New Guidelines of Pediatric Cardiac Implantable Electronic Devices: What Is Changing in Clinical Practice?
Abstract
:1. Introduction
2. Methods
3. Relevant Sections
3.1. New Guidelines
3.1.1. 2021 PACES Expert Consensus Statement [23]
3.1.2. 2021 ESC Guidelines [24]
3.1.3. 2022 ESC Guidelines [25]
3.1.4. 2023 HRS Guidelines [26]
3.2. Pacing
3.2.1. Sinus Node Dysfunction (SND)
3.2.2. Isolated Congenital Advanced or Complete Atrioventricular Block (CCAVB)
3.2.3. Postoperative Block
3.2.4. Other AVBs
3.2.5. CHD
3.2.6. Bradyarrhythmias Post-Cardiac Transplantation
3.2.7. Neuromuscular Disease and Other Progressive Cardiac Conduction Disease
3.2.8. Neurocardiogenic Syncope
3.2.9. PM Implantation in Channelopathies
3.3. Implantable Cardiac Monitor (ICM)
3.4. Physiologic Pacing
3.5. Implantable Defibrillator (ICD)
3.5.1. CHD
3.5.2. Cardiomyopathies (CMPs)
3.5.3. Myocarditis
3.5.4. Channelopathies
Long QT Syndrome (LQTS)
Short QT Syndrome (SQTS)
Early Repolarization Syndrome (ERS)
Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)
Brugada Syndrome
4. Discussion
- Epicardial ICD system with subcutaneous, pericardial or pleural shock coils should be implanted in infants and small children.
- The implantation of an ICD with transvenous single lead and single coil seems to be the best choice in children weighting more than 30 kg.
- Dual-chamber ICDs, unless strictly necessary, may be implanted after puberty.
- S-ICD may be the preferred choice in young patients with a BMI > 20, unless contraindicated.
5. Conclusions
6. Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Frye, R.L.; Collins, J.J.; DeSanctis, R.W.; Dodge, H.T.; Dreifus, L.S.; Fisch, C. Guidelines for permanent pacemaker implantation, 1984. A report of the Joint American College of Cardiology/American Heart Association Task Force on Assessment of Cardiovascular Procedures (Sub-committee on Pacemaker Implantation). Circulation 1984, 70, 331A–339A. [Google Scholar] [PubMed]
- Kusumoto, F.M.; Schoenfeld, M.H.; Barrett, C.; Edgerton, J.R.; Ellenbogen, K.A.; Gold, M.R. 2018 ACC/AHA/HRS guideline on the evaluation and management of patients with bradycardia and cardiac conduction delay: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines, and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2019, 74, 932–987. [Google Scholar] [PubMed]
- Levine, G.N.; O’Gara, P.T.; Beckman, J.A.; Al-Khatib, S.M.; Birtcher, K.K.; Cigarroa, J.E. Recent innovations, modifications, and evolution of ACC/AHA clinical practice Guidelines: An update for our constituencies: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation 2019, 139, e879–e886. [Google Scholar] [CrossRef] [PubMed]
- Halperin, J.L.; Levine, G.N.; Al-Khatib, S.M.; Birtcher, K.K.; Bozkurt, B.; Brindis, R.G. Further evolution of the ACC/AHA clinical practice guideline recommen-dation classification system: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. J. Am. Coll. Cardiol. 2016, 67, 1572–1574. [Google Scholar] [CrossRef] [PubMed]
- Kusumoto, F.M.; Calkins, H.; Boehmer, J.; Buxton, A.E.; Chung, M.K.; Gold, M.R. HRS/ACC/AHA expert consensus statement on the use of implantable cardi-overter-defibrillator therapy in patients who are not included or not well represented in clinical trials. Circulation 2014, 130, 94–125. [Google Scholar] [CrossRef] [PubMed]
- Epstein, A.E.; DiMarco, J.P.; Ellenbogen, K.A.; Estes, N.M.; Freedman, R.A.; Gettes, L.S.; Gillinov, A.M.; Gregoratos, G.; Hammill, S.C.; Hayes, D.L.; et al. ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: Executive Summary. Heart Rhythm 2008, 5, 934–955. [Google Scholar] [CrossRef] [PubMed]
- Epstein, A.E.; DiMarco, J.P.; Ellenbogen, K.A.; Estes, N.M.; Freedman, R.A., III; Gettes, L.S. 2012 ACCF/AHA/HRS focused update incorporated into the ACCF/AHA/HRS 2008 Guidelines for device-based therapy of cardiac rhythm abnormalities: A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 2013, 61, e6–e75. [Google Scholar] [CrossRef] [PubMed]
