Coronary Endothelial Dysfunction and Vasomotor Dysregulation in Myocardial Bridging
Abstract
:1. Introduction
2. Prevalence and Hemodynamic Significance of MB
3. Epicardial Endothelial Dysfunction and Myocardial Bridging
4. Coronary Microvascular Endothelial Dysfunction and Myocardia Bridging
5. Sudden Death and Myocardial Bridging
6. Diagnostic Procedure Unveiling Coronary Endothelial Dysfunction and Significant Myocardial Bridging
7. Therapeutic Considerations for Patients with Coronary Endothelial Dysfunction and Myocardial Bridging
8. Summary and Future Perspectives
Funding
Conflicts of Interest
References
- Roberts, W.; Charles, S.M.; Ang, C.; Holda, M.K.; Walocha, J.; Lachman, N.; Tubbs, R.S.; Loukas, M. Myocardial Bridges: A Meta-Analysis. Clin. Anat. 2021, 34, 685–709. [Google Scholar] [CrossRef] [PubMed]
- Hostiuc, S.; Negoi, I.; Rusu, M.C.; Hostiuc, M. Myocardial Bridging: A Meta-Analysis of Prevalence. J. Forensic Sci. 2018, 63, 1176–1185. [Google Scholar] [CrossRef] [PubMed]
- Bezerra, A.J.; Prates, J.C.; DiDio, L.J. Incidence and Clinical Significance of Bridges of Myocardium over the Coronary Arteries and Their Branches. Surg. Radiol. Anat. 1987, 9, 273–280. [Google Scholar] [CrossRef]
- Watanabe, Y.; Arakawa, T.; Kageyama, I.; Aizawa, Y.; Kumaki, K.; Miki, A.; Terashima, T. Gross Anatomical Study on the Human Myocardial Bridges with Special Reference to the Spatial Relationship among Coronary Arteries, Cardiac Veins, and Autonomic Nerves. Clin. Anat. 2016, 29, 333–341. [Google Scholar] [CrossRef]
- Möhlenkamp, S.; Hort, W.; Ge, J.; Erbel, R. Update on Myocardial Bridging. Circulation 2002, 106, 2616–2622. [Google Scholar] [CrossRef]
- Kim, P.J.; Hur, G.; Kim, S.Y.; Namgung, J.; Hong, S.W.; Kim, Y.H.; Lee, W.R. Frequency of Myocardial Bridges and Dynamic Compression of Epicardial Coronary Arteries: A Comparison Between Computed Tomography and Invasive Coronary Angiography. Circulation 2009, 119, 1408–1416. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Jeremias, A.; Rupp, A.; Abels, M.; Baumgart, D.; Liu, F.; Haude, M.; Görge, G.; von Birgelen, C.; Sack, S.; et al. New Signs Characteristic of Myocardial Bridging Demonstrated by Intracoronary Ultrasound and Doppler. Eur. Heart J. 1999, 20, 1707–1716. [Google Scholar] [CrossRef]
- Hongo, Y.; Tada, H.; Ito, K.; Yasumura, Y.; Miyatake, K.; Yamagishi, M. Augmentation of Vessel Squeezing at Coronary-Myocardial Bridge by Nitroglycerin: Study by Quantitative Coronary Angiography and Intravascular Ultrasound. Am. Heart J. 1999, 138, 345–350. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Chen, C.-H. Myocardial Bridging: An Up-to-Date Review. J. Invasive Cardiol. 2015, 27, 521–528. [Google Scholar] [PubMed]
- Rajendran, R.; Hegde, M. The Prevalence of Myocardial Bridging on Multidetector Computed Tomography and Its Relation to Coronary Plaques. Pol. J. Radiol. 2019, 84, e478–e483. [Google Scholar] [CrossRef]
- Alegria, J.R.; Herrmann, J.; Holmes, D.R.; Lerman, A.; Rihal, C.S. Myocardial Bridging. Eur. Heart J. 2005, 26, 1159–1168. [Google Scholar] [CrossRef] [PubMed]
