Copeptin in Acute Myocardial Infarction: Is There a Role in the Era of High-Sensitivity Troponins?
Abstract
:1. Introduction
2. Physiology
3. Proposed Pathophysiological Mechanisms Leading to AVP/Copeptin Release in Myocardial Ischemia
4. The Assay
5. Copeptin and Acute Myocardial Infarction
5.1. Evidence Establishing the Combined Use of Copeptin with Conventional Troponin
5.2. Copeptin in Combination with High-Sensitivity Troponin
5.2.1. Evidence Suggesting That DMS Is Superior or Equal to High-Sensitivity Troponin Protocols
5.2.2. Controversial Evidence or Evidence Suggesting That DMS Is Inferior to High-Sensitivity Troponin Protocols
5.2.3. Copeptin in Early Presenters
5.2.4. Copeptin in Combination with Risk Stratification Scores
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- The Top 10 Causes of Death. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 18 January 2025).
- Timmis, A.; Vardas, P.; Townsend, N.; Torbica, A.; Katus, H.; De Smedt, D.; Gale, C.P.; Maggioni, A.P.; Petersen, S.E.; Huculeci, R.; et al. European Society of Cardiology: Cardiovascular Disease Statistics 2021. Eur. Heart J. 2022, 43, 716–799. [Google Scholar] [CrossRef] [PubMed]
- Maroko, P.R.; Kjekshus, J.K.; Sobel, B.E.; Watanabe, T.; Covell, J.W.; Ross, J.; Braunwald, E. Factors Influencing Infarct Size Following Experimental Coronary Artery Occlusions. Circulation 1971, 43, 67–82. [Google Scholar] [CrossRef] [PubMed]
- Thrane, P.G.; Olesen, K.K.W.; Thim, T.; Gyldenkerne, C.; Mortensen, M.B.; Kristensen, S.D.; Maeng, M. Mortality Trends After Primary Percutaneous Coronary Intervention for ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2023, 82, 999–1010. [Google Scholar] [CrossRef] [PubMed]
- Zeymer, U.; Ludman, P.; Danchin, N.; Kala, P.; Laroche, C.; Sadeghi, M.; Caporale, R.; Shaheen, S.M.; Legutko, J.; Iakobsishvili, Z.; et al. Reperfusion Therapies and In-Hospital Outcomes for ST-Elevation Myocardial Infarction in Europe: The ACVC-EAPCI EORP STEMI Registry of the European Society of Cardiology. Eur. Heart J. 2021, 42, 4536–4549. [Google Scholar] [CrossRef]
- Nadarajah, R.; Ludman, P.; Appelman, Y.; Brugaletta, S.; Budaj, A.; Bueno, H.; Huber, K.; Kunadian, V.; Leonardi, S.; Lettino, M.; et al. Cohort Profile: The ESC EURObservational Research Programme Non-ST-Segment Elevation Myocardial Infraction (NSTEMI) Registry. Eur. Heart J. Qual. Care Clin. Outcomes 2022, 9, 8–15. [Google Scholar] [CrossRef]
- Puymirat, E.; Simon, T.; Cayla, G.; Cottin, Y.; Elbaz, M.; Coste, P.; Lemesle, G.; Motreff, P.; Popovic, B.; Khalife, K.; et al. Acute Myocardial Infarction: Changes in Patient Characteristics, Management, and 6-Month Outcomes Over a Period of 20 Years in the FAST-MI Program (French Registry of Acute ST-Elevation or Non-ST-Elevation Myocardial Infarction) 1995 to 2015. Circulation 2017, 136, 1908–1919. [Google Scholar] [CrossRef]
- Polonski, L.; Gasior, M.; Gierlotka, M.; Osadnik, T.; Kalarus, Z.; Trusz-Gluza, M.; Zembala, M.; Wilczek, K.; Lekston, A.; Zdrojewski, T.; et al. A Comparison of ST Elevation versus Non-ST Elevation Myocardial Infarction Outcomes in a Large Registry Database. Int. J. Cardiol. 2011, 152, 70–77. [Google Scholar] [CrossRef]
- Gandhi, S.; Garratt, K.N.; Li, S.; Wang, T.Y.; Bhatt, D.L.; Davis, L.L.; Zeitouni, M.; Kontos, M.C. Ten-Year Trends in Patient Characteristics, Treatments, and Outcomes in Myocardial Infarction From National Cardiovascular Data Registry Chest Pain–MI Registry. Circ. Cardiovasc. Qual. Outcomes 2022, 15, e008112. [Google Scholar] [CrossRef]
- Nadarajah, R.; Ludman, P.; Laroche, C.; Appelman, Y.; Brugaletta, S.; Budaj, A.; Bueno, H.; Huber, K.; Kunadian, V.; Leonardi, S.; et al. Presentation, Care, and Outcomes of Patients with NSTEMI According to World Bank Country Income Classification: The ACVC-EAPCI EORP NSTEMI Registry of the European Society of Cardiology. Eur. Heart J. Qual. Care Clin. Outcomes 2023, 9, 552–563. [Google Scholar] [CrossRef]
- Gilutz, H.; Shindel, S.; Shoham-Vardi, I. Adherence to NSTEMI Guidelines in the Emergency Department: Regression to Reality. Crit. Pathw. Cardiol. 2019, 18, 40–46. [Google Scholar] [CrossRef]
- Cha, J.-J.; Bae, S.; Park, D.-W.; Park, J.H.; Hong, S.J.; Park, S.-M.; Yu, C.W.; Rha, S.-W.; Lim, D.-S.; Suh, S.Y.; et al. Clinical Outcomes in Patients with Delayed Hospitalization for Non–ST-Segment Elevation Myocardial Infarction. J. Am. Coll. Cardiol. 2022, 79, 311–323. [Google Scholar] [CrossRef]
- Erol, M.K.; Kayikcioglu, M.; Kilickap, M.; Guler, A.; Öztürk, Ö.; Tuncay, B.; İnci, S.; Balaban, İ.; Tatar, F.; Çırakoğlu, Ö.F.; et al. Time Delays in Each Step from Symptom Onset to Treatment in Acute Myocardial Infarction: Results from a Nation-Wide TURKMI Registry. Anatol. J. Cardiol. 2021, 25, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Viana, M.; Laszczyńska, O.; Araújo, C.; Borges, A.; Barros, V.; Ribeiro, A.I.; Dias, P.; Maciel, M.J.; Moreira, I.; Lunet, N.; et al. Patient and System Delays in the Treatment of Acute Coronary Syndrome. Rev. Port. Cardiol. (Engl. Ed.) 2020, 39, 123–131. [Google Scholar] [CrossRef] [PubMed]
- Pendyal, A.; Rothenberg, C.; Scofi, J.E.; Krumholz, H.M.; Safdar, B.; Dreyer, R.P.; Venkatesh, A.K. National Trends in Emergency Department Care Processes for Acute Myocardial Infarction in the United States, 2005 to 2015. J. Am. Heart Assoc. 2020, 9, e017208. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. National Center for Health Statistics. National Hospital Ambulatory Medical Care Survey: 2021 Emergency Department Summary Tables. Available online: https://www.cdc.gov/nchs/data/nhamcs/web_tables/2021-nhamcs-ed-web-tables-508.pdf (accessed on 24 March 2025).
