Homocysteine in the Cardiovascular Setting: What to Know, What to Do, and What Not to Do
Abstract
1. Introduction
2. What to Know: Molecular Mechanism and Biochemical Pathways
2.1. Historical Background
2.2. Mechanism of Cardiovascular Damage
3. What to Do: Evidence-Based Interventions
3.1. Focus on Folate, Vitamin B6, and B12
- -
- Folate (vitamin B9): Folate functions in one-carbon metabolisms as a methyl donor via 5-MTHF, enabling the remethylation of homocysteine to methionine through the vitamin B12–dependent enzyme, methionine synthase [23]. Deficiency in folate impairs DNA synthesis and promotes hyperhomocysteinemia and megaloblastic anemia [32].
- -
- Vitamin B6 (pyridoxine): Vitamin B6 is a coenzyme involved in amino acid transamination, neurotransmitter synthesis (e.g., serotonin, dopamine, GABA), and glycogenolysis. In homocysteine metabolism, B6 facilitates the transsulfuration pathway through the enzyme cystathionine β-synthase (CBS), converting homocysteine to cysteine [24].
- -
- Vitamin B12 (cobalamin): Vitamin B12 is essential for methylation reactions and neurological integrity. As a coenzyme of methionine synthase and methylmalonyl-CoA mutase, it is critical for both homocysteine elimination and myelin maintenance. Deficiency can result from malabsorption (e.g., pernicious anemia, atrophic gastritis) and leads to hematologic and neurologic symptoms [32]. A schematic view of homocysteine metabolism is provided in Figure 1.
3.2. Supporting Scientific Evidence
- Focusing on homocysteine metabolism is crucial for developing strategies that protect cardiovascular and neurological health.
- Vitamins B6, B9 (folate), and B12 play complementary roles in the pathways of homocysteine remethylation and transsulfuration.
- While taking supplements can help lower homocysteine levels, the actual benefits depend on a mix of genetic, metabolic, and nutritional factors.
- Personalized strategies—like using active forms such as 5-MTHF, methylcobalamin, and pyridoxal-5′-phosphate—could boost effectiveness, especially for those who are genetically predisposed.
- In clinical practice, it is essential to think about formulation, bioavailability, and the method of administration.
- Further studies are warranted to identify optimal therapeutic targets and to delineate patient subgroups most likely to benefit from tailored supplementation strategies.
3.3. Lifestyle Modifications and Risk Factor Management
3.4. Monitoring Homocysteine Levels
3.4.1. When and Why Should It Be Measured?
3.4.2. Current Clinical Applications
3.4.3. At-Risk Populations
4. What Not to Do: Misconceptions and Pitfalls
4.1. The Genetic Puzzle: MTHFR and Beyond
4.2. Avoiding Unnecessary Supplementation
4.3. Interpreting the Evidence: A Word of Caution
5. Therapeutic Approaches to Hyperhomocysteinemia: Current Paradigms and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weiss, N.; Keller, C.; Hoffmann, U.; Loscalzo, J. Endothelial dysfunction and atherothrombosis in mild hyperhomocysteinemia. Vasc. Med. 2002, 7, 227–239. [Google Scholar] [CrossRef]
- Wald, D.S.; Law, M.; Morris, J.K. Homocysteine and cardiovascular disease: Evidence on causality from a meta-analysis. BMJ 2002, 325, 1202. [Google Scholar] [CrossRef]
- Wang, B.; Mo, X.; Wu, Z.; Guan, X. Systematic review and meta-analysis of the correlation between plasma homocysteine levels and coronary heart disease. J. Thorac. Dis. 2022, 14, 646–653. [Google Scholar] [CrossRef]
- Zhou, F.; He, Y.; Xie, X.; Guo, N.; Chen, W.; Zhao, Y. Homocysteine and Multiple Health Outcomes: An Outcome-Wide Umbrella Review of Meta-analyses and Mendelian Randomization Studies. Adv. Nutr. 2025, 16, 100434. [Google Scholar] [CrossRef]