- Klues, H.G.; Schwarz, E.R.; vom Dahl, J.; Reffelmann, T.; Reul, H.; Potthast, K.; Schmitz, C.; Minartz, J.; Krebs, W.; Hanrath, P. Disturbed Intracoronary Hemodynamics in Myocardial Bridging: Early Normalization by Intracoronary Stent Placement. Circulation 1997, 96, 2905–2913. [Google Scholar] [CrossRef] [PubMed]
- Traub, O.; Berk, B.C. Laminar Shear Stress: Mechanisms by Which Endothelial Cells Transduce an Atheroprotective Force. Arterioscler. Thromb. Vasc. Biol. 1998, 18, 677–685. [Google Scholar] [CrossRef]
- Gimbrone, M.A.; Topper, J.N.; Nagel, T.; Anderson, K.R.; Garcia-Cardeña, G. Endothelial Dysfunction, Hemodynamic Forces, and Atherogenesis. Ann. N. Y. Acad. Sci. 2000, 902, 230–239; discussion 239–240. [Google Scholar] [CrossRef]
- Huang, A.; Sun, D.; Kaley, G.; Koller, A. Superoxide Released to High Intra-Arteriolar Pressure Reduces Nitric Oxide-Mediated Shear Stress- and Agonist-Induced Dilations. Circ. Res. 1998, 83, 960–965. [Google Scholar] [CrossRef]
- Ungvari, Z.; Csiszar, A.; Huang, A.; Kaminski, P.M.; Wolin, M.S.; Koller, A. High Pressure Induces Superoxide Production in Isolated Arteries via Protein Kinase C-Dependent Activation of NAD(P)H Oxidase. Circulation 2003, 108, 1253–1258. [Google Scholar] [CrossRef]
- Ghaleh, B.; Hittinger, L.; Kim, S.J.; Kudej, R.K.; Iwase, M.; Uechi, M.; Berdeaux, A.; Bishop, S.P.; Vatner, S.F. Selective Large Coronary Endothelial Dysfunction in Conscious Dogs with Chronic Coronary Pressure Overload. Am. J. Physiol. 1998, 274, H539–H551. [Google Scholar] [CrossRef]
- Herrmann, J.; Lerman, A. The Endothelium: Dysfunction and Beyond. J. Nucl. Cardiol. 2001, 8, 197–206. [Google Scholar] [CrossRef]
- Herrmann, J.; Higano, S.T.; Lenon, R.J.; Rihal, C.S.; Lerman, A. Myocardial Bridging Is Associated with Alteration in Coronary Vasoreactivity. Eur. Heart J. 2004, 25, 2134–2142. [Google Scholar] [CrossRef] [PubMed]
- Teragawa, H.; Fukuda, Y.; Matsuda, K.; Hirao, H.; Higashi, Y.; Yamagata, T.; Oshima, T.; Matsuura, H.; Chayama, K. Myocardial Bridging Increases the Risk of Coronary Spasm. Clin. Cardiol. 2003, 26, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Park, C.G.; Suh, S.Y.; Choi, C.U.; Kim, E.J.; Rha, S.-W.; Seo, H.S.; Oh, D.J. Comparison of Frequency of Coronary Spasm in Korean Patients with Versus Without Myocardial Bridging. Am. J. Cardiol. 2007, 100, 1083–1086. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y.; Kitahara, H.; Shoji, T.; Tokimasa, S.; Nakayama, T.; Sugimoto, K.; Fujimoto, Y.; Kobayashi, Y. Relation between Severity of Myocardial Bridge and Vasospasm. Int. J. Cardiol. 2017, 248, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Sinha, A.; Rahman, H.; Rajani, R.; Demir, O.M.; Li KamWa, M.; Morgan, H.; Ezad, S.M.; Ellis, H.; Hogan, D.; Gulati, A.; et al. Characterizing Mechanisms of Ischemia in Patients with Myocardial Bridges. Circ. Cardiovasc. Interv. 2024, 17, e013657. [Google Scholar] [CrossRef] [PubMed]
- Nam, P.; Choi, B.G.; Choi, S.Y.; Byun, J.K.; Mashaly, A.; Park, Y.; Jang, W.Y.; Kim, W.; Choi, J.Y.; Park, E.J.; et al. The Impact of Myocardial Bridge on Coronary Artery Spasm and Long-Term Clinical Outcomes in Patients without Significant Atherosclerotic Stenosis. Atherosclerosis 2018, 270, 8–12. [Google Scholar] [CrossRef]
