Impact of Chronic Kidney Disease on the Coronary Revascularization Guided by Intracoronary Physiology: Results of the First Registry with Long-Term Follow-Up in a Latin American Population
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | CKD Group (n = 81) * | Non-CKD Group (n = 70) * | p Value |
---|---|---|---|
Radial-artery approach [n (%)] | 67 (82.71%) | 64 (91.42%) | 0.675 |
Volume of ionic contrast medium (mL) | 91.29 ± 84.85 | 123.52 ± 90.02 | 0.02 |
Fluoroscopy (min) | 81.59 ± 82.90 | 50.22 ± 57.78 | 0.007 |
Number of affected arteries † | |||
Single vessel [n (%)] | 23 (28.39%) | 35 (50%) | |
2-vessel [n (%)] | 29 (35.8%) | 20 (28.57%) | 0.04 |
3-vessel [n (%)] | 29 (35.8%) | 15 (21.42%) |
Patients Followed [n (%)] | CKD Group (n = 81) * | Non-CKD Group (n = 70) * | p Value |
---|---|---|---|
Average segment time [mean (SD)] | 727.27 ± 339.29 | 734.38 ± 364.66 | 0.903 |
Lost to follow-up [n (%)] | 4 (5.19%) | 3 (4.47%) | 0.849 |
Repeat coronary angiography non-urgent [n (%)] | 14 (18.18%) | 9(13.43%) | 0.508 |
Repeat revascularization non-urgent [n (%)] | 9 (11.68%) | 4 (5.97%) | 0.274 |
TVR non-urgent [n (%)] | 9 (11.68%) | 3 (4.47%) | 0.149 |
TLR non-urgent [n (%)] | 9 (11.68%) | 1 (1.49%) | 0.02 |
Nonfatal IM [n (%)] | 3 (3.89%) | 1 (1.49%) | 0.394 |
Death from all causes [n (%)] | 5 (6.49%) | 1 (1.49%) | 0.15 |
MACE [n (%)] | 17 (22.07%) | 10 (14.92%) | 0.363 |
References
- van Nunen, L.X.; Zimmermann, F.M.; Tonino, P.A.L.; Barbato, E.; Baumbach, A.; Engstrøm, T.; Klauss, V.; MacCarthy, P.A.; Manoharan, G.; Oldroyd, K.G.; et al. Fractional flow reserve versus angiography for guidance of PCI in patients with multivessel coronary artery disease (FAME): 5-year follow-up of a randomised controlled trial. Lancet 2015, 386, 1853–1860. [Google Scholar] [CrossRef] [PubMed]
- Davies, J.E.; Sen, S.; Dehbi, H.M.; Al-Lamee, R.; Petraco, R.; Nijjer, S.S.; Bhindi, R.; Lehman, S.J.; Walters, D.; Sapontis, J.; et al. Use of the instantaneous wave-free ratio or fractional flow reserve in PCI. N. Engl. J. Med. 2017, 376, 1824–1834. [Google Scholar] [CrossRef] [PubMed]
- Götberg, M.; Christiansen, E.H.; Gudmundsdottir, I.J.; Sandhall, L.; Danielewicz, M.; Jakobsen, L.; Olsson, S.E.; Öhagen, P.; Olsson, H.; Omerovic, E.; et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N. Engl. J. Med. 2017, 376, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in cardiovascular Disease, High blood pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003, 108, 2154–2169. [Google Scholar] [CrossRef] [PubMed]
- Kaysen, G.A.; Eiserich, J.P. The role of oxidative stress-altered lipoprotein structure and function and microinflammation on cardiovascular risk in patients with minor renal dysfunction. J. Am. Soc. Nephrol. 2004, 15, 538–548. [Google Scholar] [CrossRef] [PubMed]
- US renal data system. USRDS 2009 Annual Data report: Atlas of end-stage renal disease in the United States. Am. J. Kidney Dis. 2010, 55 (Suppl. 1), A7. [Google Scholar] [CrossRef]