- Klerk, M.; Verhoef, P.; Clarke, R.; Blom, H.J.; Kok, F.J.; Schouten, E.G.; Group, M.S.C. MTHFR 677C-->T polymorphism and risk of coronary heart disease: A meta-analysis. JAMA 2002, 288, 2023–2031. [Google Scholar] [CrossRef] [PubMed]
- Xuan, C.; Bai, X.Y.; Gao, G.; Yang, Q.; He, G.W. Association between polymorphism of methylenetetrahydrofolate reductase (MTHFR) C677T and risk of myocardial infarction: A meta-analysis for 8140 cases and 10,522 controls. Arch. Med. Res. 2011, 42, 677–685. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, Z.; Tian, W.; Zhang, J.; Li, Q.; Ju, J.; Xu, H.; Chen, K. Plasma homocysteine levels and risk of congestive heart failure or cardiomyopathy: A Mendelian randomization study. Front. Cardiovasc. Med. 2023, 10, 1030257. [Google Scholar] [CrossRef]
- Lonn, E.; Yusuf, S.; Arnold, M.J.; Sheridan, P.; Pogue, J.; Micks, M.; McQueen, M.J.; Probstfield, J.; Fodor, G.; Held, C.; et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N. Engl. J. Med. 2006, 354, 1567–1577. [Google Scholar] [CrossRef]
- Clarke, R.; Halsey, J.; Lewington, S.; Lonn, E.; Armitage, J.; Manson, J.E.; Bonaa, K.H.; Spence, J.D.; Nygard, O.; Jamison, R.; et al. Effects of lowering homocysteine levels with B vitamins on cardiovascular disease, cancer, and cause-specific mortality: Meta-analysis of 8 randomized trials involving 37,485 individuals. Arch. Intern. Med. 2010, 170, 1622–1631. [Google Scholar] [CrossRef]
- Huo, Y.; Li, J.; Qin, X.; Huang, Y.; Wang, X.; Gottesman, R.F.; Tang, G.; Wang, B.; Chen, D.; He, M.; et al. Efficacy of folic acid therapy in primary prevention of stroke among adults with hypertension in China: The CSPPT randomized clinical trial. JAMA 2015, 313, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Xu, M.; Zhang, Y.; Li, J.; Xu, X.; Wang, X.; Xu, X.; Huo, Y. Effect of folic acid supplementation on the progression of carotid intima-media thickness: A meta-analysis of randomized controlled trials. Atherosclerosis 2012, 222, 307–313. [Google Scholar] [CrossRef]
- Mason, J.B.; Dickstein, A.; Jacques, P.F.; Haggarty, P.; Selhub, J.; Dallal, G.; Rosenberg, I.H. A temporal association between folic acid fortification and an increase in colorectal cancer rates may be illuminating important biological principles: A hypothesis. Cancer Epidemiol. Biomark. Prev. 2007, 16, 1325–1329. [Google Scholar] [CrossRef] [PubMed]
- Carson, N.A.; Neill, D.W. Metabolic abnormalities detected in a survey of mentally backward individuals in Northern Ireland. Arch. Dis. Child. 1962, 37, 505–513. [Google Scholar] [CrossRef] [PubMed]
- McCully, K.S. Vascular pathology of homocysteinemia: Implications for the pathogenesis of arteriosclerosis. Am. J. Pathol. 1969, 56, 111–128. [Google Scholar] [PubMed]
- McCully, K.S.; Wilson, R.B. Homocysteine theory of arteriosclerosis. Atherosclerosis 1975, 22, 215–227. [Google Scholar] [CrossRef]
- Frosst, P.; Blom, H.J.; Milos, R.; Goyette, P.; Sheppard, C.A.; Matthews, R.G.; Boers, G.J.; den Heijer, M.; Kluijtmans, L.A.; van den Heuvel, L.P.; et al. A candidate genetic risk factor for vascular disease: A common mutation in methylenetetrahydrofolate reductase. Nat. Genet. 1995, 10, 111–113. [Google Scholar] [CrossRef]
- Ganguly, P.; Alam, S.F. Role of homocysteine in the development of cardiovascular disease. Nutr. J. 2015, 14, 6. [Google Scholar] [CrossRef]
- Yuan, S.; Mason, A.M.; Carter, P.; Burgess, S.; Larsson, S.C. Homocysteine, B vitamins, and cardiovascular disease: A Mendelian randomization study. BMC Med. 2021, 19, 97. [Google Scholar] [CrossRef]