- Montone, R.A.; Niccoli, G.; Fracassi, F.; Russo, M.; Gurgoglione, F.; Cammà, G.; Lanza, G.A.; Crea, F. Patients with Acute Myocardial Infarction and Non-Obstructive Coronary Arteries: Safety and Prognostic Relevance of Invasive Coronary Provocative Tests. Eur. Heart J. 2018, 39, 91–98. [Google Scholar] [CrossRef] [PubMed]
- Scalone, G.; Niccoli, G.; Crea, F. Editor’s Choice- Pathophysiology, Diagnosis and Management of MINOCA: An Update. Eur. Heart J. Acute Cardiovasc. Care 2019, 8, 54–62. [Google Scholar] [CrossRef]
- Crea, F.; Montone, R.A.; Niccoli, G. Myocardial Infarction with Non-Obstructive Coronary Arteries: Dealing with Pears and Apples. Eur. Heart J. 2020, 41, 879–881. [Google Scholar] [CrossRef] [PubMed]
- Montone, R.A.; Meucci, M.C.; De Vita, A.; Lanza, G.A.; Niccoli, G. Coronary Provocative Tests in the Catheterization Laboratory: Pathophysiological Bases, Methodological Considerations and Clinical Implications. Atherosclerosis 2021, 318, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Montone, R.A.; Gurgoglione, F.L.; Del Buono, M.G.; Rinaldi, R.; Meucci, M.C.; Iannaccone, G.; La Vecchia, G.; Camilli, M.; D’Amario, D.; Leone, A.M.; et al. Interplay Between Myocardial Bridging and Coronary Spasm in Patients with Myocardial Ischemia and Non-Obstructive Coronary Arteries: Pathogenic and Prognostic Implications. J. Am. Heart Assoc. 2021, 10, e020535. [Google Scholar] [CrossRef] [PubMed]
- Sara, J.D.S.; Corban, M.T.; Prasad, M.; Prasad, A.; Gulati, R.; Lerman, L.O.; Lerman, A. Prevalence of Myocardial Bridging Associated with Coronary Endothelial Dysfunction in Patients with Chest Pain and Non-Obstructive Coronary Artery Disease. EuroIntervention 2020, 15, 1262–1268. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Ishikawa, Y.; Akasaka, Y.; Itoh, K.; Kiguchi, H.; Ishii, T. The Effect of Myocardial Bridging of the Coronary Artery on Vasoactive Agents and Atherosclerosis Localization. J. Pathol. 2001, 193, 408–414. [Google Scholar] [CrossRef]
- Miyauchi, T.; Yanagisawa, M.; Iida, K.; Ajisaka, R.; Suzuki, N.; Fujino, M.; Goto, K.; Masaki, T.; Sugishita, Y. Age- and Sex-Related Variation of Plasma Endothelin-1 Concentration in Normal and Hypertensive Subjects. Am. Heart J. 1992, 123, 1092–1093. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Hibi, K.; Ogino, Y.; Maejima, N.; Kikuchi, S.; Kirigaya, H.; Kirigaya, J.; Sato, R.; Nakahashi, H.; Minamimoto, Y.; et al. Impact of Myocardial Bridge on Life-Threatening Ventricular Arrhythmia in Patients with Implantable Cardioverter Defibrillator. J. Am. Heart Assoc. 2020, 9, e017455. [Google Scholar] [CrossRef]
- Forsdahl, S.H.; Rogers, I.S.; Schnittger, I.; Tanaka, S.; Kimura, T.; Pargaonkar, V.S.; Chan, F.P.; Fleischmann, D.; Tremmel, J.A.; Becker, H.-C. Myocardial Bridges on Coronary Computed Tomography Angiography―Correlation with Intravascular Ultrasound and Fractional Flow Reserve. Circ. J. 2017, 81, 1894–1900. [Google Scholar] [CrossRef] [PubMed]