- Indik, J.H.; Gimbel, J.R.; Abe, H.; Alkmim-Teixeira, R.; Birgersdotter-Green, U.; Clarke, G.D.; Dickfeld, T.-M.L.; Froelich, J.W.; Grant, J.; Hayes, D.L.; et al. 2017 HRS expert consensus statement on magnetic resonance imaging and radiation exposure in patients with cardiovascular implantable electronic devices. Heart Rhythm 2017, 14, e97–e153. [Google Scholar] [CrossRef]
- Khairy, P.; Van Hare, G.F.; Balaji, S.; Berul, C.I.; Cecchin, F.; Cohen, M.I. 2014 PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease. Heart Rhythm 2014, 11, e102–e165. [Google Scholar] [CrossRef]
- Brignole, M.; Auricchio, A.; Baron-Esquivias, G.; Bordachar, P.; Boriani, G.; Breithardt, O.-A.; Cleland, J.G.F.; Deharo, J.-C.; Delgado, V.; Elliott, P.M.; et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: The Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). EP Eur. 2013, 15, 1070–1118. [Google Scholar] [CrossRef]
- Shen, W.K.; Sheldon, R.S.; Benditt, D.G.; Cohen, M.; Forman, D.; Goldberger, Z. 2017 ACC/AHA/HRS Guidelines for the evaluation and management of patients with syncope. Circulation 2017, 136, e60–e122. [Google Scholar] [PubMed]
- Al-Khatib, S.M.; Stevenson, W.G.; Ackerman, M.J.; Bryant, W.J.; Callans, D.J.; Curtis, A.B.; Deal, B.J.; Dickfeld, T.; Field, M.E.; Fonarow, G.C.; et al. 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Executive Summary. J. Am. Coll. Cardiol. 2018, 72, 1677–1749. [Google Scholar] [CrossRef] [PubMed]
- Priori, S.G.; Blomström-Lundqvist, C.; Mazzanti, A.; Blom, N.; Borggrefe, M.; Camm, J.; Elliott, P.M.; Fitzsimons, D.; Hatala, R.; Hindricks, G.; et al. 2015 ESC Guidelines for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death: The Task Force for the Management of Patients with Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death of the European Society of Cardiology (ESC). Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2015, 36, 2793–2867. [Google Scholar] [CrossRef] [PubMed]
- Priori, S.G.; Wilde, A.A.; Horie, M.; Cho, Y.; Behr, E.R.; Berul, C. 2013 HRS/EHRA/APHRS expert consensus statement on the diagnosis and man-agement of patients with inherited primary arrhythmia syndromes. Heart Rhythm 2013, 10, 1932–1963. [Google Scholar] [CrossRef] [PubMed]
- Ommen, S.R.; Mital, S.; Burke, M.A.; Day, S.M.; Deswal, A.; Elliott, P. 2020 AHA/ACC guideline for the diagnosis and treatment of patients with hyper-trophic cardiomyopathy: A report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2020, 142, e558–e631. [Google Scholar] [PubMed]
- Towbin, J.A.; McKenna, W.J.; Abrams, D.J.; Ackerman, M.J.; Calkins, H.; Darrieux, F.C. 2019 HRS expert consensus statement on evaluation, risk stratification, and management of arrhythmogenic cardiomyopathy. Heart Rhythm 2019, 16, e301–e372. [Google Scholar] [CrossRef] [PubMed]
- Kirk, R.; Dipchand, A.I.; Rosenthal, D.N.; Addonizio, L.; Burch, M.; Chrisant, M. 2014 The International Society for Heart and Lung Transplantation Guidelines for the management for pediatric heart failure. J. Heart Lung Transplant. 2014, 33, 888–909. [Google Scholar] [CrossRef]
- Kusumoto, F.M.; Schoenfeld, M.H.; Wilkoff, B.L.; Berul, C.I.; Birgersdotter-Green, U.M.; Carrillo, R.; Cha, Y.-M.; Clancy, J.; Deharo, J.-C.; Ellenbogen, K.A.; et al. 2017 HRS expert consensus statement on cardiovascular implantable electronic device lead management and extraction. Heart Rhythm 2017, 14, e503–e551. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.I.; Triedman, J.K.; Cannon, B.C.; Davis, A.M.; Drago, F.; Janousek, J.; Klein, G.J.; Law, I.H.; Morady, F.J.; Paul, T.; et al. PACES/HRS Expert Consensus Statement on the Management of the Asymptomatic Young Patient with a Wolff-Parkinson-White (WPW, Ventricular Preexcitation) Electrocardiographic Pattern. Heart Rhythm 2012, 9, 1006–1024. [Google Scholar] [CrossRef]