- Kerins, D.M.; Koury, M.J.; Capdevila, A.; Rana, S.; Wagner, C. Plasma S-adenosylhomocysteine is a more sensitive indicator of cardiovascular disease than plasma homocysteine. Am. J. Clin. Nutr. 2001, 74, 723–729. [Google Scholar] [CrossRef]
- Tehlivets, O. Homocysteine as a risk factor for atherosclerosis: Is its conversion to s-adenosyl-L-homocysteine the key to deregulated lipid metabolism? J. Lipids 2011, 2011, 702853. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Yang, M.; Dai, X.; Huang, T.; Liao, R.; Song, H.; Li, P.; Chen, Y.; Huang, H.; et al. High Plasma Levels of S-adenosylhomocysteine is Related with the Risk of All-cause and Cardiovascular Mortality in Patients with Coronary Artery Disease. J. Atheroscler. Thromb. 2025, 32, 734–752. [Google Scholar] [CrossRef]
- Jakubowski, H.; Witucki, L. Homocysteine Metabolites, Endothelial Dysfunction, and Cardiovascular Disease. Int. J. Mol. Sci. 2025, 26, 746. [Google Scholar] [CrossRef] [PubMed]
- Selhub, J. Homocysteine metabolism. Annu. Rev. Nutr. 1999, 19, 217–246. [Google Scholar] [CrossRef]
- Stanger, O.; Herrmann, W.; Pietrzik, K.; Fowler, B.; Geisel, J.; Dierkes, J.; Weger, M. Clinical use and rational management of homocysteine, folic acid, and B vitamins in cardiovascular and thrombotic diseases. Z. Kardiol. 2004, 93, 439–453. [Google Scholar] [CrossRef]
- Smith, A.D.; Refsum, H. Homocysteine, B Vitamins, and Cognitive Impairment. Annu. Rev. Nutr. 2016, 36, 211–239. [Google Scholar] [CrossRef]
- Marx, N.; Federici, M.; Schutt, K.; Muller-Wieland, D.; Ajjan, R.A.; Antunes, M.J.; Christodorescu, R.M.; Crawford, C.; Di Angelantonio, E.; Eliasson, B.; et al. 2023 ESC Guidelines for the management of cardiovascular disease in patients with diabetes. Eur. Heart J. 2023, 44, 4043–4140. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.O.; Bhatia, H.S.; Garg, P.K.; Karger, A.B.; Guan, W.; Cao, J.; Shapiro, M.D.; Tsai, M.Y. Lipoprotein(a), high-sensitivity c-reactive protein, homocysteine and cardiovascular disease in the Multi-Ethnic Study of Atherosclerosis. Am. J. Prev. Cardiol. 2025, 21, 100903. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Wang, J.; Zhang, S.; Wan, Z.; Zhou, D.; Ding, Y.; He, Q.; Xie, P. Homocysteine enhances the predictive value of the GRACE risk score in patients with ST-elevation myocardial infarction. Anatol. J. Cardiol. 2017, 18, 182–193. [Google Scholar] [CrossRef]
- Veeranna, V.; Zalawadiya, S.K.; Niraj, A.; Pradhan, J.; Ference, B.; Burack, R.C.; Jacob, S.; Afonso, L. Homocysteine and reclassification of cardiovascular disease risk. J. Am. Coll. Cardiol. 2011, 58, 1025–1033. [Google Scholar] [CrossRef]
- Bailey, L.B.; Gregory, J.F., 3rd. Folate metabolism and requirements. J. Nutr. 1999, 129, 779–782. [Google Scholar] [CrossRef]
- Stover, P.J. One-carbon metabolism-genome interactions in folate-associated pathologies. J. Nutr. 2009, 139, 2402–2405. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Herrmann, W. Mechanisms of homocysteine neurotoxicity in neurodegenerative diseases with special reference to dementia. FEBS Lett. 2006, 580, 2994–3005. [Google Scholar] [CrossRef]
- Marti-Carvajal, A.J.; Sola, I.; Lathyris, D.; Salanti, G. Homocysteine lowering interventions for preventing cardiovascular events. Cochrane Database Syst. Rev. 2017, 8, CD006612. [Google Scholar] [CrossRef]
- Bonaa, K.H.; Njolstad, I.; Ueland, P.M.; Schirmer, H.; Tverdal, A.; Steigen, T.; Wang, H.; Nordrehaug, J.E.; Arnesen, E.; Rasmussen, K.; et al. Homocysteine lowering and cardiovascular events after acute myocardial infarction. N. Engl. J. Med. 2006, 354, 1578–1588. [Google Scholar] [CrossRef]