- Muntner, P.; He, J.; Hamm, L.; Loria, C.; Whelton, P.K. Renal insufficiency and subsequent death resulting from cardiovascular disease in the United States. J. Am. Soc. Nephrol. 2002, 13, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Al Suwaidi, J.; Reddan, D.N.; Williams, K.; Pieper, K.S.; Harrington, R.A.; Califf, R.M.; Granger, C.B.; Ohman, E.M.; Holmes, D.R., Jr. Prognostic implications of abnormalities in renal function in patients with acute coronary syndromes. Circulation 2002, 106, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Best, P.J.M.; Lennon, R.; Ting, H.H.; Bell, M.R.; Rihal, C.S.; Holmes, D.R.; Berger, P.B. The impact of renal insufficiency on clinical outcomes in patients undergoing percutaneous coronary interventions. J. Am. Coll. Cardiol. 2002, 39, 1113–1119. [Google Scholar] [CrossRef] [PubMed]
- Gibson, C.M.; Pinto, D.S.; Murphy, S.A.; Morrow, D.A.; Hobbach, H.P.; Wiviott, S.D.; Giugliano, R.P.; Cannon, C.P.; Antman, E.M.; Braunwald, E.; et al. Association of creatinine and creatinine clearance on presentation in acute myocardial infarction with subsequent mortality. J. Am. Coll. Cardiol. 2003, 42, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.S.; Tonino, P.A.L.; De Bruyne, B.; Yong, A.S.C.; Tremmel, J.A.; Pijls, N.H.J.; Fearon, W.F.; FAME Study Investigators. The impact of sex differences on fractional flow reserve-guided percutaneous coronary intervention: A FAME (Fractional Flow Reserve versus Angiography for multivessel Evaluation) substudy. JACC Cardiovasc. Interv. 2012, 5, 1037–1042. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Eckardt, K.U.; Tsukamoto, Y.; Levin, A.; Coresh, J.; Rossert, J.; De Zeeuw, D.; Hostetter, T.H.; Lameire, N.; Eknoyan, G. Definition and classification of chronic kidney disease: A position statement from kidney disease: Improving Global Outcomes (KDIGO). Kidney Int. 2005, 67, 2089–2100. [Google Scholar] [CrossRef] [PubMed]
- Nagasaka, T.; Amanai, S.; Ishibashi, Y.; Aihara, K.; Ohyama, Y.; Takama, N.; Koitabashi, N.; Ishii, H. Long-term outcomes of intermediate coronary stenosis in patients undergoing hemodialysis after deferred revascularization based on fractional flow reserve. Catheter. Cardiovasc. Interv. 2022, 100, 971–978. [Google Scholar] [CrossRef] [PubMed]
- Morioka, Y.; Arashi, H.; Otsuki, H.; Yamaguchi, J.; Hagiwara, N. Relationship between instantaneous wave-free ratio and fractional flow reserve in patients receiving hemodialysis. Cardiovasc. Interv. Ther. 2018, 33, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Ohashi, H.; Nawano, T.; Takashima, H.; Ando, H.; Goto, R.; Suzuki, A.; Sakurai, S.; Suzuki, W.; Nakano, Y.; Sawada, H.; et al. Differential impact of renal function on the diagnostic performance of resting full-cycle ratio in patients with renal dysfunction. Circ. Rep. 2022, 4, 439–446. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, T.; Saito, Y.; Kobayashi, T.; Kitahara, H.; Kobayashi, Y. Factors associated with discordance between fractional flow reserve and resting full-cycle ratio. J. Cardiol. 2022, 80, 9–13. [Google Scholar] [CrossRef] [PubMed]