- Stepinska, J.; Lettino, M.; Ahrens, I.; Bueno, H.; Garcia-Castrillo, L.; Khoury, A.; Lancellotti, P.; Mueller, C.; Muenzel, T.; Oleksiak, A.; et al. Diagnosis and Risk Stratification of Chest Pain Patients in the Emergency Department: Focus on Acute Coronary Syndromes. A Position Paper of the Acute Cardiovascular Care Association. Eur. Heart J. Acute Cardiovasc. Care 2020, 9, 76–89. [Google Scholar] [CrossRef]
- Mockel, M.; Searle, J.; Muller, R.; Slagman, A.; Storchmann, H.; Oestereich, P.; Wyrwich, W.; Ale-Abaei, A.; Vollert, J.O.; Koch, M.; et al. Chief Complaints in Medical Emergencies: Do They Relate to Underlying Disease and Outcome? The Charité Emergency Medicine Study (CHARITEM). Eur. J. Emerg. Med. 2013, 20, 103–108. [Google Scholar] [CrossRef]
- Maisel, A.; Mueller, C.; Neath, S.-X.; Christenson, R.H.; Morgenthaler, N.G.; McCord, J.; Nowak, R.M.; Vilke, G.; Daniels, L.B.; Hollander, J.E.; et al. Copeptin Helps in the Early Detection of Patients with Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2013, 62, 150–160. [Google Scholar] [CrossRef]
- Shin, H.; Jang, B.-H.; Lim, T.H.; Lee, J.; Kim, W.; Cho, Y.; Ahn, C.; Choi, K.-S. Diagnostic Accuracy of Adding Copeptin to Cardiac Troponin for Non-ST-Elevation Myocardial Infarction: A Systematic Review and Meta-Analysis. PLoS ONE 2018, 13, e0200379. [Google Scholar] [CrossRef]
- Mueller, C. Biomarkers and Acute Coronary Syndromes: An Update. Eur. Heart J. 2014, 35, 552–556. [Google Scholar] [CrossRef]
- Thygesen, K.; Alpert, J.S.; Jaffe, A.S.; Chaitman, B.R.; Bax, J.J.; Morrow, D.A.; White, H.D.; Executive Group on behalf of the Joint European Society of Cardiology (ESC)/American College of Cardiology (ACC)/American Heart Association (AHA)/World Heart Federation (WHF) Task Force for the Universal Definition of Myocardial Infarction. Fourth Universal Definition of Myocardial Infarction (2018). Circulation 2018, 138, e618–e651. [Google Scholar] [CrossRef]
- Mueller, C.; Giannitsis, E.; Möckel, M.; Huber, K.; Mair, J.; Plebani, M.; Thygesen, K.; Jaffe, A.S.; Lindahl, B.; Biomarker Study Group of the ESC Acute Cardiovascular Care Association. Rapid Rule Out of Acute Myocardial Infarction: Novel Biomarker-Based Strategies. Eur. Heart J. Acute Cardiovasc. Care 2017, 6, 218–222. [Google Scholar] [CrossRef] [PubMed]
- Collet, J.-P.; Thiele, H.; Barbato, E.; Barthélémy, O.; Bauersachs, J.; Bhatt, D.L.; Dendale, P.; Dorobantu, M.; Edvardsen, T.; Folliguet, T.; et al. 2020 ESC Guidelines for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation. Eur. Heart J. 2021, 42, 1289–1367. [Google Scholar] [CrossRef] [PubMed]
- Giannitsis, E.; Blankenberg, S.; Christenson, R.H.; Frey, N.; von Haehling, S.; Hamm, C.W.; Inoue, K.; Katus, H.A.; Lee, C.-C.; McCord, J.; et al. Critical Appraisal of the 2020 ESC Guideline Recommendations on Diagnosis and Risk Assessment in Patients with Suspected Non-ST-Segment Elevation Acute Coronary Syndrome. Clin. Res. Cardiol. 2021, 110, 1353–1368. [Google Scholar] [CrossRef] [PubMed]
- Mueller, C.; Möckel, M.; Giannitsis, E.; Huber, K.; Mair, J.; Plebani, M.; Thygesen, K.; Jaffe, A.S.; Lindahl, B.; ESC Study Group on Biomarkers in Cardiology of the Acute Cardiovascular Care Association. Use of Copeptin for Rapid Rule-Out of Acute Myocardial Infarction. Eur. Heart J. Acute Cardiovasc. Care 2018, 7, 570–576. [Google Scholar] [CrossRef]
- Holwerda, D.A. A Glycopeptide from the Posterior Lobe of Pig Pituitaries: 1. Isolation and Characterization. Eur. J. Biochem. 1972, 28, 334–339. [Google Scholar] [CrossRef]
- Acher, R.; Chauvet, J.; Rouille, Y. Dynamic Processing of Neuropeptides: Sequential Conformation Shaping of Neurohypophysial Preprohormones during Intraneuronal Secretory Transport. J. Mol. Neurosci. 2002, 18, 223–228. [Google Scholar] [CrossRef]
- Christ-Crain, M. Vasopressin and Copeptin in Health and Disease. Rev. Endocr. Metab. Disord. 2019, 20, 283–294. [Google Scholar] [CrossRef]
- Łukaszyk, E.; Małyszko, J. Copeptin: Pathophysiology and Potential Clinical Impact. Adv. Med. Sci. 2015, 60, 335–341. [Google Scholar] [CrossRef]
- Săcărescu, A.; Turliuc, M.-D.; Brănișteanu, D.D. Role of Copeptin in the Diagnosis of Traumatic Neuroendocrine Dysfunction. Neuropeptides 2021, 89, 102167. [Google Scholar] [CrossRef]
- Nickel, C.H.; Bingisser, R.; Morgenthaler, N.G. The Role of Copeptin as a Diagnostic and Prognostic Biomarker for Risk Stratification in the Emergency Department. BMC Med. 2012, 10, 7. [Google Scholar] [CrossRef]
- Morgenthaler, N.G. Copeptin: A Biomarker of Cardiovascular and Renal Function. Congest. Heart Fail. 2010, 16, S37–S44. [Google Scholar] [CrossRef] [PubMed]
- Mu, D.; Cheng, J.; Qiu, L.; Cheng, X. Copeptin as a Diagnostic and Prognostic Biomarker in Cardiovascular Diseases. Front. Cardiovasc. Med. 2022, 9, 901990. [Google Scholar] [CrossRef] [PubMed]
- Jalleh, R.; Torpy, D.J. The Emerging Role of Copeptin. Clin. Biochem. Rev. 2021, 42, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, G.; Subburaju, S.; Young, S.; Chen, J. The Parvocellular Vasopressinergic System and Responsiveness of the Hypothalamic Pituitary Adrenal Axis during Chronic Stress. Prog. Brain Res. 2008, 170, 29–39. [Google Scholar] [CrossRef]
- Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Wilkins, P.L.; Berti-Mattera, L.N.; Mattera, R. Molecular Pharmacology of Human Vasopressin Receptors. Adv. Exp. Med. Biol. 1998, 449, 251–276. [Google Scholar] [CrossRef]
- Holmes, C.L.; Landry, D.W.; Granton, J.T. Science Review: Vasopressin and the Cardiovascular System Part 1—Receptor Physiology. Crit. Care 2003, 7, 427–434. [Google Scholar] [CrossRef]
- Oh, Y.K. Vasopressin and Vasopressin Receptor Antagonists. Electrolyte Blood Press. 2008, 6, 51–55. [Google Scholar] [CrossRef]
- Koshimizu, T.A.; Nakamura, K.; Egashira, N.; Hiroyama, M.; Nonoguchi, H.; Tanoue, A. Vasopressin V1a and V1b Receptors: From Molecules to Physiological Systems. Physiol. Rev. 2012, 92, 1813–1864. [Google Scholar] [CrossRef]
- Zenteno-Savin, T.; Sada-Ovalle, I.; Ceballos, G.; Rubio, R. Effects of Arginine Vasopressin in the Heart Are Mediated by Specific Intravascular Endothelial Receptors. Eur. J. Pharmacol. 2000, 410, 15–23. [Google Scholar] [CrossRef]
- Mei, Q.; Liang, B.T. P2 Purinergic Receptor Activation Enhances Cardiac Contractility in Isolated Rat and Mouse Hearts. Am. J. Physiol. Heart Circ. Physiol. 2001, 281, H334–H341. [Google Scholar] [CrossRef]
- Russell, J.A. Bench-to-Bedside Review: Vasopressin in the Management of Septic Shock. Crit. Care 2011, 15, 226. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, N.G.; Struck, J.; Jochberger, S.; Dünser, M.W. Copeptin: Clinical Use of a New Biomarker. Trends Endocrinol. Metab. 2008, 19, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.K.; Augustine, R.A.; Brown, C.H.; Schwenke, D.O. Acute Myocardial Infarction Activates Magnocellular Vasopressin and Oxytocin Neurones. J. Neuroendocrinol. 2019, 31, e12808. [Google Scholar] [CrossRef]
- Boeckel, J.-N.; Oppermann, J.; Anadol, R.; Fichtlscherer, S.; Zeiher, A.M.; Keller, T. Analyzing the Release of Copeptin from the Heart in Acute Myocardial Infarction Using a Transcoronary Gradient Model. Sci. Rep. 2016, 6, 20812. [Google Scholar] [CrossRef]
- Buja, L.M. Pathobiology of Myocardial Ischemia and Reperfusion Injury: Models, Modes, Molecular Mechanisms, Modulation, and Clinical Applications. Cardiol. Rev. 2023, 31, 252–264. [Google Scholar] [CrossRef]