- Smith, A.D.; Smith, S.M.; de Jager, C.A.; Whitbread, P.; Johnston, C.; Agacinski, G.; Oulhaj, A.; Bradley, K.M.; Jacoby, R.; Refsum, H. Homocysteine-lowering by B vitamins slows the rate of accelerated brain atrophy in mild cognitive impairment: A randomized controlled trial. PLoS ONE 2010, 5, e12244. [Google Scholar] [CrossRef]
- Miller, A.L. The methylation, neurotransmitter, and antioxidant connections between folate and depression. Altern. Med. Rev. 2008, 13, 216–226. [Google Scholar]
- De-Regil, L.M.; Fernandez-Gaxiola, A.C.; Dowswell, T.; Pena-Rosas, J.P. Effects and safety of periconceptional folate supplementation for preventing birth defects. Cochrane Database Syst. Rev. 2010, CD007950. [Google Scholar] [CrossRef]
- Rimm, E.B.; Willett, W.C.; Hu, F.B.; Sampson, L.; Colditz, G.A.; Manson, J.E.; Hennekens, C.; Stampfer, M.J. Folate and vitamin B6 from diet and supplements in relation to risk of coronary heart disease among women. JAMA 1998, 279, 359–364. [Google Scholar] [CrossRef] [PubMed]
- Estruch, R.; Ros, E.; Salas-Salvado, J.; Covas, M.I.; Corella, D.; Aros, F.; Gomez-Gracia, E.; Ruiz-Gutierrez, V.; Fiol, M.; Lapetra, J.; et al. Primary prevention of cardiovascular disease with a Mediterranean diet supplemented with extra-virgin olive oil or nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Cashman, K.D. Altered bone metabolism in inflammatory disease: Role for nutrition. Proc. Nutr. Soc. 2008, 67, 196–205. [Google Scholar] [CrossRef]
- Dedoussis, G.V.; Panagiotakos, D.B.; Chrysohoou, C.; Pitsavos, C.; Zampelas, A.; Choumerianou, D.; Stefanadis, C. Effect of interaction between adherence to a Mediterranean diet and the methylenetetrahydrofolate reductase 677C-->T mutation on homocysteine concentrations in healthy adults: The ATTICA Study. Am. J. Clin. Nutr. 2004, 80, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Foscolou, A.; Rallidis, L.S.; Tsirebolos, G.; Critselis, E.; Katsimardos, A.; Drosatos, A.; Chrysohoou, C.; Tousoulis, D.; Pitsavos, C.; Panagiotakos, D.B. The association between homocysteine levels, Mediterranean diet and cardiovascular disease: A case-control study. Int. J. Food Sci. Nutr. 2019, 70, 603–611. [Google Scholar] [CrossRef]
- Lentsch, A.B.; Yoshidome, H.; Warner, R.L.; Ward, P.A.; Edwards, M.J. Secretory leukocyte protease inhibitor in mice regulates local and remote organ inflammatory injury induced by hepatic ischemia/reperfusion. Gastroenterology 1999, 117, 953–961. [Google Scholar] [CrossRef]
- Cavalca, V.; Cighetti, G.; Bamonti, F.; Loaldi, A.; Bortone, L.; Novembrino, C.; De Franceschi, M.; Belardinelli, R.; Guazzi, M.D. Oxidative stress and homocysteine in coronary artery disease. Clin. Chem. 2001, 47, 887–892. [Google Scholar] [CrossRef]
- Haj Mouhamed, D.; Ezzaher, A.; Neffati, F.; Douki, W.; Najjar, M.F. Effect of cigarette smoking on plasma homocysteine concentrations. Clin. Chem. Lab. Med. 2011, 49, 479–483. [Google Scholar] [CrossRef]
- Refsum, H.; Smith, A.D.; Ueland, P.M.; Nexo, E.; Clarke, R.; McPartlin, J.; Johnston, C.; Engbaek, F.; Schneede, J.; McPartlin, C.; et al. Facts and recommendations about total homocysteine determinations: An expert opinion. Clin. Chem. 2004, 50, 3–32. [Google Scholar] [CrossRef]
- Welch, G.N.; Loscalzo, J. Homocysteine and atherothrombosis. N. Engl. J. Med. 1998, 338, 1042–1050. [Google Scholar] [CrossRef]
- den Heijer, M.; Koster, T.; Blom, H.J.; Bos, G.M.; Briet, E.; Reitsma, P.H.; Vandenbroucke, J.P.; Rosendaal, F.R. Hyperhomocysteinemia as a risk factor for deep-vein thrombosis. N. Engl. J. Med. 1996, 334, 759–762. [Google Scholar] [CrossRef] [PubMed]
