Effects of Physical Activity, Metabolic Syndrome, and Social Status on ECG Parameters in Children: A Prospective Cohort Study
Abstract
1. Introduction
2. Methods
2.1. Study Participants
2.2. Baseline Assessment
2.3. ECG Measurements
2.4. Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magnani, J.W.; Lopez, F.L.; Soliman, E.Z.; Maclehose, R.F.; Crow, R.S.; Alonso, A. P Wave Indices, Obesity, and the Metabolic Syndrome: The Atherosclerosis Risk in Communities Study. Obesity 2012, 20, 666–672. [Google Scholar] [CrossRef] [PubMed]
- Altuncu, M.E.; Baspinar, O.; Keskin, M. The use of short-term analysis of heart rate variability to assess autonomic function in obese children and its relationship with metabolic syndrome. Cardiol. J. 2012, 19, 501–506. [Google Scholar] [CrossRef]
- Yagi, R.; Mori, Y.; Goto, S.; Iwami, T.; Inoue, K. Routine Electrocardiogram Screening and Cardiovascular Disease Events in Adults. JAMA Intern. Med. 2024, 184, 1035–1044. [Google Scholar] [CrossRef]
- Bagkaki, A.; Parthenakis, F.; Chlouverakis, G.; Galanakis, E.; Germanakis, I. Cardiovascular Disease Screening in Primary School Children. Children 2024, 12, 38. [Google Scholar] [CrossRef] [PubMed]
- Vetter, V.L. Electrocardiographic Screening of All Infants, Children, and Teenagers Should Be Performed. Circulation 2014, 130, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Galobardes, B.; Smith, G.D.; Lynch, J.W. Systematic Review of the Influence of Childhood Socioeconomic Circumstances on Risk for Cardiovascular Disease in Adulthood. Ann. Epidemiol. 2006, 16, 91–104. [Google Scholar] [CrossRef]
- Dickinson, D.F. The normal ECG in childhood and adolescence. Heart 2005, 91, 1626–1630. [Google Scholar] [CrossRef]
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry, Report of a WHO Expert Committee; World Health Organization: Geneva, Switzerland, 1995. [Google Scholar]
- Zimmet, P.; Alberti, K.G.M.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S.; et al. The metabolic syndrome in children and adolescents? an IDF consensus report. Pediatr. Diabetes 2007, 8, 299–306. [Google Scholar] [CrossRef]
- Gupta, P.; Patel, C.; Patel, H.; Narayanaswamy, S.; Malhotra, B.; Green, J.T.; Yan, G.-X. Tp-e/QT ratio as an index of arrhythmogenesis. J. Electrocardiol. 2008, 41, 567–574. [Google Scholar] [CrossRef]
- Muensterman, E.T.; Tisdale, J.E. Predictive Analytics for Identification of Patients at Risk for QT Interval Prolongation: A Systematic Review. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2018, 38, 813–821. [Google Scholar] [CrossRef]
- Zhang, N.; Gong, M.; Tse, G.; Zhang, Z.; Meng, L.; Yan, B.P.; Zhang, L.; Wu, G.; Xia, Y.; Xin-Yan, G.; et al. Prolonged corrected QT interval in predicting atrial fibrillation: A systematic review and meta-analysis. Pacing Clin. Electrophysiol. 2018, 41, 321–327. [Google Scholar] [CrossRef]