- Hernández-Madrid, A.; Paul, T.; Abrams, D.; Aziz, P.F.; Blom, N.A.; Chen, J.; Chessa, M.; Combes, N.; Dagres, N.; Diller, G.; et al. Arrhythmias in congenital heart disease: A position paper of the European Heart Rhythm Association (EHRA), Association for European Paediatric and Congenital Cardiology (AEPC), and the European Society of Cardiology (ESC) Working Group on Grown-up Congenital heart disease, endorsed by HRS, PACES, APHRS, and SOLAECE. Europace 2018, 20, 1719–1753. [Google Scholar] [CrossRef]
- Saul, J.P.; Kanter, R.J.; Abrams, D.; Asirvatham, S.; Bar-Cohen, Y.; Blaufox, A.D. PACES/HRS expert consensus statement on the use of catheter ablation in children and patients with congenital heart disease: Developed in partnership with the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Heart Rhythm. 2016, 13, e251–e289. [Google Scholar] [CrossRef] [PubMed]
- Brugada, J.; Blom, N.; Sarquella-Brugada, G.; Blomstrom-Lundqvist, C.; Deanfield, J.; Janousek, J.; Abrams, D.; Bauersfeld, U.; Brugada, R.; Drago, F.; et al. Pharmacological and non-pharmacological therapy for arrhythmias in the pediatric population: EHRA and AEPC-Arrhythmia Working Group joint consensus statement. Europace 2013, 15, 1337–1382. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.J.; Silka, M.J.; Silva, J.N.A.; Balaji, S.; Beach, C.M.; Benjamin, M.N.; Berul, C.I.; Cannon, B.; Cecchin, F.; Cohen, M.I.; et al. 2021 PACES Expert Consensus Statement on the Indications and Management of Cardiovascular Implantable Electronic Devices in Pediatric Patients. Heart Rhythm 2021, 18, 1888–1924. [Google Scholar] [CrossRef] [PubMed]
- Glikson, M.; Nielsen, J.C.; Kronborg, M.B.; Michowitz, Y. 2021 ESC guidelines on cardiac pacing and cardiac resynchronization therapy. Eur. Heart J. 2021, 42, 3427–3520. [Google Scholar] [CrossRef] [PubMed]
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular ar-rhythmias and the prevention of sudden cardiac death: Developed by the task force for the management of patients with ventricular arrhythmias and the prevention of sudden cardiac death of the European Society of Cardiology (ESC) Endorsed by the Association for European Paediatric and Congenital Cardiology (AEPC). Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef] [PubMed]
- Chung, M.K.; Patton, K.K.; Lau, C.-P.; Forno, A.R.D.; Al-Khatib, S.M.; Arora, V.; Birgersdotter-Green, U.M.; Cha, Y.-M.; Chung, E.H.; Cronin, E.M.; et al. 2023 HRS/APHRS/LAHRS guideline on cardiac physiologic pacing for the avoidance and mitigation of heart failure. Heart Rhythm 2023, 20, e17–e91. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Silvetti, M.S.; DE Santis, A.; Grutter, G.; Calcagnini, G.; Censi, F.; Bartolini, P.; Barbaro, V. Beat-to-Beat Heart Rate Adaptation in Pediatric and Late Adolescent Patients with Closed Loop Rate-Responsive Pacemakers. Pacing Clin. Electrophysiol. 2005, 28, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Pazzano, V.; Battipaglia, I.; Di Mambro, C.; Calvieri, C.; Saputo, F.A.; Verticelli, L.; Carotti, A.; Torcinaro, S.; Drago, F. Physiological pacing in young patients with complex congenital heart defects. Pacing Clin. Electrophysiol. 2018, 41, 967–977. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Drago, F.; Grutter, G.; De Santis, A.; Di Ciommo, V.; Ravà, L. Twenty years of cardiac pacing in paediatric age: 515 pacemakers and 480 leads in 292 patients. Europace 2006, 8, 530–536. [Google Scholar] [CrossRef]
- Michaelsson, M.; Engle, M.A. Isolated congenital complete atrioventricular block in adult life. Circulation 1995, 92, 442–449. [Google Scholar] [CrossRef]