- Ray, J.G.; Laskin, C.A. Folic acid and homocyst(e)ine metabolic defects and the risk of placental abruption, pre-eclampsia and spontaneous pregnancy loss: A systematic review. Placenta 1999, 20, 519–529. [Google Scholar] [CrossRef] [PubMed]
- van Guldener, C.; Stehouwer, C.D. Homocysteine metabolism in renal disease. Clin. Chem. Lab. Med. 2003, 41, 1412–1417. [Google Scholar] [CrossRef]
- Nelen, W.L. Hyperhomocysteinaemia and human reproduction. Clin. Chem. Lab. Med. 2001, 39, 758–763. [Google Scholar] [CrossRef] [PubMed]
- Helfand, M.; Buckley, D.I.; Freeman, M.; Fu, R.; Rogers, K.; Fleming, C.; Humphrey, L.L. Emerging risk factors for coronary heart disease: A summary of systematic reviews conducted for the U.S. Preventive Services Task Force. Ann. Intern. Med. 2009, 151, 496–507. [Google Scholar] [CrossRef]
- Arnett, D.K.; Blumenthal, R.S.; Albert, M.A.; Buroker, A.B.; Goldberger, Z.D.; Hahn, E.J.; Himmelfarb, C.D.; Khera, A.; Lloyd-Jones, D.; McEvoy, J.W.; et al. 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 140, e596–e646. [Google Scholar] [CrossRef]
- Mudd, S.H.; Skovby, F.; Levy, H.L.; Pettigrew, K.D.; Wilcken, B.; Pyeritz, R.E.; Andria, G.; Boers, G.H.; Bromberg, I.L.; Cerone, R.; et al. The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am. J. Hum. Genet. 1985, 37, 1–31. [Google Scholar]
- Goyette, P.; Sumner, J.S.; Milos, R.; Duncan, A.M.; Rosenblatt, D.S.; Matthews, R.G.; Rozen, R. Human methylenetetrahydrofolate reductase: Isolation of cDNA, mapping and mutation identification. Nat. Genet. 1994, 7, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Zarembska, E.; Slusarczyk, K.; Wrzosek, M. The Implication of a Polymorphism in the Methylenetetrahydrofolate Reductase Gene in Homocysteine Metabolism and Related Civilisation Diseases. Int. J. Mol. Sci. 2023, 25, 193. [Google Scholar] [CrossRef]
- Swanson, D.A.; Liu, M.L.; Baker, P.J.; Garrett, L.; Stitzel, M.; Wu, J.; Harris, M.; Banerjee, R.; Shane, B.; Brody, L.C. Targeted disruption of the methionine synthase gene in mice. Mol. Cell. Biol. 2001, 21, 1058–1065. [Google Scholar] [CrossRef]
- Petrone, I.; Bernardo, P.S.; Dos Santos, E.C.; Abdelhay, E. MTHFR C677T and A1298C Polymorphisms in Breast Cancer, Gliomas and Gastric Cancer: A Review. Genes 2021, 12, 587. [Google Scholar] [CrossRef]
- Raghubeer, S.; Matsha, T.E. Methylenetetrahydrofolate (MTHFR), the One-Carbon Cycle, and Cardiovascular Risks. Nutrients 2021, 13, 4562. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Chen, H. Association between MTHFR gene C677T polymorphism and gestational diabetes mellitus in Chinese population: A meta-analysis. Front. Endocrinol. 2023, 14, 1273218. [Google Scholar] [CrossRef] [PubMed]
- Goyette, P.; Pai, A.; Milos, R.; Frosst, P.; Tran, P.; Chen, Z.; Chan, M.; Rozen, R. Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm. Genome 1998, 9, 652–656. [Google Scholar] [CrossRef] [PubMed]
- Goyette, P.; Rozen, R. The thermolabile variant 677C-->T can further reduce activity when expressed in cis with severe mutations for human methylenetetrahydrofolate reductase. Hum. Mutat. 2000, 16, 132–138. [Google Scholar] [CrossRef]
- Planello, A.C.; Villela, D.; Loureiro, T. MTHFR genetic testing: Is there a clinical utility? Rev. Assoc. Med. Bras. 2024, 70, e20240215. [Google Scholar] [CrossRef]
- Froese, D.S.; Fowler, B.; Baumgartner, M.R. Vitamin B(12), folate, and the methionine remethylation cycle-biochemistry, pathways, and regulation. J. Inherit. Metab. Dis. 2019, 42, 673–685. [Google Scholar] [CrossRef]