- Vinhais Da Silva, A.V.; Chesseron, S.; Benouna, O.; Rollin, J.; Roger, S.; Bourguignon, T.; Chadet, S.; Ivanes, F. P2 Purinergic Receptors at the Heart of Pathological Left Ventricular Remodeling Following Acute Myocardial Infarction. Am. J. Physiol. Heart Circ. Physiol. 2025, 328, H550–H564. [Google Scholar] [CrossRef]
- Nobian, A.; Mohamed, A.; Spyridopoulos, I. The Role of Arginine Vasopressin in Myocardial Infarction and Reperfusion. Kardiol. Pol. 2019, 77, 908–917. [Google Scholar] [CrossRef]
- Katan, M.; Morgenthaler, N.; Widmer, I.; Puder, J.J.; König, C.; Müller, B.; Christ-Crain, M. Copeptin, a Stable Peptide Derived from the Vasopressin Precursor, Correlates with the Individual Stress Level. Neuro Endocrinol. Lett. 2008, 29, 341–346. [Google Scholar]
- Sheng, J.A.; Bales, N.J.; Myers, S.A.; Bautista, A.I.; Roueinfar, M.; Hale, T.M.; Handa, R.J. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front. Behav. Neurosci. 2021, 14, 601939. [Google Scholar] [CrossRef]
- Mavani, G.P.; DeVita, M.V.; Michelis, M.F. A Review of the Nonpressor and Nonantidiuretic Actions of the Hormone Vasopressin. Front. Med. 2015, 2, 19. [Google Scholar] [CrossRef]
- Charles, C.J.; Rogers, S.J.; Donald, R.A.; Ikram, H.; Prickett, T.; Richards, A.M. Hypothalamo-Pituitary-Adrenal Axis Response to Coronary Artery Embolization: An Ovine Model of Acute Myocardial Infarction. J. Endocrinol. 1997, 152, 489–493. [Google Scholar] [CrossRef] [PubMed]
- Donald, R.A.; Crozier, I.G.; Foy, S.G.; Richards, A.M.; Livesey, J.H.; Ellis, M.J.; Mattioli, L.; Ikram, H. Plasma Corticotrophin Releasing Hormone, Vasopressin, ACTH and Cortisol Responses to Acute Myocardial Infarction. Clin. Endocrinol. 1994, 40, 499–504. [Google Scholar] [CrossRef]
- Frangogiannis, N.G.; Smith, C.W.; Entman, M.L. The Inflammatory Response in Myocardial Infarction. Cardiovasc. Res. 2002, 53, 31–47. [Google Scholar] [CrossRef]
- Chikanza, I.C.; Petrou, P.; Chrousos, G. Perturbations of Arginine Vasopressin Secretion during Inflammatory Stress: Pathophysiologic Implications. Ann. N. Y. Acad. Sci. 2000, 917, 825–834. [Google Scholar] [CrossRef]
- Chikanza, I.C.; Grossman, A.S. Hypothalamic-Pituitary-Mediated Immunomodulation: Arginine Vasopressin Is a Neuroendocrine Immune Mediator. Br. J. Rheumatol. 1998, 37, 131–136. [Google Scholar] [CrossRef]
- Matter, M.A.; Paneni, F.; Libby, P.; Frantz, S.; Stähli, B.E.; Templin, C.; Mengozzi, A.; Wang, Y.-J.; Kündig, T.M.; Räber, L.; et al. Inflammation in Acute Myocardial Infarction: The Good, the Bad and the Ugly. Eur. Heart J. 2024, 45, 89–103. [Google Scholar] [CrossRef]
- Holmes, C.L.; Landry, D.W.; Granton, J.T. Science Review: Vasopressin and the Cardiovascular System Part 2—Clinical Physiology. Crit. Care 2004, 8, 15–23. [Google Scholar] [CrossRef]
- Okamura, T.; Ayajiki, K.; Fujioka, H.; Toda, N. Mechanisms Underlying Arginine Vasopressin-Induced Relaxation in Monkey Isolated Coronary Arteries. J. Hypertens. 1999, 17, 673–678. [Google Scholar] [CrossRef]
- Fernández, N.; García, J.L.; García-Villalón, A.L.; Monge, L.; Gómez, B.; Diéguez, G. Coronary Vasoconstriction Produced by Vasopressin in Anesthetized Goats. Role of Vasopressin V1 and V2 Receptors and Nitric Oxide. Eur. J. Pharmacol. 1998, 342, 225–233. [Google Scholar] [CrossRef]
- Thibonnier, M.; Conarty, D.M.; Preston, J.A.; Plesnicher, C.L.; Dweik, R.A.; Erzurum, S.C. Human Vascular Endothelial Cells Express Oxytocin Receptors. Endocrinology 1999, 140, 1301–1309. [Google Scholar] [CrossRef]
- Boyle, W.A., 3rd; Segel, L.D. Attenuation of Vasopressin-Mediated Coronary Constriction and Myocardial Depression in the Hypoxic Heart. Circ. Res. 1990, 66, 710–721. [Google Scholar] [CrossRef] [PubMed]
- Ruan, W.; Ma, X.; Bang, I.H.; Liang, Y.; Muehlschlegel, J.D.; Tsai, K.-L.; Mills, T.W.; Yuan, X.; Eltzschig, H.K. The Hypoxia-Adenosine Link during Myocardial Ischemia-Reperfusion Injury. Biomedicines 2022, 10, 1939. [Google Scholar] [CrossRef]
- Szczepanska-Sadowska, E. Neuromodulation of Cardiac Ischemic Pain: Role of the Autonomic Nervous System and Vasopressin. J. Integr. Neurosci. 2024, 23, 49. [Google Scholar] [CrossRef]
- Day, T.A.; Sibbald, J.R. Noxious Somatic Stimuli Excite Neurosecretory Vasopressin Cells via A1 Cell Group. Am. J. Physiol. 1990, 258, R1516–R1520. [Google Scholar] [CrossRef]
- Zheng, H.; Lim, J.Y.; Kim, Y.; Jung, S.T.; Hwang, S.W. The Role of Oxytocin, Vasopressin, and Their Receptors at Nociceptors in Peripheral Pain Modulation. Front. Neuroendocrinol. 2021, 63, 100942. [Google Scholar] [CrossRef]
- Ahn, D.K.; Kim, K.H.; Ju, J.S.; Kwon, S.; Park, J.S. Microinjection of Arginine Vasopressin into the Central Nucleus of Amygdala Suppressed Nociceptive Jaw Opening Reflex in Freely Moving Rats. Brain Res. Bull. 2001, 55, 117–121. [Google Scholar] [CrossRef]
- Baba, K.; Kawasaki, M.; Nishimura, H.; Suzuki, H.; Matsuura, T.; Ikeda, N.; Fujitani, T.; Yamanaka, Y.; Tsukamoto, M.; Ohnishi, H.; et al. Upregulation of the Hypothalamo-Neurohypophysial System and Activation of Vasopressin Neurones Attenuates Hyperalgesia in a Neuropathic Pain Model Rat. Sci. Rep. 2022, 12, 13046. [Google Scholar] [CrossRef]
- Cragg, B.; Ji, G.; Neugebauer, V. Differential Contributions of Vasopressin V1A and Oxytocin Receptors in the Amygdala to Pain-Related Behaviors in Rats. Mol. Pain. 2016, 12, 1744806916676491. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Xu, H.-T.; Chen, J.-M.; Liu, W.-Y.; Lin, B.-C. Arginine Vasopressin Induces Periaqueductal Gray Release of Enkephalin and Endorphin Relating to Pain Modulation in the Rat. Regul. Pept. 2007, 142, 29–36. [Google Scholar] [CrossRef]
- Wang, D.-X.; Yang, J.; Gu, Z.-X.; Song, C.-Y.; Liu, W.-Y.; Zhang, J.; Li, X.-P.; Li, H.; Wang, G.; Song, C.; et al. Arginine Vasopressin Induces Rat Caudate Nucleus Releasing Acetylcholine to Participate in Pain Modulation. Peptides 2010, 31, 701–705. [Google Scholar] [CrossRef]
- Rosen, S.D.; Camici, P.G. The Brain-Heart Axis in the Perception of Cardiac Pain: The Elusive Link between Ischaemia and Pain. Ann. Med. 2000, 32, 350–364. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Assay for the Measurement of Copeptin, a Stable Peptide Derived from the Precursor of Vasopressin. Clin. Chem. 2006, 52, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Reichlin, T.; Hochholzer, W.; Stelzig, C.; Laule, K.; Freidank, H.; Morgenthaler, N.G.; Bergmann, A.; Potocki, M.; Noveanu, M.; Breidthardt, T.; et al. Incremental Value of Copeptin for Rapid Rule Out of Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2009, 54, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, A.-M.; Chastang, E.; Cristol, J.-P.; Jreige, R.; Lefebvre, S.; Sebbane, M. Analytical Performances of the Newly Developed, Fully Automated Kryptor Copeptin Assay: Which Impact Factor for Myocardial Infarction Rules Out in the Emergency Department? Clin. Lab. 2012, 58, 635–644. [Google Scholar]
- Thermo Scientific B·R·A·H·M·S Copeptin proAVP. Early and Safe Rule-Out of Myocardial Infarction. Use Copeptin to Improve the Management of Your Patients. Available online: https://www.brahms.de/en-gb/news-media/download-center/16-en-early-and-safe-rule-outof-myocardial-infarction-use-copeptin-to-improve-the-management-of-your-patients/file.html (accessed on 24 March 2025).