- Bhatia, R.S.; Bouck, Z.; Ivers, N.M.; Mecredy, G.; Singh, J.; Pendrith, C.; Ko, D.T.; Martin, D.; Wijeysundera, H.C.; Tu, J.V.; et al. Electrocardiograms in Low-Risk Patients Undergoing an Annual Health Examination. JAMA Intern. Med. 2017, 177, 1326–1333. [Google Scholar] [CrossRef] [PubMed]
- Force, U.P.S.T.; Curry, S.J.; Krist, A.H.; Owens, D.K.; Barry, M.J.; Caughey, A.B.; Davidson, K.W.; Doubeni, C.A.; Epling, J.W.; Kemper, A.R.; et al. Screening for Cardiovascular Disease Risk With Electrocardiography. JAMA 2018, 319, 2308–2314. [Google Scholar] [CrossRef]
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.-M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337, Erratum in: Eur. Heart J. 2022, 43, 4468. [Google Scholar] [CrossRef]
- Corrado, D.; Basso, C.; Pavei, A.; Michieli, P.; Schiavon, M.; Thiene, G. Trends in Sudden Cardiovascular Death in Young Competitive Athletes After Implementation of a Preparticipation Screening Program. JAMA 2006, 296, 1593–1601. [Google Scholar] [CrossRef]
- Zeppilli, P.; Biffi, A.; Cammarano, M.; Castelletti, S.; Cavarretta, E.; Cecchi, F.; Colivicchi, F.; Contursi, M.; Corrado, D.; D’aNdrea, A.; et al. Italian Cardiological Guidelines (COCIS) for Competitive Sport Eligibility in athletes with heart disease: Update 2024. Minerva Medica 2024, 115, 533–564. [Google Scholar] [CrossRef]
- Kelly, A.S.; Barlow, S.E.; Rao, G.; Inge, T.H.; Hayman, L.L.; Steinberger, J.; Urbina, E.M.; Ewing, L.J.; Daniels, S.R.; American Heart Association Atherosclerosis; et al. Severe Obesity in Children and Adolescents: Identification, Associated Health Risks, and Treatment Approaches: A scientific statement from the American Heart Association. Circulation 2013, 128, 1689–1712. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Kaur, N.; Madhukar, M. Assessment of Corrected QT Interval and QT Dispersion in Patients with Uncomplicated Metabolic Syndrome. J. Pharm. Bioallied Sci. 2023, 15, S1097–S1100. [Google Scholar] [CrossRef]
- Li, W.; Bai, Y.; Sun, K.; Xue, H.; Wang, Y.; Song, X.; Fan, X.; Song, H.; Han, Y.; Hui, R. Patients with Metabolic Syndrome Have Prolonged Corrected QT Interval (QTc). Clin. Cardiol. 2009, 32, E93–E99. [Google Scholar] [CrossRef] [PubMed]
- Omran, J.; Bostick, B.P.; Chan, A.K.; Alpert, M.A. Obesity and Ventricular Repolarization: A Comprehensive Review. Prog. Cardiovasc. Dis. 2018, 61, 124–135. [Google Scholar] [CrossRef]
- Karaagac, K.; Tenekecioglu, E.; Yontar, O.C.; Kuzeytemiz, M.; Vatansever, F.; Tutuncu, A.; Ozluk, O.A.; Yilmaz, M.; Demir, M. Effect of non-dipper and dipper blood pressure patterns on Tp-Te interval and Tp-Te/QT ratio in patients with metabolic syndrome. Int. J. Clin. Exp. Med. 2014, 7, 1397–1403. [Google Scholar]
- Rad, E.M.; Karimi, M.; Momtazmanesh, S.; Shabanian, R.; Saatchi, M.; Asbagh, P.A.; Zeinaloo, A.A. Exercise-induced electrocardiographic changes after treadmill exercise testing in healthy children: A comprehensive study. Ann. Pediatr. Cardiol. 2021, 14, 449–458. [Google Scholar] [CrossRef]
