA | Investigate risk factors and outcomes of young MI patients | Retrospective observational study | Total: 2097 Age ≤ 40 years: 431 | ≤40 years | Hypertension (37.9%) Diabetes (18.8%) Dyslipidaemia (90.7%) Family history of premature CAD (31.3%) Current smoker (52.2%) Obesity (36.9%) | Alcohol use (10.1%) Illicit substance use (17.9%) |
Lv, Ni, Liu et al., 2021 [49] | China | Compare clinical characteristics, prognosis, and gender disparities in young MI patients | Retrospective observational study (registry) | Total: 24,125 Age ≤ 45 years: 2042 | ≤45 years | Hypertension (33.5%) Diabetes (11.3%) Dyslipidaemia (10.4) Previous MI (4.5%) Family history of premature CAD (7.1%) Current smoker (72.1%) Obesity (18.3%) | Not reported |
Zasada, Bobrowska, Plens et al., 2021 [6] | Poland | Compare differences in clinical characteristics and treatment strategies between young and older patients with acute MI | Retrospective observational study (registry) | Total: 237,747 Age < 40 years: 3208 (1.3%) | <40 years | Hypertension (29.96%) Diabetes (5.33%) Previous MI (7.17%) Smoker (37.5%) | Not reported |
Ando, Yamaji, Kohsaka et al., 2022 [42] | Japan | Investigate clinical and angiographic characteristics of young MI patients who underwent PCI | Retrospective cohort study | Total: 213,297 Age < 50 years: 23,985 | <50 years | Hypertension (54.1%) Diabetes (30.4%) Dyslipidaemia (65.5%) Previous MI (10.4%) Current smoker (62.8%) | Not reported |
Khraishah, Karout, Jeong et al., 2022 [46] | India | Compare clinical characteristics and outcomes in young MI patients | Retrospective observational study (registry) | Total: 21,374 Age ≤ 50 years: 4762 | ≤50 years | Hypertension (33.8%) Diabetes (35.7%) Smoker (41.9%) Obesity reported to be more prevalent in young population | Not reported |
Mahendiran, Hoepli, Foster-Witassek et al., 2023 [48] | Switzerland | Compare trends in cardiovascular risk factors between young and older MI patients | Retrospective observational study (registry) | Total: 58,028 Age < 50 years: 7073 (14.1%) | <50 years | Hypertension (35.9%) Diabetes (10.1%) Dyslipidaemia (57.3%) Family history of CAD (43.1%) Previous MI (9.2%) Former smoker (12.6%) Current smoker (71.4%) Obesity (21.7%) | Not reported |
Kumar, Ammar, Qayyum et al., 2023 [45] | Pakistan | Compare clinical characteristics, angiographic patterns, and outcomes of young patients with STEMI | Retrospective observational study | Total: 4686 Age ≤ 40 years: 466 | ≤40 years | Hypertension (53.1%) Diabetes (35.4%) Metabolic syndrome (23.1%) Previous MI (8.9%) Family history of CAD (3.7%) Smoker (25.5%) Obesity (17.0%) | Not reported |
Liang, Pang, Gao et al., 2023 [58] | China | Compare risk factors and outcomes of young STEMI patients who underwent PCI | Retrospective observational study | Total: 701 Age ≤ 45 years: 108 | ≤45 years | Hypertension (35.2%) Diabetes (11.1%) Family history of CAD (17.6%) Current smoker (76.9%) | Alcohol use disorder (63.9%) |
Gupta, Batra, Muduli et al., 2024 [43] | India | Compare risk factor profiles and outcomes of young and older patients with MI | Retrospective observational study (registry) | Total: 5335 Age < 50 years: 1752 | <50 years | Hypertension (18.5%) Diabetes (16.0%) Previous MI (7.4%) Former smoker (4.7%) Current smoker (53.5%) Obesity (11.3%) | Alcohol use daily (13.5%) Alcohol use some days (14.0%) Cancer (0.2%) |
Chachar, Noor, AlAnsari et al., 2024 [44] | Bahrain | Compare clinical characteristics and outcomes of young and older patients with STEMI | Retrospective observational study | Total: 510 Age < 45 years: 95 | ≤45 years | Hypertension (28.4%) Diabetes (31.6%) Dyslipidaemia (33.7%) Coronary artery disease (4.2%) Family history of CAD (14.7%) Smoker (57.9%) | Not reported |
King, Patel, Arora et al., 2024 [55] | USA | Compare risk factors, use of revascularisation, and outcomes in young STEMI patients | Retrospective observational study | Total: 58,083 Age < 50 years: 8494 | <50 years | Hypertension (53.3%) Diabetes (25.3%) Dyslipidaemia (53.5%) Current smoker (52.2%) Obesity (20.4%) | Alcohol use disorder (5.2%) Cocaine use (3.5%) Cannabis use (5.3%) Opioid use disorder (1.3%) Malignancy (2.0%) Autoimmune inflammatory disease (1.0%) Major psychiatric disorder (14.2%) |
Shamaki, Safiriyu, Antia et al., 2024 [93] | USA | Compare prevalence, predictors, and outcomes of young STEMI patients without traditional risk factors | Retrospective cohort study | Total: 41,990 | ≤45 years | Hypertension (61.9%) Diabetes (28.4%) Dyslipidaemia (60.4%) Smoker (67.5%) Obesity reported to be comparatively higher | Alcohol misuse and depression reported to be comparatively higher |
Juan-Salvadores, Olivas-Medina, de la Torre Fonseca et al., 2024 [94] | Portugal | Compare clinical features and long term outcomes in young patients < 35 years with CAD versus older patients | Case–control study | Total: 19,321 Age ≤ 40 years: 408 Age ≤ 35 years: 109 | ≤40 years | Hypertension (21.6%) Diabetes (7.6%) Dyslipidaemia (53.2%) Family history of CAD (27.9%) Obesity (36.3%) | Illicit drugs and alcohol use (18.9%, 33.6% in ≤35 years) Depression (8.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaheen, M.; Pender, P.; Dang, Q.M.; Sinha, E.; Chong, J.J.H.; Chow, C.K.; Zaman, S. Myocardial Infarction in the Young: Aetiology, Emerging Risk Factors, and the Role of Novel Biomarkers. J. Cardiovasc. Dev. Dis. 2025, 12, 148. https://doi.org/10.3390/jcdd12040148
Zaheen M, Pender P, Dang QM, Sinha E, Chong JJH, Chow CK, Zaman S. Myocardial Infarction in the Young: Aetiology, Emerging Risk Factors, and the Role of Novel Biomarkers. Journal of Cardiovascular Development and Disease. 2025; 12(4):148. https://doi.org/10.3390/jcdd12040148
Chicago/Turabian StyleZaheen, Mithila, Patrick Pender, Quan M. Dang, Eva Sinha, James J. H. Chong, Clara K. Chow, and Sarah Zaman. 2025. "Myocardial Infarction in the Young: Aetiology, Emerging Risk Factors, and the Role of Novel Biomarkers" Journal of Cardiovascular Development and Disease 12, no. 4: 148. https://doi.org/10.3390/jcdd12040148
APA StyleZaheen, M., Pender, P., Dang, Q. M., Sinha, E., Chong, J. J. H., Chow, C. K., & Zaman, S. (2025). Myocardial Infarction in the Young: Aetiology, Emerging Risk Factors, and the Role of Novel Biomarkers. Journal of Cardiovascular Development and Disease, 12(4), 148. https://doi.org/10.3390/jcdd12040148