- Weindling, S.N.; Saul, J.; Gamble, W.J.; Mayer, J.E.; Wessel, D.; Walsh, E.P. Duration of complete atrioventricular block after congenital heart disease surgery. Am. J. Cardiol. 1998, 82, 525–527. [Google Scholar] [CrossRef]
- Liberman, L.; Silver, E.S.; Chai, P.J.; Anderson, B.R. Incidence and characteristics of heart block after heart surgery in pediatric patients: A multicenter study. J. Thorac. Cardiovasc. Surg. 2016, 152, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Romer, A.J.; Tabbutt, S.; Etheridge, S.P.; Fischbach, P.; Ghanayem, N.S.; Reddy, V.M.; Sahulee, R.; Tanel, R.E.; Tweddell, J.S.; Gaies, M.; et al. Atrioventricular block after congenital heart surgery: Analysis from the Pediatric Cardiac Critical Care Consortium. J. Thorac. Cardiovasc. Surg. 2019, 157, 1168–1177.e2. [Google Scholar] [CrossRef]
- Silvetti, M.S.; Grutter, G.; Di Ciommo, V.; Drago, F. Paroxysmal Atrioventricular Block in Young Patients1. Pediatr. Cardiol. 2004, 25, 506–512. [Google Scholar] [CrossRef]
- Silver, E.S.; Pass, R.H.; Hordof, A.J.; Liberman, L. Paroxysmal AV Block in Children with Normal Cardiac Anatomy as a Cause of Syncope. Pacing Clin. Electrophysiol. 2008, 31, 322–326. [Google Scholar] [CrossRef]
- Stephenson, E.A.; Casavant, D.; Tuzi, J.; Alexander, M.E.; Law, I.; Serwer, G.; Strieper, M.; Walsh, E.P.; Berul, C.I. Efficacy of atrial antitachycardia pacing using the Medtronic AT500 pacemaker in patients with congenital heart disease. Am. J. Cardiol. 2003, 92, 871–876. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Silvetti, M.S.; De Santis, A. Long term management of atrial arrhythmias in young patients with sick sinus syndrome un-dergoing early operation to correct congenital heart disease. Europace 2006, 8, 488–494. [Google Scholar] [CrossRef]
- Barber, B.J.; Batra, A.S.; Burch, G.H.; Shen, I.; Ungerleider, R.M.; Brown, J.W. Acute hemodynamic effects of pacing in patients with Fontan physiology: A pro-spective study. J. Am. Coll. Cardiol. 2005, 46, 1937–1942. [Google Scholar] [CrossRef] [PubMed]
- Cannon, B.C.; Denfield, S.W.; Friedman, R.A.; Fenrich, A.L.; Dreyer, W.; Towbin, J.A.; Kertesz, N.J. Late pacemaker requirement after pediatric orthotopic heart transplantation may predict the presence of transplant coronary artery disease. J. Hear. Lung Transplant. 2004, 23, 67–71. [Google Scholar] [CrossRef]
- Feingold, B.; Mahle, W.T.; Auerbach, S.; Clemens, P.; Domenighetti, A.A.; Jefferies, J.L.; Judge, D.P.; Lal, A.K.; Markham, L.W.; Parks, W.J.; et al. Management of Cardiac Involvement Associated With Neuromuscular Diseases: A Scientific Statement From the American Heart Association. Circulation 2017, 136, e200–e231. [Google Scholar] [CrossRef]
- Asatryan, B.; Medeiros-Domingo, A. Molecular and genetic insights into progressive cardiac conduction disease. Europace 2019, 21, 1145–1158. [Google Scholar] [CrossRef] [PubMed]
- Di Mambro, C.; Tamborrino, P.P.; Silvetti, M.S.; Yammine, M.L.; Marcolin, C.; Righi, D.; Baban, A.; Martinelli, D.; Vici, C.D.; Drago, F. Progressive involvement of cardiac conduction system in paediatric patients with Kearns–Sayre syndrome: How to predict occurrence of complete heart block and sudden cardiac death? Europace 2021, 23, 948–957. [Google Scholar] [CrossRef] [PubMed]
- Brignole, M.; Moya, A.; de Lange, F.J.; Deharo, J.-C.; Elliott, P.M.; Fanciulli, A.; Fedorowski, A.; Furlan, R.; Kenny, R.A.; Martín, A.; et al. 2018 ESC Guidelines for the diagnosis and management of syncope. Eur. Heart J. 2018, 39, 1883–1948. [Google Scholar] [CrossRef] [PubMed]