- Doumparatzi, M.; Sotiriou, P.; Deligiannis, A.; Kouidi, E. Electrocardiographic characteristics of pediatric and adolescent football players. Sports Med. Health Sci. 2023, 6, 179–184. [Google Scholar] [CrossRef]
- Llewellyn, A.; Simmonds, M.; Owen, C.G.; Woolacott, N. Childhood obesity as a predictor of morbidity in adulthood: A systematic review and meta-analysis. Obes. Rev. 2015, 17, 56–67. [Google Scholar] [CrossRef]
- Owen, C.G.; Whincup, P.H.; Orfei, L.; Chou, Q.-A.; Rudnicka, A.R.; Wathern, A.K.; Kaye, S.J.; Eriksson, J.G.; Osmond, C.; Cook, D.G. Is body mass index before middle age related to coronary heart disease risk in later life? Evidence from observational studies. Int. J. Obes. 2009, 33, 866–877. [Google Scholar] [CrossRef]
- A El Sehmawy, A.; Fawaz, R.A.E.S.; Agiba, N.A.; Elsherbiny, E.A.; Agaba, N.F.; Mohammed, D.S.; Nasr, H.M.; Diab, F.E.A.; Ahmed, A.M.; Mahfouz, S.I.; et al. Impact of Different Metabolic Indicators on Ventricular Repolarization Indices in Obese Children: A Case Control Study. Clin. Med. Insights Endocrinol. Diabetes 2025, 18, 11795514251316248. [Google Scholar] [CrossRef]
- Kiess, A.; Körner, A.; Dähnert, I.; Vogel, M.; Markel, F.; Gebauer, R.A.; Kiess, W.; Paech, C. Does obesity have an effect on the ECG in children? J. Pediatr. Endocrinol. Metab. 2020, 33, 585–589. [Google Scholar] [CrossRef]
- Cordeiro, J.R.; Mosca, S.; Correia-Costa, A.; Ferreira, C.; Pimenta, J.; Correia-Costa, L.; Barros, H.; Postolache, O. The Association between Childhood Obesity and Cardiovascular Changes in 10 Years Using Special Data Science Analysis. Children 2023, 10, 1655. [Google Scholar] [CrossRef] [PubMed]
- Luca, A.C.; Țarcă, E.; Tănase, V.-G.; Pădureț, I.-A.; Dragoiu, T.-S.; Butnariu, L.I.; Roșu, S.T.; Roca, I.C.; Mîndru, D.-E. Benefits of Physical Activity in Children with Cardiac Diseases—A Concise Summary for Pediatricians. Children 2024, 11, 1432. [Google Scholar] [CrossRef] [PubMed]
- McClean, G.; Riding, N.R.; Ardern, C.L.; Farooq, A.; E Pieles, G.; Watt, V.; Adamuz, C.; George, K.P.; Oxborough, D.; Wilson, M.G. Electrical and structural adaptations of the paediatric athlete’s heart: A systematic review with meta-analysis. Br. J. Sports Med. 2017, 52, 230. [Google Scholar] [CrossRef] [PubMed]
- Leppänen, M.H.; Haapala, E.A.; Veijalainen, A.; Seppälä, S.; Oliveira, R.S.; Lintu, N.; Laitinen, T.; Tarvainen, M.P.; Lakka, T.A. Associations of cardiometabolic risk factors with heart rate variability in 6- to 8-year-old children: The PANIC Study. Pediatr. Diabetes 2019, 21, 251–258. [Google Scholar] [CrossRef] [PubMed]
- E Speer, K.; Naumovski, N.; McKune, A.J. Heart rate variability to track autonomic nervous system health in young children: Effects of physical activity and cardiometabolic risk factors. Physiol. Behav. 2024, 281, 114576. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Xu, J.; Xie, H.; Huang, Y.; Shen, X.; Xu, F. Effects of physical activity on heart rate variability in children and adolescents: A systematic review and meta-analysis. Cienc. Saude Coletiva 2022, 27, 1827–1842. [Google Scholar] [CrossRef]