- Hostiuc, S.; Curca, G.C.; Dermengiu, D.; Dermengiu, S.; Hostiuc, M.; Rusu, M.C. Morphological Changes Associated with Hemodynamically Significant Myocardial Bridges in Sudden Cardiac Death. Thorac. Cardiovasc. Surg. 2011, 59, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Brodsky, S.V.; Roh, L.; Ashar, K.; Braun, A.; Ramaswamy, G. Myocardial Bridging of Coronary Arteries: A Risk Factor. for Myocardial Fibrosis? Int. J. Cardiol. 2008, 124, 391–392. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Akasaka, Y.; Suzuki, K.; Fujiwara, M.; Ogawa, T.; Yamazaki, K.; Niino, H.; Tanaka, M.; Ogata, K.; Morinaga, S.; et al. Anatomic Properties of Myocardial Bridge Predisposing to Myocardial Infarction. Circulation 2009, 120, 376–383. [Google Scholar] [CrossRef]
- Malek, A.M.; Alper, S.L.; Izumo, S. Hemodynamic Shear Stress and Its Role in Atherosclerosis. JAMA 1999, 282, 2035–2042. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Asuwa, N.; Masuda, S.; Ishikawa, Y.; Kiguchi, H.; Shimada, K. Atherosclerosis Suppression in the Left Anterior Descending Coronary Artery by the Presence of a Myocardial Bridge: An Ultrastructural Study. Mod. Pathol. 1991, 4, 424–431. [Google Scholar] [PubMed]
- Corban, M.T.; Hung, O.Y.; Eshtehardi, P.; Rasoul-Arzrumly, E.; McDaniel, M.; Mekonnen, G.; Timmins, L.H.; Lutz, J.; Guyton, R.A.; Samady, H. Myocardial Bridging. J. Am. Coll. Cardiol. 2014, 63, 2346–2355. [Google Scholar] [CrossRef]
- Tanaka, S.; Okada, K.; Kitahara, H.; Luikart, H.; Yock, P.G.; Yeung, A.C.; Schnittger, I.; Tremmel, J.A.; Fitzgerald, P.J.; Khush, K.K.; et al. Impact of Myocardial Bridging on Coronary Artery Plaque Formation and Long-Term Mortality after Heart Transplantation. Int. J. Cardiol. 2023, 379, 24–32. [Google Scholar] [CrossRef]
- Hostiuc, S.; Rusu, M.C.; Hostiuc, M.; Negoi, R.I.; Negoi, I. Cardiovascular Consequences of Myocardial Bridging: A Meta-Analysis and Meta-Regression. Sci. Rep. 2017, 7, 14644. [Google Scholar] [CrossRef] [PubMed]
- Aksan, G.; Nar, G.; İnci, S.; Yanık, A.; Kılıçkesmez, K.O.; Aksoy, O.; Soylu, K. Exercise-Induced Repolarization Changes in Patients with Isolated Myocardial Bridging. Med. Sci. Monit. 2015, 21, 2116–2124. [Google Scholar] [CrossRef]
- Nishikii-Tachibana, M.; Pargaonkar, V.S.; Schnittger, I.; Haddad, F.; Rogers, I.S.; Tremmel, J.A.; Wang, P.J. Myocardial Bridging Is Associated with Exercise-Induced Ventricular Arrhythmia and Increases in QT Dispersion. Ann. Noninvasive Electrocardiol. 2018, 23, e12492. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, G.; Migliore, F.; Cademartiri, F.; Fraccaro, C.; Iliceto, S. Left Anterior Descending Artery Myocardial Bridging: A Clinical Approach. J. Am. Coll. Cardiol. 2016, 68, 2887–2899. [Google Scholar] [CrossRef]
- Pargaonkar, V.S.; Kimura, T.; Kameda, R.; Tanaka, S.; Yamada, R.; Schwartz, J.G.; Perl, L.; Rogers, I.S.; Honda, Y.; Fitzgerald, P.; et al. Invasive Assessment of Myocardial Bridging in Patients with Angina and No Obstructive Coronary Artery Disease. EuroIntervention 2021, 16, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Tarantini, G.; Barioli, A.; Nai Fovino, L.; Fraccaro, C.; Masiero, G.; Iliceto, S.; Napodano, M. Unmasking Myocardial Bridge-Related Ischemia by Intracoronary Functional Evaluation. Circ. Cardiovasc. Interv. 2018, 11, e006247. [Google Scholar] [CrossRef]