- Tebaldi, M.; Biscaglia, S.; Fineschi, M.; Manari, A.; Menozzi, M.; Secco, G.G.; Di Lorenzo, E.; D’Ascenzo, F.; Fabbian, F.; Tumscitz, C.; et al. Fractional flow reserve evaluation and chronic kidney disease: Analysis from a multicenter Italian registry (the FREAK study). Catheter. Cardiovasc. Interv. 2016, 88, 555–562. [Google Scholar] [CrossRef] [PubMed]
- Kovarnik, T.; Hitoshi, M.; Kral, A.; Jerabek, S.; Zemanek, D.; Kawase, Y.; Omori, H.; Tanigaki, T.; Pudil, J.; Vodzinska, A.; et al. Fractional flow reserve versus instantaneous wave-free ratio in assessment of lesion hemodynamic significance and explanation of their discrepancies. International, multicenter and prospective trial: The FiGARO study. J. Am. Heart Assoc. 2022, 11, e021490. [Google Scholar] [CrossRef] [PubMed]
Variable | CKD Group (n = 81) * | Non-CKD Group (n = 70) * | p Value |
---|---|---|---|
Age (years) | 70.80 ± 11.41 | 57.47 ± 10.19 | <0.001 |
Female sex [n (%)] | 39 (48.18) | 20 (28.57) | 0.101 |
Race | |||
White [n (%)] | 60 (74.07) | 40 (57.1) | 0.32 |
Black [n (%)] | 6 (7.4) | 11 (15.71) | 0.151 |
Brown [n (%)] | 15 (18.51) | 18 (25.71) | 0.393 |
Indigenous [n (%)] | 0 (0) | 1 (1.42) | 0.283 |
Average Body-mass index † | 25.53 ± 4.29 | 27.41 ± 4.25 | 0.007 |
Creatinine clearance ratio ‡ | 62.27 ± 22.55 | 115.98 ± 38.99 | <0.001 |
Creatinine clearance ‡ ≥ 90 | 0 (0) | 70 (46.35%) | NA |
Creatinine clearance ‡ 60–89 | 41 (50.61) | 0 (0) | NA |
Creatinine clearance ‡ 30–59 | 35 (43.2) | 0 (0) | NA |
Creatinine clearance ‡ ≤ 29 | 5 (6.17) | 0 (0) | NA |
Hypertension [n (%)] | 76 (93.82) | 54 (77.14) | 0.417 |
Dyslipidemia [n (%)] | 58 (71.6) | 52 (74.28) | 0.883 |
Family history of CAD [n (%)] | 41 (50.61) | 29 (41.42) | 0.493 |
Current smoker [n (%)] | 7 (8.64) | 10 (14.28) | 0.329 |
Diabetes mellitus [n (%)] | 30 (37.03) | 25 (35.71) | 0.904 |
Previous IM [n (%)] | 27 (33.33) | 26 (37.14) | 0.734 |
Previous PCI [n (%)] | 36 (44.44) | 28 (40) | 0.725 |
Variable | CKD Group | No-CKD | p Value |
---|---|---|---|
(n = 114) * | Group (n = 117) * | ||
Lesion territory [n (%)] | |||
Right coronary artery/branches | 18 (15.78) | 15 (12.82) | |
Left circumflex artery/branches | 19 (16.66) | 19 (16.23) | |
Left anterior descending artery | 57 (50) | 61 (52.13) | |
Diagonal | 8 (7.01) | 13 (11.11) | 0.975 |
Intermediate | 1 (0.87) | 1 (0.85) | |
Saphenous vein graft | 1 (0.87) | 1 (0.85) | |
Left internal mammary graft | 1 (0.87) | 1 (0.85) | |
Left main | 9 (7.89) | 6 (5.12) | |
AHA classification [n (%)] | |||
A | 5 (4.38) | 9 (7.69) | |
B1 | 45 (4.38) | 46 (39.31) | 0.886 |
B2 | 23 (20.17) | 22 (18.8) | |
C | 41 (35.96) | 40 (34.18) | |
Calcification [n (%)] | |||
Moderate | 20 (17.54) | 13 (11.11) | 0.226 |