- Stringhini, S.; Dugravot, A.; Kivimaki, M.; Shipley, M.; Zins, M.; Goldberg, M.; Ferrie, J.E.; Singh-Manoux, A. Do different measures of early life socioeconomic circumstances predict adult mortality? Evidence from the British Whitehall II and French GAZEL studies. J. Epidemiol. Community Health 2010, 65, 1097–1103. [Google Scholar] [CrossRef]
- Hulmán, A.; Tabák, A.G.; A Nyári, T.; Vistisen, D.; Kivimäki, M.; Brunner, E.J.; Witte, D.R. Effect of secular trends on age-related trajectories of cardiovascular risk factors: The Whitehall II longitudinal study 1985–2009. Leuk. Res. 2014, 43, 866–877. [Google Scholar] [CrossRef]
- Bijker, R.; Agyemang, C. The influence of early-life conditions on cardiovascular disease later in life among ethnic minority populations: A systematic review. Intern. Emerg. Med. 2015, 11, 341–353. [Google Scholar] [CrossRef]
- Boylan, J.M.; Jennings, J.R.; Matthews, K.A. Childhood socioeconomic status and cardiovascular reactivity and recovery among Black and White men: Mitigating effects of psychological resources. Heal. Psychol. 2016, 35, 957–966. [Google Scholar] [CrossRef] [PubMed]
- Benatar, A.; Decraene, T. Comparison of formulae for heart rate correction of QT interval in exercise ECGs from healthy children. Heart 2001, 86, 199–202. [Google Scholar] [CrossRef]
Male | Female | p | |
---|---|---|---|
n | 60 | 79 | |
Age, years | 12.5 ± 3.2 | 13.3 ± 3.5 | 0.159 |
Waist, cm | 90 ± 20 | 79 ± 19 | <0.001 |
Systolic blood pressure, mmHg | 122 ± 14 | 116 ± 13 | 0.015 |
Diastolic blood pressure, mmHg | 75 ± 9 | 74 ± 10 | 0.630 |
Triglycerides, mmol/L | 0.9 (0.6–1.3) | 0.9 (0.6–1.1) | 0.698 |
HDL cholesterol, mmol/L | 1.2 (1.0–1.5) | 1.2 (1.0–1.4) | 0.717 |
Fasting glucose, mmol/L | 5.1 (4.7–5.2) | 4.9 (4.6–5.2) | 0.100 |
Sport activity, n (%) | 0.091 | ||
30 min or less a day | 16 (26.7%) | 34 (43.0%) | |
30–90 min a day | 35 (58.3%) | 39 (49.4%) | |
90 min or more a day | 9 (15.0%) | 6 (7.6%) | |
Social status, n (%) | 0.203 | ||
Poor | 3 (5.0%) | 11 (13.9%) | |
Average | 47 (78.3%) | 54 (68.4%) | |
Good | 10 (16.7%) | 14 (17.7%) |
Parameter | F (df1, df2) | p-Value | η2 (Eta-Square) |
---|---|---|---|
RR | |||
Age | 54.06 (1131) | <0.001 | 0.292 |
Sex | 9.87 (1131) | 0.002 | 0.07 |
Metabolic syndrome | 11.13 (1131) | 0.001 | 0.078 |
Sport activity | 4.92 (2131) | 0.009 | 0.07 |
Social status | 0.13 (2131) | 0.880 | 0.002 |
PR | |||
Age | 11.94 (1131) | <0.001 | 0.084 |
Sex | 2.14 (1131) | 0.146 | 0.016 |
Metabolic syndrome | 0.54 (1131) | 0.463 | 0.004 |
Sport activity | 0.05 (2131) | 0.950 | 0.001 |
Social status | 1.41 (2131) | 0.247 | 0.021 |
QRS | |||
Age | 7.82 (1131) | 0.006 | 0.056 |
Sex | 0.39 (1131) | 0.533 | 0.003 |
Metabolic syndrome | 1.83 (1131) | 0.178 | 0.014 |