- Brignole, M.; Menozzi, C.; Moya, A.; Andresen, D.; Blanc, J.J.; Krahn, A.D. International Study on Syncope of Uncertain Etiology 3 (ISSUE-3) Investigators. Pacemaker therapy in patients with neurally mediated syncope and documented asystole: Third International Study on Syn-cope of Uncertain Etiology (ISSUE-3): A randomized trial. Circulation 2012, 125, 2566–2571. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Tamburri, I.; Porco, L.; Saputo, F.A.; Di Mambro, C.; Righi, D.; Cazzoli, I.; Cicenia, M.; Campisi, M.; Ravà, L.; et al. A decade of insertable cardiac monitors with remote monitoring in pediatric patients. Rev. Cardiovasc. Med. 2022, 23, 27. [Google Scholar] [CrossRef]
- Placidi, S.; Drago, F.; Milioni, M.; Verticelli, L.; Tamburri, I.; Silvetti, M.S.; DI Mambro, C.; Righi, D.; Gimigliano, F.; Russo, M.S.; et al. Miniaturized Implantable Loop Recorder in Small Patients: An Effective Approach to the Evaluation of Subjects at Risk of Sudden Death. Pacing Clin. Electrophysiol. 2016, 39, 669–674. [Google Scholar] [CrossRef]
- Bezzerides, V.J.; Walsh, A.; Martuscello, M.; Escudero, C.A.; Gauvreau, K.; Lam, G.; Abrams, D.J.; Triedman, J.K.; Alexander, M.E.; Bevilacqua, L.; et al. The Real-World Utility of the LINQ Implantable Loop Recorder in Pediatric and Adult Congenital Heart Patients. JACC Clin. Electrophysiol. 2019, 5, 245–251. [Google Scholar] [CrossRef]
- Tantengco, M.T.; Thomas, R.L.; Karpawich, P.P. Left ventricular dysfunction after long-term right ventricular apical pacing in the young. J. Am. Coll. Cardiol. 2001, 37, 2093–2100. [Google Scholar] [CrossRef]
- Janousek, J.; Tomek, V.; Chaloupecky, V.; Gebauer, R.A. Dilated cardiomyopathy associated with dual-chamber pacing in infants: Im-provement through either left ventricular cardiac resynchronization or programming the pacemaker off allowing intrinsic normal conduction. J. Cardiovasc. Electrophysiol. 2004, 15, 470–474. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Drago, F.; Ravà, L. Determinants of early dilated cardiomyopathy in neonates with congenital complete atrio-ventricular block. Europace 2010, 12, 1316–1321. [Google Scholar] [CrossRef]
- Karpawich, P.P.; Singh, H.; Zelin, K. Optimizing Paced Ventricular Function in Patients with and without Repaired Congenital Heart Disease by Contractility-Guided Lead Implant. Pacing Clin. Electrophysiol. 2015, 38, 54–62. [Google Scholar] [CrossRef] [PubMed]
- Janousek, J.; van Geldorp, I.E.; Krupickova, S.; Rosenthal, E.; Tomaske, M.; Frueh, M. Permanent cardiac pacing in children: Choosing the optimal pacing site: A multicenter study. Circulation 2013, 127, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Ravà, L.; Drago, F. Left ventricular endocardial activation maps during right ventricular pacing in pediatric patients. Pacing Clin. Electrophysiol. 2023, 46, 1162–1169. [Google Scholar] [CrossRef]
- Arnold, A.; Whinnett, Z.I.; Vijayaraman, P. His–Purkinje Conduction System Pacing: State of the Art in 2020. Arrhythmia Electrophysiol. Rev. 2020, 9, 136–145. [Google Scholar] [CrossRef]
- Silvetti, M.S.; Pazzano, V.; Battipaglia, I.; Saputo, F.A.; Mizzon, C.; Gimigliano, F. 3D-guided selective right ventricular septal pacing preserves ventricular systolic function and synchrony in paediatric patients. Heart Rhythm 2021, 18, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Porco, L.; Tamburri, I.; Campisi, M.; Gimigliano, F.; Saputo, F.A.; Mizzon, C.; Di Mambro, C.; Albanese, S.; Ravà, L.; et al. To go left or right? Driving towards the best direction in paediatric pacing. Cardiol. Young 2023, 33, 760–765. [Google Scholar] [CrossRef] [PubMed]
- Wenlong, D.; Baojing, G.; Chencheng, D.; Jianzeng, D. Preliminary study on left bundle branch area pacing in children: Clinical observation of 12 cases. J. Cardiovasc. Electrophysiol. 2022, 33, 1558–1566. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Muzi, G.; Unolt, M.; D’Anna, C.; Saputo, F.A.; Di Mambro, C.; Albanese, S.; Ammirati, A.; Ravà, L.; Drago, F. Left ventricular (LV) pacing in newborns and infants: Echo assessment of LV systolic function and synchrony at 5-year follow-up. Pacing Clin. Electrophysiol. 2020, 43, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Kovanda, J.; Ložek, M.; Ono, S.; Kubuš, P.; Tomek, V.; Janoušek, J. Left ventricular apical pacing in children: Feasibility and long-term effect on ventricular function. Europace 2020, 22, 306–313. [Google Scholar] [CrossRef]