- Weile, J.; Kishore, N.; Sun, S.; Maaieh, R.; Verby, M.; Li, R.; Fotiadou, I.; Kitaygorodsky, J.; Wu, Y.; Holenstein, A.; et al. Shifting landscapes of human MTHFR missense-variant effects. Am. J. Hum. Genet. 2021, 108, 1283–1300. [Google Scholar] [CrossRef]
- Wilcken, B.; Bamforth, F.; Li, Z.; Zhu, H.; Ritvanen, A.; Renlund, M.; Stoll, C.; Alembik, Y.; Dott, B.; Czeizel, A.E.; et al. Geographical and ethnic variation of the 677C>T allele of 5,10 methylenetetrahydrofolate reductase (MTHFR): Findings from over 7000 newborns from 16 areas world wide. J. Med. Genet. 2003, 40, 619–625. [Google Scholar] [CrossRef] [PubMed]
- Burda, P.; Schafer, A.; Suormala, T.; Rummel, T.; Burer, C.; Heuberger, D.; Frapolli, M.; Giunta, C.; Sokolova, J.; Vlaskova, H.; et al. Insights into severe 5,10-methylenetetrahydrofolate reductase deficiency: Molecular genetic and enzymatic characterization of 76 patients. Hum. Mutat. 2015, 36, 611–621. [Google Scholar] [CrossRef]
- Moll, S.; Varga, E.A. Homocysteine and MTHFR Mutations. Circulation 2015, 132, e6–e9. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Wang, X.; Kong, W. Hyperhomocysteinaemia and vascular injury: Advances in mechanisms and drug targets. Br. J. Pharmacol. 2018, 175, 1173–1189. [Google Scholar] [CrossRef]
- Botto, L.D.; Yang, Q. 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: A HuGE review. Am. J. Epidemiol. 2000, 151, 862–877. [Google Scholar] [CrossRef]
- Laura Dean, M. Methylenetetrahydrofolate Reductase Deficiency. In Medical Genetics Summaries; National Center for Biotechnology Information: Rockville, MD, USA, 2012. [Google Scholar]
- Hickey, S.E.; Curry, C.J.; Toriello, H.V. ACMG Practice Guideline: Lack of evidence for MTHFR polymorphism testing. Genet. Med. 2013, 15, 153–156. [Google Scholar] [CrossRef]
- Long, S.; Goldblatt, J. MTHFR genetic testing: Controversy and clinical implications. Aust. Fam. Physician 2016, 45, 237–240. [Google Scholar]
- Zuhra, K.; Augsburger, F.; Majtan, T.; Szabo, C. Cystathionine-beta-Synthase: Molecular Regulation and Pharmacological Inhibition. Biomolecules 2020, 10, 697. [Google Scholar] [CrossRef] [PubMed]
- Woodside, J.V.; Yarnell, J.W.; McMaster, D.; Young, I.S.; Harmon, D.L.; McCrum, E.E.; Patterson, C.C.; Gey, K.F.; Whitehead, A.S.; Evans, A. Effect of B-group vitamins and antioxidant vitamins on hyperhomocysteinemia: A double-blind, randomized, factorial-design, controlled trial. Am. J. Clin. Nutr. 1998, 67, 858–866. [Google Scholar] [CrossRef]
- Cheng, D.; Kong, H.; Pang, W.; Yang, H.; Lu, H.; Huang, C.; Jiang, Y. B vitamin supplementation improves cognitive function in the middle aged and elderly with hyperhomocysteinemia. Nutr. Neurosci. 2016, 19, 461–466. [Google Scholar] [CrossRef]
- Ubbink, J.B.; Vermaak, W.J.; van der Merwe, A.; Becker, P.J. Vitamin B-12, vitamin B-6, and folate nutritional status in men with hyperhomocysteinemia. Am. J. Clin. Nutr. 1993, 57, 47–53. [Google Scholar] [CrossRef]
- Lu, X.T.; Wang, Y.N.; Mo, Q.W.; Huang, B.X.; Wang, Y.F.; Huang, Z.H.; Luo, Y.; Maierhaba, W.; He, T.T.; Li, S.Y.; et al. Effects of low-dose B vitamins plus betaine supplementation on lowering homocysteine concentrations among Chinese adults with hyperhomocysteinemia: A randomized, double-blind, controlled preliminary clinical trial. Eur. J. Nutr. 2023, 62, 1599–1610. [Google Scholar] [CrossRef]