- Sebbane, M.; Lefebvre, S.; Kuster, N.; Jreige, R.; Jacques, E.; Badiou, S.; Dumont, R.; Cristol, J.-P.; Dupuy, A.-M. Early Rule Out of Acute Myocardial Infarction in ED Patients: Value of Combined High-Sensitivity Cardiac Troponin T and Ultrasensitive Copeptin Assays at Admission. Am. J. Emerg. Med. 2013, 31, 1302–1308. [Google Scholar] [CrossRef]
- Sailer, C.O.; Refardt, J.; Blum, C.A.; Schnyder, I.; Molina-Tijeras, J.A.; Fenske, W.; Christ-Crain, M. Validity of Different Copeptin Assays in the Differential Diagnosis of the Polyuria-Polydipsia Syndrome. Sci. Rep. 2021, 11, 10104. [Google Scholar] [CrossRef]
- Khan, S.Q.; Dhillon, O.S.; O’Brien, R.J.; Struck, J.; Quinn, P.A.; Morgenthaler, N.G.; Squire, I.B.; Davies, J.E.; Bergmann, A.; Ng, L.L. C-Terminal Provasopressin (Copeptin) as a Novel and Prognostic Marker in Acute Myocardial Infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) Study. Circulation 2007, 115, 2103–2110. [Google Scholar] [CrossRef]
- Reinstadler, S.J.; Klug, G.; Feistritzer, H.-J.; Mayr, A.; Harrasser, B.; Mair, J.; Bader, K.; Streil, K.; Hammerer-Lercher, A.; Esterhammer, R.; et al. Association of Copeptin with Myocardial Infarct Size and Myocardial Function after ST Segment Elevation Myocardial Infarction. Heart 2013, 99, 1525–1529. [Google Scholar] [CrossRef]
- Deveci, O.S.; Ozmen, C.; Karaaslan, M.B.; Celik, A.I. Could Serum Copeptin Level Be an Indicator of Coronary Artery Disease Severity in Patients with Unstable Angina? Int. Heart J. 2021, 62, 528–533. [Google Scholar] [CrossRef]
- Gu, Y.L.; Voors, A.A.; Zijlstra, F.; Hillege, H.L.; Struck, J.; Masson, S.; Vago, T.; Anker, S.D.; van den Heuvel, A.F.M.; van Veldhuisen, D.J.; et al. Comparison of the Temporal Release Pattern of Copeptin with Conventional Biomarkers in Acute Myocardial Infarction. Clin. Res. Cardiol. 2011, 100, 1069–1076. [Google Scholar] [CrossRef]
- Slagman, A.; Searle, J.; Müller, C.; Möckel, M. Temporal Release Pattern of Copeptin and Troponin T in Patients with Suspected Acute Coronary Syndrome and Spontaneous Acute Myocardial Infarction. Clin. Chem. 2015, 61, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Keller, T.; Tzikas, S.; Zeller, T.; Czyz, E.; Lillpopp, L.; Ojeda, F.M.; Roth, A.; Bickel, C.; Baldus, S.; Sinning, C.R.; et al. Copeptin Improves Early Diagnosis of Acute Myocardial Infarction. J. Am. Coll. Cardiol. 2010, 55, 2096–2106. [Google Scholar] [CrossRef]
- Möckel, M.; Searle, J.; Hamm, C.; Slagman, A.; Blankenberg, S.; Huber, K.; Katus, H.; Liebetrau, C.; Müller, C.; Muller, R.; et al. Early Discharge Using Single Cardiac Troponin and Copeptin Testing in Patients with Suspected Acute Coronary Syndrome (ACS): A Randomized, Controlled Clinical Process Study. Eur. Heart J. 2015, 36, 369–376. [Google Scholar] [CrossRef]
- Balmelli, C.; Meune, C.; Twerenbold, R.; Reichlin, T.; Rieder, S.; Drexler, B.; Rubini, M.G.; Mosimann, T.; Reiter, M.; Haaf, P.; et al. Comparison of the Performances of Cardiac Troponins, Including Sensitive Assays, and Copeptin in the Diagnostic of Acute Myocardial Infarction and Long-Term Prognosis between Women and Men. Am. Heart J. 2013, 166, 30–37. [Google Scholar] [CrossRef]
- Lipinski, M.J.; Escárcega, R.O.; D’Ascenzo, F.; Magalhães, M.A.; Baker, N.C.; Torguson, R.; Chen, F.; Epstein, S.E.; Miró, Ò.; Llorens, P.; et al. A Systematic Review and Collaborative Meta-Analysis to Determine the Incremental Value of Copeptin for Rapid Rule-Out of Acute Myocardial Infarction. Am. J. Cardiol. 2014, 113, 1581–1591. [Google Scholar] [CrossRef]
- Raskovalova, T.; Twerenbold, R.; Collinson, P.O.; Keller, T.; Bouvaist, H.; Folli, C.; Giavarina, D.; Lotze, U.; Eggers, K.M.; Dupuy, A.-M.; et al. Diagnostic Accuracy of Combined Cardiac Troponin and Copeptin Assessment for Early Rule-Out of Myocardial Infarction: A Systematic Review and Meta-Analysis. Eur. Heart J. Acute Cardiovasc. Care 2014, 3, 18–27. [Google Scholar] [CrossRef]
- Roffi, M.; Patrono, C.; Collet, J.-P.; Mueller, C.; Valgimigli, M.; Andreotti, F.; Bax, J.J.; Borger, M.A.; Brotons, C.; Chew, D.P.; et al. 2015 ESC Guidelines for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation: Task Force for the Management of Acute Coronary Syndromes in Patients Presenting without Persistent ST-Segment Elevation of the European Society of Cardiology (ESC). Eur. Heart J. 2016, 37, 267–315. [Google Scholar] [CrossRef]
- Meune, C.; Zuily, S.; Wahbi, K.; Claessens, Y.-E.; Weber, S.; Chenevier-Gobeaux, C. Combination of Copeptin and High-Sensitivity Cardiac Troponin T Assay in Unstable Angina and Non-ST-Segment Elevation Myocardial Infarction: A Pilot Study. Arch. Cardiovasc. Dis. 2011, 104, 4–10. [Google Scholar] [CrossRef]
- Potocki, M.; Reichlin, T.; Thalmann, S.; Zellweger, C.; Twerenbold, R.; Reiter, M.; Steuer, S.; Bassetti, S.; Drexler, B.; Stelzig, C.; et al. Diagnostic and Prognostic Impact of Copeptin and High-Sensitivity Cardiac Troponin T in Patients with Pre-Existing Coronary Artery Disease and Suspected Acute Myocardial Infarction. Heart 2012, 98, 558–565. [Google Scholar] [CrossRef]
- Zellweger, C.; Wildi, K.; Twerenbold, R.; Reichlin, T.; Naduvilekoot, A.; Neuhaus, J.D.; Balmelli, C.; Gabutti, M.; Al Afify, A.; Ballarino, P.; et al. Use of Copeptin and High-Sensitive Cardiac Troponin T for Diagnosis and Prognosis in Patients with Diabetes Mellitus and Suspected Acute Myocardial Infarction. Int. J. Cardiol. 2015, 190, 190–197. [Google Scholar] [CrossRef]