- Aleksandric, S.B.; Djordjevic-Dikic, A.D.; Dobric, M.R.; Giga, V.L.; Soldatovic, I.A.; Vukcevic, V.; Tomasevic, M.V.; Stojkovic, S.M.; Orlic, D.N.; Saponjski, J.D.; et al. Functional Assessment of Myocardial Bridging with Conventional and Diastolic Fractional Flow Reserve: Vasodilator Versus Inotropic Provocation. J. Am. Heart Assoc. 2021, 10, e020597. [Google Scholar] [CrossRef]
- Ludmer, P.L.; Selwyn, A.P.; Shook, T.L.; Wayne, R.R.; Mudge, G.H.; Alexander, R.W.; Ganz, P. Paradoxical Vasoconstriction Induced by Acetylcholine in Atherosclerotic Coronary Arteries. N. Engl. J. Med. 1986, 315, 1046–1051. [Google Scholar] [CrossRef] [PubMed]
- Suwaidi, J.A.; Hamasaki, S.; Higano, S.T.; Nishimura, R.A.; Holmes, D.R.; Lerman, A. Long-Term Follow-up of Patients with Mild Coronary Artery Disease and Endothelial Dysfunction. Circulation 2000, 101, 948–954. [Google Scholar] [CrossRef]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the Management of Chronic Coronary Syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- Beltrame, J.F.; Crea, F.; Kaski, J.C.; Ogawa, H.; Ong, P.; Sechtem, U.; Shimokawa, H.; Bairey Merz, C.N.; Coronary Vasomotion Disorders International Study Group (COVADIS). International Standardization of Diagnostic Criteria for Vasospastic Angina. Eur. Heart J. 2017, 38, 2565–2568. [Google Scholar] [CrossRef]
- Ong, P.; Camici, P.G.; Beltrame, J.F.; Crea, F.; Shimokawa, H.; Sechtem, U.; Kaski, J.C.; Bairey Merz, C.N.; Coronary Vasomotion Disorders International Study Group (COVADIS). International Standardization of Diagnostic Criteria for Microvascular Angina. Int. J. Cardiol. 2018, 250, 16–20. [Google Scholar] [CrossRef] [PubMed]
- Ohba, K.; Sugiyama, S.; Sumida, H.; Nozaki, T.; Matsubara, J.; Matsuzawa, Y.; Konishi, M.; Akiyama, E.; Kurokawa, H.; Maeda, H.; et al. Microvascular Coronary Artery Spasm Presents Distinctive Clinical Features with Endothelial Dysfunction as Nonobstructive Coronary Artery Disease. J. Am. Heart Assoc. 2012, 1, e002485. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, S.; Kaikita, K.; Yamamoto, E.; Jinnouchi, H.; Tsujita, K. Role of Acetylcholine Spasm Provocation Test as a Pathophysiological Assessment in Nonobstructive Coronary Artery Disease. Cardiovasc. Interv. Ther. 2021, 36, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Kanaji, Y.; Ahmad, A.; Singh Sara, J.D.; Ozcan, I.; Akhiyat, N.; Prasad, A.; Raphael, C.E.; Kakuta, T.; Lerman, L.O.; Lerman, A. Coronary Vasomotor Dysfunction Is Associated with Cardiovascular Events in Patients with Nonobstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2024, 17, 474–487. [Google Scholar] [CrossRef] [PubMed]
- Sara, J.D.; Widmer, R.J.; Matsuzawa, Y.; Lennon, R.J.; Lerman, L.O.; Lerman, A. Prevalence of Coronary Microvascular Dysfunction Among Patients with Chest Pain and Nonobstructive Coronary Artery Disease. JACC Cardiovasc. Interv. 2015, 8, 1445–1453. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A.; Corban, M.T.; Toya, T.; Verbrugge, F.H.; Sara, J.D.; Lerman, L.O.; Borlaug, B.A.; Lerman, A. Coronary Microvascular Dysfunction Is Associated with Exertional Haemodynamic Abnormalities in Patients with Heart Failure with Preserved Ejection Fraction. Eur. J. Heart Fail. 2021, 23, 765–772. [Google Scholar] [CrossRef]