Severe | 4 (3.5) | 1 (0.85) | 0.175 |
Intracoronary adenosine [n (%)] | 20 (17.54) | 21 (17.94) | 0.946 |
iFR performed [n (%)] ‡ | 96 (84.21) | 95 (81.19) | 0.852 |
RFR performed [n (%)] ‡ | 18 (15.78) | 22 (18.8) | 0.611 |
FFR performed [n (%)] ‡ | 20 (17.54) | 21 (17.94) | 0.946 |
Revascularized lesions | 43 (37.71) | 30 (25.64) | 0.154 |
Changed the operator’s initial decision [n (%)] | 15 (13.15) | 9 (7.69) | 0.22 |
Concordant results for hyperemic and non-hyperemic methods [n (%)] | |||
Non-hyperemic methods followed by FFR [n (%)] | 26 (22.8) | 21 (17.94) | 0.455 |
iFR followed by FFR: | 20 (17.54) | 19 (16.23) | 0.823 |
iFR + followed by FFR − | 1 (0.87) | 5 (4.27) | 0.113 |
iFR + followed by FFR + | 2 (1.75) | 3 (2.56) | 0.679 |
iFR—followed by FFR − | 15 (13.15) | 9 (7.69) | 0.22 |
iFR—followed by FFR + | 2 (1.75) | 2 (1.7) | 0.979 |
RFR followed by FFR: | 6 (5.26) | 2 (1.7) | 0.153 |
RFR—followed by FFR − | 6 (5.26) | 2 (1.7) | 0.153 |
Diameter stenosis—mean (SD) | 61.31 ± 12.44 | 58.11 ± 12.92 | 0.05 |
Average iFR—mean (SD) | 0.90 ± 0.09 | 0.92 ± 0.77 | 0.06 |
Average RFR—mean (SD) | 0.90 ± 0.04 | 0.90 ± 0.07 | 0.92 |
Average FFR—mean (SD) | 0.86 ± 0.06 | 0.84 ± 0.04 | 0.41 |
N° of lesions assessed/patient | 1.91 ± 0.87 | 1.82 ± 0.81 | 0.411 |
N° of ischemic lesions/patient | 0.74 ± 0.91 | 0.44 ± 0.70 | 0.005 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dall’Orto, C.C.; Lopes, R.P.F.; Eurípedes, L.V.; Pinto Filho, G.V.; da Silva, M.R. Impact of Chronic Kidney Disease on the Coronary Revascularization Guided by Intracoronary Physiology: Results of the First Registry with Long-Term Follow-Up in a Latin American Population. J. Cardiovasc. Dev. Dis. 2024, 11, 216. https://doi.org/10.3390/jcdd11070216
Dall’Orto CC, Lopes RPF, Eurípedes LV, Pinto Filho GV, da Silva MR. Impact of Chronic Kidney Disease on the Coronary Revascularization Guided by Intracoronary Physiology: Results of the First Registry with Long-Term Follow-Up in a Latin American Population. Journal of Cardiovascular Development and Disease. 2024; 11(7):216. https://doi.org/10.3390/jcdd11070216
Chicago/Turabian StyleDall’Orto, Clarissa Campo, Rubens Pierry Ferreira Lopes, Lara Vilela Eurípedes, Gilvan Vilella Pinto Filho, and Marcos Raphael da Silva. 2024. "Impact of Chronic Kidney Disease on the Coronary Revascularization Guided by Intracoronary Physiology: Results of the First Registry with Long-Term Follow-Up in a Latin American Population" Journal of Cardiovascular Development and Disease 11, no. 7: 216. https://doi.org/10.3390/jcdd11070216
APA StyleDall’Orto, C. C., Lopes, R. P. F., Eurípedes, L. V., Pinto Filho, G. V., & da Silva, M. R. (2024). Impact of Chronic Kidney Disease on the Coronary Revascularization Guided by Intracoronary Physiology: Results of the First Registry with Long-Term Follow-Up in a Latin American Population. Journal of Cardiovascular Development and Disease, 11(7), 216. https://doi.org/10.3390/jcdd11070216