- Stengaard, C.; Sørensen, J.T.; Ladefoged, S.A.; Lassen, J.F.; Rasmussen, M.B.; Pedersen, C.K.; Ayer, A.; Bøtker, H.E.; Terkelsen, C.J.; Thygesen, K. The Potential of Optimizing Prehospital Triage of Patients with Suspected Acute Myocardial Infarction Using High-Sensitivity Cardiac Troponin T and Copeptin. Biomarkers 2017, 22, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Wildi, K.; Zellweger, C.; Twerenbold, R.; Jaeger, C.; Reichlin, T.; Haaf, P.; Faoro, J.; Giménez, M.R.; Fischer, A.; Nelles, B.; et al. Incremental Value of Copeptin to Highly Sensitive Cardiac Troponin I for Rapid Rule-Out of Myocardial Infarction. Int. J. Cardiol. 2015, 190, 170–176. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.S.; Suh, G.J.; Song, S.H.; Jung, Y.S.; Kim, T.; Shin, S.M.; Kang, M.W.; Lee, M.S. Copeptin with High-Sensitivity Troponin at Presentation Is Not Inferior to Serial Troponin Measurements for Ruling Out Acute Myocardial Infarction. Clin. Exp. Emerg. Med. 2020, 7, 35–42. [Google Scholar] [CrossRef]
- Mueller-Hennessen, M.; Lindahl, B.; Giannitsis, E.; Vafaie, M.; Biener, M.; Haushofer, A.C.; Seier, J.; Christ, M.; Alquézar-Arbé, A.; deFilippi, C.R.; et al. Combined Testing of Copeptin and High-Sensitivity Cardiac Troponin T at Presentation in Comparison to Other Algorithms for Rapid Rule-Out of Acute Myocardial Infarction. Int. J. Cardiol. 2019, 276, 261–267. [Google Scholar] [CrossRef]
- McCord, J.; Cabrera, R.; Lindahl, B.; Giannitsis, E.; Evans, K.; Nowak, R.; Frisoli, T.; Body, R.; Christ, M.; deFilippi, C.R.; et al. Prognostic Utility of a Modified HEART Score in Chest Pain Patients in the Emergency Department. Circ. Cardiovasc. Qual. Outcomes 2017, 10, e003101. [Google Scholar] [CrossRef]
- Fox, K.A.A.; Dabbous, O.H.; Goldberg, R.J.; Pieper, K.S.; Eagle, K.A.; Van de Werf, F.; Avezum, Á.; Goodman, S.G.; Flather, M.D.; Anderson, F.A., Jr.; et al. Prediction of Risk of Death and Myocardial Infarction in the Six Months after Presentation with Acute Coronary Syndrome: Prospective Multinational Observational Study (GRACE). BMJ 2006, 333, 1091. [Google Scholar] [CrossRef]
- Giannitsis, E.; Huber, K.; Hamm, C.W.; Möckel, M. Instant Rule-Out of Suspected Non-ST-Segment Elevation Myocardial Infarction Using High-Sensitivity Cardiac Troponin T with Copeptin versus a Single Low High-Sensitivity Cardiac Troponin T: Findings from a Large Pooled Individual Data Analysis on 10,329 Patients. Clin. Res. Cardiol. 2021, 110, 194–199. [Google Scholar] [CrossRef]
- Giannitsis, E.; Slagman, A.; Hamm, C.W.; Gehrig, S.; Vollert, J.O.; Huber, K. Copeptin Combined with Either Non-High Sensitivity or High Sensitivity Cardiac Troponin for Instant Rule-Out of Suspected Non-ST Segment Elevation Myocardial Infarction. Biomarkers 2020, 25, 649–658. [Google Scholar] [CrossRef]
- Giannitsis, E.; Clifford, P.; Slagman, A.; Ruedelstein, R.; Liebetrau, C.; Hamm, C.; Honnart, D.; Huber, K.; Vollert, J.O.; Simonelli, C.; et al. Multicentre Cross-Sectional Observational Registry to Monitor the Safety of Early Discharge after Rule-Out of Acute Myocardial Infarction by Copeptin and Troponin: The Pro-Core Registry. BMJ Open 2019, 9, e028311. [Google Scholar] [CrossRef]
- Ricci, F.; Neumann, J.T.; Rübsamen, N.; Sörensen, N.A.; Ojeda, F.; Cataldo, I.; Zeller, T.; Schäfer, S.; Hartikainen, T.S.; Golato, M.; et al. High-Sensitivity Troponin I with or without Ultra-Sensitive Copeptin for the Instant Rule-Out of Acute Myocardial Infarction. Front. Cardiovasc. Med. 2022, 9, 895421. [Google Scholar] [CrossRef]
- Chenevier-Gobeaux, C.; Sebbane, M.; Meune, C.; Lefebvre, S.; Dupuy, A.-M.; Lefèvre, G.; Peschanski, N.; Ray, P. Is High-Sensitivity Troponin, Alone or in Combination with Copeptin, Sensitive Enough for Ruling Out NSTEMI in Very Early Presenters at Admission? A Post Hoc Analysis Performed in Emergency Departments. BMJ Open 2019, 9, e023994. [Google Scholar] [CrossRef] [PubMed]
- Stallone, F.; Schoenenberger, A.W.; Puelacher, C.; Rubini Gimenez, M.; Walz, B.; Naduvilekoot Devasia, A.; Bergner, M.; Twerenbold, R.; Wildi, K.; Reichlin, T.; et al. Incremental Value of Copeptin in Suspected Acute Myocardial Infarction Very Early after Symptom Onset. Eur. Heart J. Acute Cardiovasc. Care 2016, 5, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Hillinger, P.; Twerenbold, R.; Jaeger, C.; Wildi, K.; Reichlin, T.; Gimenez, M.R.; Engels, U.; Miró, O.; Boeddinghaus, J.; Puelacher, C.; et al. Optimizing Early Rule-Out Strategies for Acute Myocardial Infarction: Utility of 1-Hour Copeptin. Clin. Chem. 2015, 61, 1466–1474. [Google Scholar] [CrossRef] [PubMed]
- Boeddinghaus, J.; Reichlin, T.; Nestelberger, T.; Twerenbold, R.; Meili, Y.; Wildi, K.; Hillinger, P.; Giménez, M.R.; Cupa, J.; Schumacher, L.; et al. Early Diagnosis of Acute Myocardial Infarction in Patients with Mild Elevations of Cardiac Troponin. Clin. Res. Cardiol. 2017, 106, 457–467. [Google Scholar] [CrossRef]
- Wildi, K.; Boeddinghaus, J.; Nestelberger, T.; Twerenbold, R.; Badertscher, P.; Wussler, D.; Giménez, M.R.; Puelacher, C.; du Fay de Lavallaz, J.; Dietsche, S.; et al. Comparison of Fourteen Rule-Out Strategies for Acute Myocardial Infarction. Int. J. Cardiol. 2019, 283, 41–47. [Google Scholar] [CrossRef]
- Body, R.; Carley, S.; McDowell, G.; Jaffe, A.S.; France, M.; Cruickshank, K.; Wibberley, C.; Nuttall, M.; Mackway-Jones, K. Rapid Exclusion of Acute Myocardial Infarction in Patients with Undetectable Troponin Using a High-Sensitivity Assay. J. Am. Coll. Cardiol. 2011, 58, 1332–1339. [Google Scholar] [CrossRef]
- Myocardial Infarction (Acute): Early Rule Out Using High-Sensitivity Troponin Tests (Elecsys Troponin T High-Sensitive, ARCHITECT STAT High Sensitive Troponin-I and AccuTnI+3 Assays). NICE Diagnostics Guidance. Available online: https://www.nice.org.uk/guidance/dg15 (accessed on 3 February 2025).