- Locquet, M.; Honvo, G.; Rabenda, V.; Van Hees, T.; Petermans, J.; Reginster, J.Y.; Bruyere, O. Adverse Health Events Related to Self-Medication Practices Among Elderly: A Systematic Review. Drugs Aging 2017, 34, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, W.; Herrmann, M. The Controversial Role of HCY and Vitamin B Deficiency in Cardiovascular Diseases. Nutrients 2022, 14, 1412. [Google Scholar] [CrossRef] [PubMed]
- Mursu, J.; Robien, K.; Harnack, L.J.; Park, K.; Jacobs, D.R., Jr. Dietary supplements and mortality rate in older women: The Iowa Women’s Health Study. Arch. Intern. Med. 2011, 171, 1625–1633. [Google Scholar] [CrossRef]
- Yu, C.H.; Tseng, H.K.; Chien, D.K.; Liao, E.C. Over-supplement of vitamin D may cause delirium, abdominal distension, and muscle weakness in the elderly: A case report and literature review. Medicine 2024, 103, e41057. [Google Scholar] [CrossRef]
- Calderon-Ospina, C.A.; Nava-Mesa, M.O.; Paez-Hurtado, A.M. Update on Safety Profiles of Vitamins B1, B6, and B12: A Narrative Review. Ther. Clin. Risk Manag. 2020, 16, 1275–1288. [Google Scholar] [CrossRef] [PubMed]
- Hadtstein, F.; Vrolijk, M. Vitamin B-6-Induced Neuropathy: Exploring the Mechanisms of Pyridoxine Toxicity. Adv. Nutr. 2021, 12, 1911–1929. [Google Scholar] [CrossRef] [PubMed]
- Bossard, V.; Bourmeyster, N.; Pasini, S.; Dupuis, P.; El Balkhi, S.; Richard, E.; Alarcan, H.; Hauet, T.; Thuillier, R. Problematic rise of vitamin B6 supplementation overuse and potential risk to bariatric surgery patients. Nutrition 2022, 102, 111738. [Google Scholar] [CrossRef]
- Miller, J.W.; Smith, A.; Troen, A.M.; Mason, J.B.; Jacques, P.F.; Selhub, J. Excess Folic Acid and Vitamin B12 Deficiency: Clinical Implications? Food Nutr. Bull. 2024, 45, S67–S72. [Google Scholar] [CrossRef]
- Morales-Gutierrez, J.; Diaz-Cortes, S.; Montoya-Giraldo, M.A.; Zuluaga, A.F. Toxicity induced by multiple high doses of vitamin B(12) during pernicious anemia treatment: A case report. Clin. Toxicol. 2020, 58, 129–131. [Google Scholar] [CrossRef] [PubMed]
- Shumiantseva, V.V.; Shikh, E.V.; Makhova, A.A.; Bylko, T.V.; Kukes, V.G.; Sizova, O.S.; Ramenskaia, G.V.; Usanov, S.A.; Archakov, A.I. The influence of vitamin B group on monooxygenase activity of cytochrome P450 3A4: Pharmacokinetics and electro analysis of catalytic properties. Biomed. Khim 2011, 57, 343–354. [Google Scholar] [CrossRef]
- VITATOPS Trial Study Group. B vitamins in patients with recent transient ischaemic attack or stroke in the VITAmins TO Prevent Stroke (VITATOPS) trial: A randomised, double-blind, parallel, placebo-controlled trial. Lancet Neurol. 2010, 9, 855–865. [Google Scholar] [CrossRef]
- Carlsson, C.M. Homocysteine lowering with folic acid and vitamin B supplements: Effects on cardiovascular disease in older adults. Drugs Aging 2006, 23, 491–502. [Google Scholar] [CrossRef]
- Ji, Y.; Tan, S.; Xu, Y.; Chandra, A.; Shi, C.; Song, B.; Qin, J.; Gao, Y. Vitamin B supplementation, homocysteine levels, and the risk of cerebrovascular disease: A meta-analysis. Neurology 2013, 81, 1298–1307. [Google Scholar] [CrossRef]
- Debreceni, B.; Debreceni, L. Why do homocysteine-lowering B vitamin and antioxidant E vitamin supplementations appear to be ineffective in the prevention of cardiovascular diseases? Cardiovasc. Ther. 2012, 30, 227–233. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Lamuno, D.; Arrieta-Blanco, F.J.; Fuentes, E.D.; Forga-Visa, M.T.; Morales-Conejo, M.; Pena-Quintana, L.; Vitoria-Minana, I. Hyperhomocysteinemia in Adult Patients: A Treatable Metabolic Condition. Nutrients 2023, 16, 135. [Google Scholar] [CrossRef]
- Zhou, Y.H.; Tang, J.Y.; Wu, M.J.; Lu, J.; Wei, X.; Qin, Y.Y.; Wang, C.; Xu, J.F.; He, J. Effect of folic acid supplementation on cardiovascular outcomes: A systematic review and meta-analysis. PLoS ONE 2011, 6, e25142. [Google Scholar] [CrossRef]