Sport activity | 1.46 (2131) | 0.237 | 0.022 |
Social status | 0.56 (2131) | 0.571 | 0.009 |
QTc | |||
Age | 10.15 (1131) | 0.002 | 0.072 |
Sex | 8.36 (1131) | 0.004 | 0.06 |
Metabolic syndrome | 0.93 (1131) | 0.336 | 0.007 |
Sport activity | 0.33 (2131) | 0.722 | 0.005 |
Social status | 2.35 (2131) | 0.100 | 0.035 |
Tte | |||
Age | 6.75 (1131) | 0.010 | 0.049 |
Sex | 0.17 (1131) | 0.685 | 0.001 |
Metabolic syndrome | 3.9 (1131) | 0.051 | 0.029 |
Sport activity | 2.63 (2131) | 0.076 | 0.039 |
Social status | 0.93 (2131) | 0.397 | 0.014 |
TP | |||
Age | 43.93 (1131) | <0.001 | 0.251 |
Sex | 13.69 (1131) | <0.001 | 0.095 |
Metabolic syndrome | 9.61 (1131) | 0.002 | 0.068 |
Sport activity | 3.71 (2131) | 0.027 | 0.054 |
Social status | 0.39 (2131) | 0.677 | 0.006 |
Parameter | Mean Diff. | SE | p-Value | 95% LCI | 95% UCI |
---|---|---|---|---|---|
RR | |||||
Sex * | 64.708 | 20.597 | 0.002 | 23.962 | 105.453 |
Metabolic syndrome ** | 74.13 | 22.219 | 0.001 | 30.176 | 118.084 |
Sport activity | |||||
30–90 min *** | 48.96 | 22.413 | 0.031 | 4.263 | 93.298 |
>90 min *** | 104.283 | 35.518 | 0.004 | 34.02 | 174.546 |
QTc | |||||
Sex * | −10.227 | 3.537 | 0.004 | −17.224 | −3.23 |
TP | |||||
Sex * | 64.113 | 17.327 | <0.001 | 29.836 | 98.39 |
Metabolic syndrome ** | 57.938 | 18.691 | 0.002 | 20.962 | 94.914 |
Sport activity | |||||
30–90 min *** | 38.955 | 18.854 | 0.041 | 1.657 | 76.254 |
>90 min *** | 73.226 | 29.879 | 0.016 | 14.118 | 132.334 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kézdi, Á.; Horváth, V.J.; Hangács, R.; Tabák, Á.G.; Fogarasi, D.J.; Vadon, D.; Grósz, G.; Fekete, F.; Nagy, A. Effects of Physical Activity, Metabolic Syndrome, and Social Status on ECG Parameters in Children: A Prospective Cohort Study. J. Cardiovasc. Dev. Dis. 2025, 12, 385. https://doi.org/10.3390/jcdd12100385
Kézdi Á, Horváth VJ, Hangács R, Tabák ÁG, Fogarasi DJ, Vadon D, Grósz G, Fekete F, Nagy A. Effects of Physical Activity, Metabolic Syndrome, and Social Status on ECG Parameters in Children: A Prospective Cohort Study. Journal of Cardiovascular Development and Disease. 2025; 12(10):385. https://doi.org/10.3390/jcdd12100385
Chicago/Turabian StyleKézdi, Árpád, Viktor József Horváth, Regina Hangács, Ádám Gyula Tabák, Dominic Joseph Fogarasi, Dániel Vadon, György Grósz, Ferenc Fekete, and Anikó Nagy. 2025. "Effects of Physical Activity, Metabolic Syndrome, and Social Status on ECG Parameters in Children: A Prospective Cohort Study" Journal of Cardiovascular Development and Disease 12, no. 10: 385. https://doi.org/10.3390/jcdd12100385
APA StyleKézdi, Á., Horváth, V. J., Hangács, R., Tabák, Á. G., Fogarasi, D. J., Vadon, D., Grósz, G., Fekete, F., & Nagy, A. (2025). Effects of Physical Activity, Metabolic Syndrome, and Social Status on ECG Parameters in Children: A Prospective Cohort Study. Journal of Cardiovascular Development and Disease, 12(10), 385. https://doi.org/10.3390/jcdd12100385