- Weinreb, S.J.; Ampah, S.B.; Okunowo, O.; Griffis, H.; Vetter, V.L. Longitudinal echocardiographic parameters before and after pacemaker placement in congenital complete heart block. Heart Rhythm 2023. [Google Scholar] [CrossRef]
- Koyak, Z.; de Groot, J.R.; Krimly, A.; Mackay, T.M.; Bouma, B.J.; Silversides, C.K.; Oechslin, E.N.; Hoke, U.; van Erven, L.; Budts, W.; et al. Cardiac resynchronization therapy in adults with congenital heart disease. Europace 2018, 20, 315–322. [Google Scholar] [CrossRef]
- Koubský, K.; Kovanda, J.; Ložek, M.; Tomek, V.; Jičínský, M.; Gebauer, R.; Kubuš, P.; Janoušek, J. Multisite Pacing for Heart Failure Associated With Left Ventricular Apical Pacing in Congenital Heart Disease. JACC Clin. Electrophysiol. 2022, 8, 1060–1064. [Google Scholar] [CrossRef] [PubMed]
- Chubb, H.; Bulic, A.; Mah, D.; Moore, J.P.; Janousek, J.; Fumanelli, J.; Asaki, S.Y.; Pflaumer, A.; Hill, A.C.; Escudero, C.; et al. Impact and Modifiers of Ventricular Pacing in Patients With Single Ventricle Circulation. J. Am. Coll. Cardiol. 2022, 80, 902–914. [Google Scholar] [CrossRef] [PubMed]
- Janoušek, J.; Kovanda, J.; Ložek, M.; Tomek, V.; Gebauer, R.; Kubuš, P.; Delhaas, T. Cardiac Resynchronization Therapy for Treatment of Chronic Subpulmonary Right Ventricular Dysfunction in Congenital Heart Disease. Circ. Arrhythmia Electrophysiol. 2019, 12, e007157. [Google Scholar] [CrossRef] [PubMed]
- Moore, J.P.; Gallotti, R.; Shannon, K.M.; Pilcher, T.; Vinocur, J.M.; Cano, O.; Kean, A.; Mondesert, B.; Nürnberg, J.-H.; Schaller, R.D. Permanent conduction system pacing for congenitally corrected transposition of the great arteries: A Pediatric and Congenital Electrophysiology Society (PACES)/International Society for Adult Congenital Heart Disease (ISACHD) Collaborative Study. Heart Rhythm 2020, 17, 991–997. [Google Scholar] [CrossRef] [PubMed]
- Cano, Ó.; Dandamudi, G.; Schaller, R.D.; Pérez-Roselló, V.; Ayala, H.D.; Izquierdo, M.; Osca, J.; Sancho-Tello, M.; Rueda, J.; Ruiz, E.; et al. Safety and feasibility of conduction system pacing in patients with congenital heart disease. J. Cardiovasc. Electrophysiol. 2021, 32, 2692–2703. [Google Scholar] [CrossRef]
- Silvetti, M.S.; Favoccia, C.; Saputo, F.A.; Tamburri, I.; Mizzon, C.; Campisi, M.; Gimigliano, F.; Rinelli, G.; Rava, L.; Drago, F. Three-dimensional-mapping-guided permanent conduction system pacing in paediatric patients with congenitally corrected transposition of the great arteries. Europace 2023, 25, 1482–1490. [Google Scholar] [CrossRef]
- Namboodiri, N.; Kakarla, S.; Mohanan Nair, K.K.; Nair, K.K.M.; Abhilash, S.P.; Saravanan, S.; Pandey, H.K.; Vijay, J.; Sasikumar, D.; Valaparambil, A.K. Three-dimensional electroanatomical mapping guided right bundle branch pacing in congenitally corrected transposition of great arteries. Europace 2022, 25, 1110–1115. [Google Scholar] [CrossRef]
- De Filippo, P.; Giofrè, F.; Leidi, C.; Senni, M.; Ferrari, P. Transvenous pacing in pediatric patients with bipolar lumenless lead: Ten-year clinical experience. Int. J. Cardiol. 2018, 255, 45–49. [Google Scholar] [CrossRef]
- Cantù, F.; De Filippo, P.; Gabbarini, F.; Borghi, A.; Brambilla, R.; Ferrero, P.; Comisso, J.; Marotta, T.; De Luca, A.; Gavazzi, A. Selective-site pacing in paediatric patients: A new application of the Select Secure system. Europace 2009, 11, 601–606. [Google Scholar] [CrossRef]