- Feenstra, R.G.T.; Boerhout, C.K.M.; Woudstra, J.; Vink, C.E.M.; Wittekoek, M.E.; de Waard, G.A.; Appelman, Y.; Eringa, E.C.; Marques, K.M.J.; de Winter, R.J.; et al. Presence of Coronary Endothelial Dysfunction, Coronary Vasospasm, and Adenosine-Mediated Vasodilatory Disorders in Patients with Ischemia and Nonobstructive Coronary Arteries. Circ. Cardiovasc. Interv. 2022, 15, e012017. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Prasad, M.; Widmer, R.J.; Toleva, O.; Quesada, O.; Sutton, N.R.; Lerman, A.; Reynolds, H.R.; Kesarwani, M.; Savage, M.P.; et al. Comprehensive Management of ANOCA, Part 2-Program Development, Treatment, and Research Initiatives: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2023, 82, 1264–1279. [Google Scholar] [CrossRef]
- Feenstra, R.G.T.; Seitz, A.; Boerhout, C.K.M.; Bukkems, L.H.; Stegehuis, V.E.; Teeuwisse, P.J.I.; de Winter, R.J.; Sechtem, U.; Piek, J.J.; van de Hoef, T.P.; et al. Principles and Pitfalls in Coronary Vasomotor Function Testing. EuroIntervention 2022, 17, 1271–1280. [Google Scholar] [CrossRef] [PubMed]
- Woudstra, J.; Feenstra, R.G.T.; Vink, C.E.M.; Marques, K.M.J.; Boerhout, C.K.M.; de Jong, E.A.M.; de Waard, G.A.; van de Hoef, T.P.; Chamuleau, S.A.J.; Eringa, E.C.; et al. Comparison of the Diagnostic Yield of Intracoronary Acetylcholine Infusion and Acetylcholine Bolus Injection Protocols During Invasive Coronary Function Testing. Am. J. Cardiol. 2024, 217, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Nair, C.K.; Dang, B.; Heintz, M.H.; Sketch, M.H. Myocardial Bridges: Effect of Propranolol on Systolic Compression. Can. J. Cardiol. 1986, 2, 218–221. [Google Scholar] [PubMed]
- Schwarz, E.R.; Klues, H.G.; vom Dahl, J.; Klein, I.; Krebs, W.; Hanrath, P. Functional, Angiographic and Intracoronary Doppler Flow Characteristics in Symptomatic Patients with Myocardial Bridging: Effect of Short-Term Intravenous Beta-Blocker Medication. J. Am. Coll. Cardiol. 1996, 27, 1637–1645. [Google Scholar] [CrossRef] [PubMed]
- Antman, E.; Muller, J.; Goldberg, S.; MacAlpin, R.; Rubenfire, M.; Tabatznik, B.; Liang, C.S.; Heupler, F.; Achuff, S.; Reichek, N.; et al. Nifedipine Therapy for Coronary-Artery Spasm. Experience in 127 Patients. N. Engl. J. Med. 1980, 302, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Robertson, R.M.; Wood, A.J.; Vaughn, W.K.; Robertson, D. Exacerbation of Vasotonic Angina Pectoris by Propranolol. Circulation 1982, 65, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, N.; Dei Giudici, A.; De Angelis, S.; Urciuoli, F.; Garante, M.C.; Di Matteo, A. Efficacy of Calcium Channel Blockers in the Treatment of the Myocardial Bridging: A Pilot Study. Eur. Rev. Med. Pharmacol. Sci. 2012, 16, 829–834. [Google Scholar] [PubMed]
- Sternheim, D.; Power, D.A.; Samtani, R.; Kini, A.; Fuster, V.; Sharma, S. Myocardial Bridging: Diagnosis, Functional Assessment, and Management. J. Am. Coll. Cardiol. 2021, 78, 2196–2212. [Google Scholar] [CrossRef]