- Meller, B.; Cullen, L.; Parsonage, W.A.; Greenslade, J.H.; Aldous, S.; Reichlin, T.; Wildi, K.; Twerenbold, R.; Jaeger, C.; Hillinger, P.; et al. Accelerated Diagnostic Protocol Using High-Sensitivity Cardiac Troponin T in Acute Chest Pain Patients. Int. J. Cardiol. 2015, 184, 208–215. [Google Scholar] [CrossRef]
- Restan, I.Z.; Sanchez, A.Y.; Steiro, O.-T.; Lopez-Ayala, P.; Tjora, H.L.; Langørgen, J.; Omland, T.; Boeddinghaus, J.; Nestelberger, T.; Koechlin, L.; et al. Adding Stress Biomarkers to High-Sensitivity Cardiac Troponin for Rapid Non-ST-Elevation Myocardial Infarction Rule-Out Protocols. Eur. Heart J. Acute Cardiovasc. Care 2022, 11, 201–212. [Google Scholar] [CrossRef]
- Pedersen, C.K.; Stengaard, C.; Bøtker, M.T.; Søndergaard, H.M.; Dodt, K.K.; Terkelsen, C.J. Accelerated Rule-Out of Acute Myocardial Infarction Using Prehospital Copeptin and in-Hospital Troponin: The AROMI Study. Eur. Heart J. 2023, 44, 3875–3888. [Google Scholar] [CrossRef]
- Jaffe, A.S.; Body, R.; Mills, N.L.; Aakre, K.M.; Collinson, P.O.; Saenger, A.; Hammarsten, O.; Wereski, R.; Omland, T.; Sandoval, Y.; et al. Single Troponin Measurement to Rule Out Myocardial Infarction. J. Am. Coll. Cardiol. 2023, 82, 60–69. [Google Scholar] [CrossRef]
- Bohyn, E.; Dubie, E.; Lebrun, C.; Jund, J.; Beaune, G.; Lesage, P.; Belle, L.; Savary, D. Expeditious Exclusion of Acute Coronary Syndrome Diagnosis by Combined Measurements of Copeptin, High-Sensitivity Troponin, and GRACE Score. Am. J. Emerg. Med. 2014, 32, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Morawiec, B.; Przywara-Chowaniec, B.; Muzyk, P.; Opara, M.; Ho, L.; Tat, L.C.; Muller, O.; Nowalany-Kozielska, E.; Kawecki, D. Combined Use of High-Sensitive Cardiac Troponin, Copeptin, and the Modified HEART Score for Rapid Evaluation of Chest Pain Patients. Dis. Markers 2018, 2018, 9136971. [Google Scholar] [CrossRef] [PubMed]
- Wildi, K.; Gimenez, M.R.; Twerenbold, R.; Reichlin, T.; Jaeger, C.; Heinzelmann, A.; Arnold, C.; Nelles, B.; Druey, S.; Haaf, P.; et al. Misdiagnosis of Myocardial Infarction Related to Limitations of the Current Regulatory Approach to Define Clinical Decision Values for Cardiac Troponin. Circulation 2015, 131, 2032–2040. [Google Scholar] [CrossRef] [PubMed]
- Crea, F.; Jaffe, A.S.; Collinson, P.O.; Hamm, C.W.; Lindahl, B.; Mills, N.L.; Thygesen, K.; Mueller, C.; Patrono, C.; Roffi, M. 2015 ESC NSTE-ACS Guidelines Task Force. Should the 1h Algorithm for Rule in and Rule Out of Acute Myocardial Infarction Be Used Universally? Eur. Heart J. 2016, 37, 3316–3323. [Google Scholar] [CrossRef]
- Jesse, R.L. On the Relative Value of an Assay Versus That of a Test: A History of Troponin for the Diagnosis of Myocardial Infarction. J. Am. Coll. Cardiol. 2010, 55, 2125–2128. [Google Scholar] [CrossRef]
- Alquézar, A.; Santaló, M.; Rizzi, M.; Gich, I.; Grau, M.; Sionis, A.; Ordóñez-Llanos, J.; Investigadores del Estudio TUSCA. Combined High-Sensitivity Copeptin and Troponin T Evaluation for the Diagnosis of Non-ST Elevation Acute Coronary Syndrome in the Emergency Department. Emergencias 2017, 29, 237–244. [Google Scholar]
- Anand, A.; Shah, A.S.V.; Beshiri, A.; Jaffe, A.S.; Mills, N.L. Global Adoption of High-Sensitivity Cardiac Troponins and the Universal Definition of Myocardial Infarction. Clin. Chem. 2019, 65, 484–489. [Google Scholar] [CrossRef]
- Mueller, C.; Giannitsis, E.; Christ, M.; Ordóñez-Llanos, J.; deFilippi, C.; McCord, J.; Body, R.; Panteghini, M.; Jernberg, T.; Plebani, M.; et al. Multicenter Evaluation of a 0-Hour/1-Hour Algorithm in the Diagnosis of Myocardial Infarction with High-Sensitivity Cardiac Troponin T. Ann. Emerg. Med. 2016, 68, 76–87.e4. [Google Scholar] [CrossRef]
- Nestelberger, T.; Wildi, K.; Boeddinghaus, J.; Twerenbold, R.; Reichlin, T.; Giménez, M.R.; Puelacher, C.; Jaeger, C.; Grimm, K.; Sabti, Z.; et al. Characterization of the Observe Zone of the ESC 2015 High-Sensitivity Cardiac Troponin 0 h/1 h-Algorithm for the Early Diagnosis of Acute Myocardial Infarction. Int. J. Cardiol. 2016, 207, 238–245. [Google Scholar] [CrossRef]
- Reinhold, T.; Giannitsis, E.; Möckel, M.; Frankenstein, L.; Vafaie, M.; Vollert, J.O.; Slagman, A. Cost Analysis of Early Discharge Using Combined Copeptin/Cardiac Troponin Testing versus Serial Cardiac Troponin Testing in Patients with Suspected Acute Coronary Syndrome. PLoS ONE 2018, 13, e0202133. [Google Scholar] [CrossRef]
- Armillotta, M.; Bergamaschi, L.; Paolisso, P.; Belmonte, M.; Angeli, F.; Sansonetti, A.; Stefanizzi, A.; Bertolini, D.; Bodega, F.; Amicone, S.; et al. Prognostic Relevance of Type 4a Myocardial Infarction and Periprocedural Myocardial Injury in Patients with Non-ST-Segment-Elevation Myocardial Infarction. Circulation 2025, 151, 760–772. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.-J.; Kim, M.C.; Sim, D.S.; Hong, Y.J.; Kim, J.H.; Jeong, M.H.; Kim, S.-H.; Shin, M.-G.; Ahn, Y. Serum Copeptin Levels Predict Clinical Outcomes after Successful Percutaneous Coronary Intervention in Patients with Acute Myocardial Infarction. Ann. Lab. Med. 2018, 38, 538–544. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, S.; He, G.; Wang, Y. Prognostic Value of Copeptin in Patients with Acute Coronary Syndrome: A Systematic Review and Meta-Analysis. PLoS ONE 2020, 15, e0238288. [Google Scholar] [CrossRef] [PubMed]