- Li, Y.; Huang, T.; Zheng, Y.; Muka, T.; Troup, J.; Hu, F.B. Folic Acid Supplementation and the Risk of Cardiovascular Diseases: A Meta-Analysis of Randomized Controlled Trials. J. Am. Heart Assoc. 2016, 5, e003768. [Google Scholar] [CrossRef] [PubMed]
Trial | Population | N (Treatment) | Age | Condition at Baseline | Follow-Up | Hcy Reduction |
---|---|---|---|---|---|---|
HOPE-2 | >55 Y established CVD or diabetes | 2958 | 69 Y | 83% CVD; 40% diabetes; chronic stage | 5 y | 25% |
NORVIT | Post-MI within 7 days | 937 | 63–64 | Acute MI survivors; optimized therapy | 3.5 y | 27% |
VITATOPS | Recent stroke or TIA (≤7 mo) | 8164 | 62 ± 12 | Secondary prevention in cerebrovascular desease | 3.4 y | similar |
Common Causes of B Vitamins Deficiency | Atrophic gastritis (achlorhydria), alcohol use, medications (metformin, methotrexate, niacin), chronic conditions (T2DM, CKD, hypothyroidism). |
Mechanism of Action | B vitamins (folic acid, B12, B6) lower plasma homocysteine (Hcy), a known marker of cardiovascular risk. |
Framingham Study | Linked low B vitamin levels to hyperhomocysteinemia (HHcy), which correlates with increased CVD risk. |
Positive Findings | ↓ Stroke risk in meta-analysis ↓ Carotid intima–media thickness (one trial) Association between HHcy and subclinical atherosclerosis [92] |
Negative Findings (RCTs) | VITATOPS: No benefit in stroke/TIA prevention CHAOS-2: No effect on CAD events NORVIT: No MI/stroke reduction HOPE-2: No effect on CVD death; ↑ unstable angina hospitalizations |
Potential Explanations | Inadequate dosing or trial duration Confounding from standard secondary prevention therapy (aspirin, statins, etc.) [92] |
Current Guidelines (AHA) | Do not recommend routine homocysteine screening or B-vitamin supplementation for cardiovascular prevention [53]. |
Alternative Hypothesis | Homocysteine may be an “innocent bystander” rather than a causative agent in CVD [90]. |
Independent Risk Factors | AdoHcy and Hcy-thiolactone not affected by B-vitamin supplementation; may contribute to CVD independently [22]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Elia, S.; Morello, M.; Titolo, G.; Caso, V.M.; Solimene, A.; Luisi, E.; Serpico, C.; Morello, A.; La Mura, L.; Loffredo, F.S.; et al. Homocysteine in the Cardiovascular Setting: What to Know, What to Do, and What Not to Do. J. Cardiovasc. Dev. Dis. 2025, 12, 383. https://doi.org/10.3390/jcdd12100383
D’Elia S, Morello M, Titolo G, Caso VM, Solimene A, Luisi E, Serpico C, Morello A, La Mura L, Loffredo FS, et al. Homocysteine in the Cardiovascular Setting: What to Know, What to Do, and What Not to Do. Journal of Cardiovascular Development and Disease. 2025; 12(10):383. https://doi.org/10.3390/jcdd12100383
Chicago/Turabian StyleD’Elia, Saverio, Mariarosaria Morello, Gisella Titolo, Valentina Maria Caso, Achille Solimene, Ettore Luisi, Chiara Serpico, Andrea Morello, Lucia La Mura, Francesco S. Loffredo, and et al. 2025. "Homocysteine in the Cardiovascular Setting: What to Know, What to Do, and What Not to Do" Journal of Cardiovascular Development and Disease 12, no. 10: 383. https://doi.org/10.3390/jcdd12100383
APA StyleD’Elia, S., Morello, M., Titolo, G., Caso, V. M., Solimene, A., Luisi, E., Serpico, C., Morello, A., La Mura, L., Loffredo, F. S., Natale, F., Golino, P., & Cimmino, G. (2025). Homocysteine in the Cardiovascular Setting: What to Know, What to Do, and What Not to Do. Journal of Cardiovascular Development and Disease, 12(10), 383. https://doi.org/10.3390/jcdd12100383