- Ishimori, T.; Raizner, A.E.; Chahine, R.A.; Awdeh, M.; Luchi, R.J. Myocardial Bridges in Man: Clinical Correlations and Angiographic Accentuation with Nitroglycerin. Cathet Cardiovasc. Diagn. 1977, 3, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Yamada, R.; Tremmel, J.A.; Tanaka, S.; Lin, S.; Kobayashi, Y.; Hollak, M.B.; Yock, P.G.; Fitzgerald, P.J.; Schnittger, I.; Honda, Y. Functional Versus Anatomic Assessment of Myocardial Bridging by Intravascular Ultrasound: Impact of Arterial Compression on Proximal Atherosclerotic Plaque. J. Am. Heart Assoc. 2016, 5, e001735. [Google Scholar] [CrossRef]
- Trimarchi, G.; Pizzino, F.; Paradossi, U.; Gueli, I.A.; Palazzini, M.; Gentile, P.; Di Spigno, F.; Ammirati, E.; Garascia, A.; Tedeschi, A.; et al. Charting the Unseen: How Non-Invasive Imaging Could Redefine Cardiovascular Prevention. J. Cardiovasc. Dev. Dis. 2024, 11, 245. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Wang, Y.N.; Schoepf, U.J.; Tesche, C.; Tang, C.X.; Zhou, C.S.; Xu, L.; Hou, Y.; Zheng, M.W.; Yan, J.; et al. Diagnostic Performance of Machine Learning Based CT-FFR in Detecting Ischemia in Myocardial Bridging and Concomitant Proximal Atherosclerotic Disease. Can. J. Cardiol. 2019, 35, 1523–1533. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Zhang, J.; Wang, W.; Qi, Y.; Lyu, J.; Zhang, X.; Li, T.; Lou, X. Predictors of Discordance between CT-Derived Fractional Flow Reserve (CT-FFR) and ΔCT-FFR in Deep Coronary Myocardial Bridging. Clin. Imaging 2024, 114. [Google Scholar] [CrossRef] [PubMed]
- Zhou, F.; Tang, C.X.; Schoepf, U.J.; Tesche, C.; Rollins, J.D.; Liu, H.; Zhou, C.S.; Yan, J.; Lu, M.J.; Lu, G.M.; et al. Machine Learning Using CT-FFR Predicts Proximal Atherosclerotic Plaque Formation Associated with LAD Myocardial Bridging. JACC Cardiovasc. Imaging 2019, 12, 1591–1593. [Google Scholar] [CrossRef] [PubMed]
- Tsujita, K.; Maehara, A.; Mintz, G.S.; Doi, H.; Kubo, T.; Castellanos, C.; Liu, J.; Yang, J.; Oviedo, C.; Franklin-Bond, T.; et al. Impact of Myocardial Bridge on Clinical Outcome after Coronary Stent Placement. Am. J. Cardiol. 2009, 103, 1344–1348. [Google Scholar] [CrossRef]
- Kunamneni, P.B.; Rajdev, S.; Krishnan, P.; Moreno, P.R.; Kim, M.C.; Sharma, S.K.; Kini, A.S. Outcome of Intracoronary Stenting after Failed Maximal Medical Therapy in Patients with Symptomatic Myocardial Bridge. Catheter. Cardiovasc. Interv. 2008, 71, 185–190. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toya, T. Coronary Endothelial Dysfunction and Vasomotor Dysregulation in Myocardial Bridging. J. Cardiovasc. Dev. Dis. 2025, 12, 54. https://doi.org/10.3390/jcdd12020054
Toya T. Coronary Endothelial Dysfunction and Vasomotor Dysregulation in Myocardial Bridging. Journal of Cardiovascular Development and Disease. 2025; 12(2):54. https://doi.org/10.3390/jcdd12020054
Chicago/Turabian StyleToya, Takumi. 2025. "Coronary Endothelial Dysfunction and Vasomotor Dysregulation in Myocardial Bridging" Journal of Cardiovascular Development and Disease 12, no. 2: 54. https://doi.org/10.3390/jcdd12020054
APA StyleToya, T. (2025). Coronary Endothelial Dysfunction and Vasomotor Dysregulation in Myocardial Bridging. Journal of Cardiovascular Development and Disease, 12(2), 54. https://doi.org/10.3390/jcdd12020054