Study (Author, Year) | Type of Study | No. of Pts | Cut-Offs/Protocol | Rule-Out Population | SMS | DMS | Key Findings | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
AUC | Sensitivity (%) (95% CI) | NPV (%) (95% CI) | AUC | Sensitivity (%) (95% CI) | NPV (%) (95% CI) | ||||||
Reichlin et al., 2009 [75] | Prospective single center | 487 |
| Overall | 0.86 (0.80–0.92) | 0.97 (0.95–0.98) | 98.8 | 99.7 |
| ||
Keller et al., 2010 [85] | Multicenter | 1386 |
| Overall | 0.84 (0.82–0.87) | 62 (56.2–67.5) | 88.5 (86.4–90.4) | 0.93 (0.92–0.95) | 90.9 (87.1–93.9) | 95.8 (93.9–97.2) |
|
CPO < 3 h | 0.77 (0.72–0.82) | 43 (34–52.3) | 82.4 (78.3–86) | 0.9 (0.88–0.93) | 85.1 (77.5–90.9) | 92.4 (88.2–95.4) |
| ||||
All pts except for STEMI pts | 0.87 | 64.7 | 92.4 | 0.93 | 89.3 | 96.5 |
| ||||
CPO < 3 h excluding STEMI pts | 0.79 | 46.7 | 89.0 | 0.9 | 81.3 | 94.0 |
| ||||
Lipinski et al., 2014 [88] | Systematic review and meta-analysis | 9244 |
| 0.912 (0.87–0.95) | 0.878 (0.85–0.89) | 0.962 (0.95–0.96) | 0.795 (0.64–0.94) | 0.957 (0.943–0.969) | 0.982 (0.97–0.98) |
| |
| 0.885 (0.855–0.916) | 0.686 (0.661–0.710) | 0.930 (0.924–0.936) | 0.856 (0.789–0.924) | 0.905 (0.888–0.921) | 0.970 (0.964–0.975) | |||||
Raskovalova et al., 2014 [89] | Systematic review and meta-analysis | 8740 |
| Overall | - | 0.87 (0.80–0.95) | - | - | 0.96 (0.93–0.99) | - |
|
6534 |
| After exclusion of STEMI pts | - | 0.80 (0.73–0.88) | - | - | 0.95 (0.91–0.98) | - | |||
4330 |
| - | 0.91 (0.86–0.97) | - | - | 0.98 (0.96–1.00) | - | ||||
3996 |
| - | 0.79 (0.74–0.85) | - | - | 0.93 (0.88–0.98) | - | ||||
Balmelli et al., 2013 [87] | Prospective multicenter | 1247 |
| Overall | cnv cTnT 0.90 (0.84–0.95) | 0.96 (0.94–0.98) |
| ||||
hs-cTnT 0.94 (0.91–0.98) | 0.96 (0.93–0.98) | ||||||||||
After exclusion of STEMI pts | cnv cTnT 0.83 (0.77–0.90) | 0.89 (0.83–0.95) | |||||||||
hs-cTnT 0.92 (0.88–0.96) | 0.92 (0.88–0.96) | ||||||||||
Maisel et al., 2013 [19] | Prospective multicenter | 1967 |
| CPO < 6 h | 0.86 | 0.97 | 92.2 (85.9–95.9) | 99.2 (98.5–99.6) |
| ||
Möckel et al., 2015 [86] | Multicenter RCT | 902 |
| Overall, SMS (serial cTn measurements) vs. DMS (cTn plus copeptin) | - | - | - | - | - | - |
|
Study (Author, Year) | Type of Study | No. of Pts | Cut-Offs/Protocol | Rule-Out Population/Protocol | SMS | DMS | Key Findings | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
AUC | Sensitivity (%) (95% CI) | NPV (%) (95% CI) | AUC | Sensitivity (%) (95% CI) | NPV (%) (95% CI) | ||||||
Zellweger et al., 2015 [93] | Prospective multicenter | 379 |
| Diabetic pts | 0.90 (0.86–0.93) | - | - | 0.90 (0.87–0.93) | - | - |
|
Mueller-Hennessen et al., 2019 [97] | Prospective international multicenter | 922 |
| 0.92 (0.90–0.94) | 89.0 (82.9–93.4) | 97.4 (95.9–98.5) | 0.93 (0.91–0.95) | 93.5–94.8 | 98.1–98.3 |
| |
| 98.7 (95.4–99.8) | 99.4 (97.8–99.9) | |||||||||
| 98.1 (94.4–99.6) | 99.3 (97.9–99.9) | |||||||||
| 96.8 (92.6–98.9) | 99.2 (98.1–99.7) | |||||||||
| 98.7 (95.4–99.8) | 99.5 (98.0–99.9) | |||||||||
Sebbane et al., 2013 [78] | Prospective single center | 194 |
| Overall CPO < 12 h | 0.89 (0.85–0.92) | 76.9 (63.2–87.5) | 91 (84.8–95.3) | 0.93 (0.89–0.97) | 96.2 (86.8–99.5) | 97.8 (92.4–99.7) |
|
After excluding STEMI pts | 76 (54.9–90.6) | 95.3 (90–98.2) | 96 (79.6–99.9) | 98.9 (94–100) | |||||||
Potocki et al., 2012 [92] | Prospective multicenter | 1170 |
| Pre-existing CAD (433 pts) | 0.92 (0.89–0.96) | 93.6 (85.7–97.9) | 97.7 (94.8–99.3) | 0.94 (0.91–0.97) | 98.7 (93.0–99.8) | 99.3 (96.3–99.9) |
|
No CAD (737 pts) | 0.96 | 94.3 (88.1–97.9) | 98.9 (97.5–99.6) | 0.97 | 99.1 (94.8–99.8) | 99.7 (98.5–100.0) | |||||
Stengaard et al., 2017 [94] | Retrospective | 962 |
| Overall | 0.81 (0.78–0.85) | 80 (73–85) | 93 (91–96) | 0.85 (0.83–0.88) | 96 (91–98) | 98 (96–99) |
|
CPO < 1 h | 0.75 (0.69–0.82) | 67 (55–78) | 91 (87–94) | 0.84 (0.79–0.88) | 97 (90–100) | 99 (95–100) | |||||
Giannitsis et al., 2019 [102] | Prospective multicenter | 2294 |
| 99.9 (NPV for excluding NSTEMI) |
| ||||||
Chenevier-Gobeaux et al., 2019 [104] | post hoc analysis | 449 |
| hs-cTnT < 14 ng/L CPO < 2 h | 0.853 (0.789–0.904) | 80 (51–95) | 98 (93–100) | 0.897 (0.84–0.94) | 93 (66–100) | 99 (93–100) |
|
hs-cTnT < 14 ng/L CPO 2–4 h | 0.869 (0.802–0.919) | 77 (54–91) | 95 (88–98) | 0.891 (0.829–0.937) | 95 (75–100) | 99 (91–100) | |||||
Giannitsis et al., 2020 [101] | Retrospective | 10,329 |
| hs-cTnT < 14 ng/L CPO 2–4 h | 77 (54–91) | 95 (88–98) | 95 (75–100) | 99 (91–100) |
| ||
Kim et al., 2020 [96] | Prospective single center | 263 |
| 0 h | 0.914 (0.873–0.955) | 96.4 (81.7–99.9) | 99.5 (97.3–100) | 0.840 (0.811–0.870) | 100 (87.7–100) | 100 (97.7–100) |
|
2 h | 0.928 (0.905–0.950) | 100 (87.7–100) | 100 (98.2–100) | ||||||||
0/2 h | 0.928 (0.905–0.950) | 100 (87.7–100) | 100 (98.2–100) | ||||||||
Ricci et al., 2022 [103] | Prospective single center | 1136 |
| DMS 0-h | 97.8% (95–99.3) | 98.7 (96.9–99.6) | 95.2 (91.5–97.6) | 97.4 (95.4–98.7) |
|
Study (Author, Year) | Type of Study | No. of Pts | Cut-Offs/Protocol | Rule-Out Population/Protocol | SMS | DMS | Key Findings | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
AUC | Sensitivity (%) (95% CI) | NPV (%) (95% CI) | AUC | Sensitivity (%) (95% CI) | NPV (%) (95% CI) | ||||||
Stallone et al., 2016 [105] | Prospective multicenter | 2000 |