- Maron, B.J.; Spirito, P.; Ackerman, M.J.; Casey, S.A.; Semsarian, C.; Estes, N.M.; Shannon, K.M.; Ashley, E.A.; Day, S.M.; Pacileo, G.; et al. Prevention of Sudden Cardiac Death with Implantable Cardioverter-Defibrillators in Children and Adolescents with Hypertrophic Cardiomyopathy. J. Am. Coll. Cardiol. 2013, 61, 1527–1535. [Google Scholar] [CrossRef] [PubMed]
- Dechert, B.E.; Bradley, D.J.; Serwer, G.A.; Ii, M.D.; Lapage, M.J. Implantable Cardioverter Defibrillator Outcomes in Pediatric and Congenital Heart Disease: Time to System Revision. Pacing Clin. Electrophysiol. 2016, 39, 703–708. [Google Scholar] [CrossRef] [PubMed]
- Kamp, A.N.; Von Bergen, N.H.; Henrikson, C.A.; Makhoul, M.; Saarel, E.V.; LaPage, M.J. Implanted defibrillators in young hypertrophic cardiomyopathy pa-tients: A multicenter study. Pediatr. Cardiol. 2013, 34, 1620–1627. [Google Scholar] [CrossRef] [PubMed]
- Norrish, G.; Chubb, H.; Field, E.; McLeod, K.; Ilina, M.; Spentzou, G.; Till, J.; Daubeney, P.E.F.; Stuart, A.G.; Matthews, J.; et al. Clinical outcomes and programming strategies of implantable cardioverter-defibrillator devices in paediatric hypertrophic cardiomyopathy: A UK National Cohort Study. Europace 2021, 23, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Bonaventura, J.; Maron, B.J.; Berul, C.I.; Rowin, E.J.; Maron, M.S. Analysis of risk stratification and prevention of sudden death in pediatric patients with hypertrophic cardiomyopathy: Dilemmas and clarity. Heart Rhythm O2 2023, 4, 506–516. [Google Scholar] [CrossRef] [PubMed]
- Norrish, G.; Ding, T.; Field, E.; Olivotto, I.; Limongelli, G. Development of a novel risk prediction model for sudden cardiac death in childhood hy-pertrophic cardiomyopathy (HCM risk-kids). JAMA Cardiol. 2019, 4, 918–927. [Google Scholar] [CrossRef] [PubMed]
- Cadrin-Tourigny, J.; Bosman, L.P.; Nozza, A.; Wang, W.; Tadros, R.; Bhonsale, A.; Bourfiss, M.; Fortier, A.; Lie, H.; Saguner, A.M.; et al. A new prediction model for ventricular arrhythmias in arrhythmogenic right ventricular cardiomyopathy. Eur. Heart J. 2022, 43, e1–e9. [Google Scholar] [CrossRef] [PubMed]
- Migliore, F.; Viani, S.; Bongiorni, M.G.; Zorzi, A.; Silvetti, M.S.; Francia, P. Subcutaneous implantable cardioverter defibrillator in patients with arrhythmo-genic right ventricular cardiomyopathy: Results from an Italian multicenter registry. Int. J. Cardiol. 2019, 280, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Migliore, F.; Biffi, M.; Viani, S.; Pittorru, R.; Francia, P.; Pieragnoli, P.; De Filippo, P.; Bisignani, G.; Nigro, G.; Russo, A.D.; et al. Modern subcutaneous implantable defibrillator therapy in patients with cardiomyopathies and channelopathies: Data from a large multicentre registry. Europace 2023, 25, euad239. [Google Scholar] [CrossRef]
- Cicenia, M.; Silvetti, M.S.; Cantarutti, N.; Battipaglia, I.; Adorisio, R.; Saputo, F.A.; Tamburri, I.; Campisi, M.; Baban, A.; Drago, F. ICD outcome in pediatric arrhythmogenic cardiomyopathy. Int. J. Cardiol. 2023, 394, 131381. [Google Scholar] [CrossRef]
- Wahbi, K.; Ben Yaou, R.; Gandjbakhch, E.; Anselme, F.; Gossios, T.; Lakdawala, N.K.; Stalens, C.; Sacher, F.; Babuty, D.; Trochu, J.-N.; et al. Development and Validation of a New Risk Prediction Score for Life-Threatening Ventricular Tachyarrhythmias in Laminopathies. Circulation 2019, 140, 293–302. [Google Scholar] [CrossRef]
- Anderson, B.R.; Silver, E.S.; Richmond, M.E.; Liberman, L. Usefulness of Arrhythmias as Predictors of Death and Resource Utilization in Children With Myocarditis. Am. J. Cardiol. 2014, 114, 1400–1405. [Google Scholar] [CrossRef] [PubMed]
- Matthews, A.; Timothy, K.; Golden, A.; Corcia, M.C.G. International Cohort of Neonatal Timothy Syndrome. Neonatology 2024, 1–8. [Google Scholar] [CrossRef]