| CPO < 2 h | 0.87 (0.83–0.90) | 75 (65–83) | 93 (90–95) | 0.86 (0.82–0.90) | 91 (84–96) | 96 (93–98) |
|
CPO > 2 h | - | 96 (92–98) | 99 (98–99) | - | 99 (97–100) | 99 (99–100) | |||||
Hillinger et al., 2015 [106] | Prospective multicenter | 1.439 |
| 0 h biomarkers | - | - | 97.1 (95.9–98.1) | - | - | 98.6 (97.4–99.3) |
|
1 h biomarkers | - | - | 99.6 (98.7–99.9) | - | - | 98.6 (97.3–99.3) | |||||
CPO < 2 h | 88.8 (80.3–94.5) | 95.9 (86.0–99.5) | |||||||||
Boeddinghaus et al., 2017 [107] | Prospective single center | 1356 |
| 0 h hs-cTnI | 0.51 (0.39–0.64) | - | - | 0.52 (0.39–0.65) | - | - |
|
1 h hs-cTnI | 0.78 (0.68–0.88) | ||||||||||
Wildi et al., 2019 [108] | Prospective international multicenter | 3696 |
| hs-cTnT | - | 99.5–100 | 99.8–100 | - | 96.7 (94.2–98.1) | 98.7 (97.8–99.3) |
|
hs-cTnI | - | 98.9–100 | 99.7–100 | - | 90.4 (86.8–93.3) | 96.9 (95.6–97.8) | |||||
Shin et al., 2018 [20] | Systematic review and meta-analysis | 7.998 |
| 0.91 (0.90–0.91) | 0.81 (0.74–0.87) | 0.96 (0.95–0.98) | 0.85 (0.83–0.86) | 0.92 (0.89–0.95) | 0.98 (0.96–0.99) |
| |
hs-cTnT ± copeptin | 0.90 (0.88–0.92) | 0.86 (0.79–0.93) | 0.97 (0.95–0.99) | 0.83 (0.80–0.86) | 0.93 (0.91–0.96) | 0.94 (0.89–0.98) | |||||
Restan et al., 2022 [112] | Two cohorts | 959 |
| Overall hs-cTnT hs-cTnI | 0.91 (0.89–0.93) 0.93 (0.91–0.95) | 98.9 (94.0–100) 97.8 (92.2–99.7) | 99.6 (97.0–99.9) 99.5 (97.9–99.9) | 0.91 (0.89–0.93) 0.85 (0.82-.87) | 98.9 (94.0–100) 97.8 (92.2–99.7) (p = 1.0) | 99.5 (96.7–99.9) 99.4 (97.5–99.8) (p < 0.001) |
|
CPO <3 h hs-cTnT hs-cTnI | 0.838 (0.78–0.88) 0.890 (0.84–0.93) | 97.1 (85.1–99.9) 91.4 (76.9–98.2) | 98.5 (90.3–99.8) 97.1 (91.7–99.0) | 0.846 (0.79–0.89) 0.901 (0.85–0.93) | 100 (90.0–100) (p = 0.32) 100 (90.0–100) (p = 0.08) | 100 (p = 0.38) 100 (p = 0.13) |
| ||||
Pedersen et al., 2023 [113] | Multicenter RCT | 4351 | Prehospital
| Overall, 0/3 h algorithm | 87.6 (81.3–92.4) | 98.9 (98.3–99.3) | 98.8 (94.2–99.4) | 99.6 (99.0–99.9) |
| ||
1585 subgroup | 0/1 h | 99.2 (95.9–100.0) | 99.9 (99.4–100.0) | 98.5 (94.6–99.8) | 99.7 (99.0–100.0) | ||||||
0 h hs-cTnT <LoD | 99.2 (95.9–100.0) | 99.6 (97.7–100.0) |
Study (Author, Year) | Type of Study | Number of Patients | Cut-Offs | Rule-Out Protocol | SMS | DMS | Key Findings | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
AUC | Sensitivity (%) (95% CI) | NPV (%) (95% CI) | AUC | Sensitivity (%) (95% CI) | NPV (%) (95% CI) | ||||||
Stallone et al., 2016 [105] | Prospective multicenter | 519 |
| CPO < 2 h | 0.87 (0.83–0.90) | 74.5 (64.9–82.6) | 92.9 (89.8–95.3) | 0.86 (0.82–0.90) | 91.2 (84–95.9) | 96 (92.5–98.2) |
|
Hillinger et al., 2015 [106] | Prospective multicenter | 105 |
| CPO < 2 h | 88.8 (80.3–94.5) | 95.9 (86–99.5) |
| ||||
Stengaard et al., 2017 [94] | Retrospective | 395 |
| CPO < 1 h Prehospital setting | 0.75 (0.69–0.82) | 67 (55–78) | 91 (87–94) | 0.84 (0.79–0.88) | 97 (90–100) | 99 (95–100) |
|
Chenevier-Gobeaux et al., 2019 [104] | Post hoc analysis | 303
|
| CPO < 2 h; hs-cTnT < 14 ng/L | 0.853 (0.789–0.904) | 80 (51–95) | 98 (93–100) | 0.897 (0.84–0.94) | 93 (66–100) | 99 (93–100) |
|
CPO 2–4 h; hs-cTnT < 14 ng/L | 0.869 (0.802–0.919) | 77 (54–91) | 95 (88–98) | 0.891 (0.829–0.937) | 95 (75–100) | 99 (91–100) |
Study (Author, Year) | Type of Study | Number of Patients | Cut-Offs | Rule-Out Protocol | Baseline hs-cTnT | Combined Strategies | Key Findings | ||
---|---|---|---|---|---|---|---|---|---|
Sensitivity (%) (95% CI) | NPV (%) (95% CI) | Sensitivity (%) (95% CI) | NPV (%) (95% CI) | ||||||
Bohyn et al., 2014 [115] | Prospective observational |
|
| SMS (baseline hs-cTnT) vs. DMS (hs-cTnT + copeptin) | 72 (58–83) | 92 (88–95) | 90 (79–96) | 95 (90–98) |
|
DMS + GRACE score < 108 | 98 (90–100) | 99 (94–100) | |||||||
Morawiec et al., 2018 [116] | Prospective | 154 |
| Baseline hs-cTnT alone vs. hs-cTnT + mHS ≤ 3 | 99.3 (88–97.9) | 85.4 (70.8–94.4) | 99.1 (94.8–100) | 94.4 (72.2–99.9) |
|
hs-cTnT + mHS ≤ 3 + copeptin | 100 (96.6–100) | 100 (75.3–100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezati, S.; Ventoulis, I.; Bistola, V.; Verras, C.; Matsiras, D.; Polyzogopoulou, E.; Parissis, J. Copeptin in Acute Myocardial Infarction: Is There a Role in the Era of High-Sensitivity Troponins? J. Cardiovasc. Dev. Dis. 2025, 12, 144. https://doi.org/10.3390/jcdd12040144
Bezati S, Ventoulis I, Bistola V, Verras C, Matsiras D, Polyzogopoulou E, Parissis J. Copeptin in Acute Myocardial Infarction: Is There a Role in the Era of High-Sensitivity Troponins? Journal of Cardiovascular Development and Disease. 2025; 12(4):144. https://doi.org/10.3390/jcdd12040144
Chicago/Turabian StyleBezati, Sofia, Ioannis Ventoulis, Vasiliki Bistola, Christos Verras, Dionysis Matsiras, Effie Polyzogopoulou, and John Parissis. 2025. "Copeptin in Acute Myocardial Infarction: Is There a Role in the Era of High-Sensitivity Troponins?" Journal of Cardiovascular Development and Disease 12, no. 4: 144. https://doi.org/10.3390/jcdd12040144
APA StyleBezati, S., Ventoulis, I., Bistola, V., Verras, C., Matsiras, D., Polyzogopoulou, E., & Parissis, J. (2025). Copeptin in Acute Myocardial Infarction: Is There a Role in the Era of High-Sensitivity Troponins? Journal of Cardiovascular Development and Disease, 12(4), 144. https://doi.org/10.3390/jcdd12040144