- Mazzanti, A.; Trancuccio, A.; Kukavica, D.; Pagan, E.; Wang, M.; Mohsin, M.; Peterson, D.; Bagnardi, V.; Zareba, W.; Priori, S.G. Independent validation and clinical implications of the risk prediction model for long QT syndrome (1-2-3-LQTS-Risk). Eurospace 2022, 24, 614–619. [Google Scholar] [CrossRef] [PubMed]
- Roston, T.M.; Jones, K.; Hawkins, N.M.; Bos, J.M.; Schwartz, P.J.; Perry, F.; Ackerman, M.J.; Laksman, Z.W.; Kaul, P.; Lieve, K.V.; et al. Implantable cardioverter-defibrillator use in catecholaminergic polymorphic ventricular tachycardia: A systematic review. Heart Rhythm 2018, 15, 1791–1799. [Google Scholar] [CrossRef] [PubMed]
- van der Werf, C.; Lieve, K.V.; Bos, J.M.; Lane, C.M.; Denjoy, I.; Roses-Noguer, F.; Aiba, T.; Wada, Y.; Ingles, J.; Leren, I.S.; et al. Implantable cardioverter-defibrillators in previously undiagnosed patients with catecholaminergic polymorphic ventricular tachycardia resuscitated from sudden cardiac arrest. Eur. Heart J. 2019, 40, 2953–2961. [Google Scholar] [CrossRef] [PubMed]
- Righi, D.; Porco, L.; Calvieri, C.; Tamborrino, P.P.; Di Mambro, C.; Paglia, S.; Baban, A.; Silvetti, M.S.; Gnazzo, M.; Novelli, A.; et al. Clinical characteristics and risk of arrhythmic events in patients younger than 12 years diagnosed with Brugada syndrome. Heart Rhythm 2021, 18, 1691–1697. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.N.A.; Bromberg, B.I.; Emge, F.K.; Bowman, T.M.; Van Hare, G.F. Implantable Loop Recorder Monitoring for Refining Management of Children With Inherited Arrhythmia Syndromes. J. Am. Hear. Assoc. 2016, 5, e003632. [Google Scholar] [CrossRef] [PubMed]
- Drago, F.; Bloise, R.; Bronzetti, G.; Leoni, L.; Porcedda, G.; Sarubbi, B.; De Filippo, P.; Gulletta, S.; Scaglione, M. Italian recommendations for the management of pediatric patients under twelve years of age with suspected or manifest Brugada syndrome. Minerva Pediatr. 2020, 72, 1–13. [Google Scholar] [CrossRef]
- Kammeraad, J.A.E.; Rosenthal, E.; Bostock, J.; Rogers, J.; Sreeram, N. Endocardial Pacemaker Implantation in Infants Weighing <= 10 Kilograms. Pacing Clin. Electrophysiol. 2004, 27, 1466–1474. [Google Scholar] [CrossRef]
- Silvetti, M.S.; Drago, F.; De Santis, A.; Grutter, G.; Ravà, L.; Monti, L.; Fruhwirth, R. Single-centre experience on endocardial and epicardial pacemaker system function in neonates and infants. Europace 2007, 9, 426–431. [Google Scholar] [CrossRef]
- Konta, L.; Chubb, M.H.; Bostock, J.; Rogers, J.; Rosenthal, E. Twenty-Seven Years Experience With Transvenous Pacemaker Implantation in Children Weighing <10 kg. Circ. Arrhythmia Electrophysiol. 2016, 9, e003422. [Google Scholar] [CrossRef]
- Bauersfeld, U.; Nowak, B.; Molinari, L.; Malm, T.; Kampmann, C.; Schönbeck, M.H.; Schüller, H. Low-energy epicardial pacing in children: The benefit of autocapture. Ann. Thorac. Surg. 1999, 68, 1380–1383. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.I.; Bush, D.M.; Vetter, V.L.; Tannel, R.E.; Wieand, T.S.; Rhodes, L.A. Permanent epicardial pacing in pediatric patients. Seventeen years of experience and 1200 outpatient visits. Circulation 2001, 103, 2585–2590. [Google Scholar] [CrossRef]
- Horenstein, M.S.; Hakimi, M.; Walters, H.; Karpawich, P.P. Chronic Performance of Steroid-Eluting Epicardial Leads in a Growing Pediatric Population:. A 10-Year Comparison. Pacing Clin. Electrophysiol. 2003, 26, 1467–1471. [Google Scholar] [CrossRef] [PubMed]
- Fortescue, E.B.; Berul, C.I.; Cecchin, F.; Walsh, E.P.; Triedman, J.K.; Alexander, M.E. Patient, procedural, and hardware factors associated with pacemaker lead failures in pediatrics and congenital heart disease. Heart Rhythm 2004, 1, 150–159. [Google Scholar] [CrossRef]
- Fortescue, E.B.; Berul, C.I.; Cecchin, F.; Walsh, E.P.; Triedman, J.K.; Alexander, M.E. Comparison of Modern Steroid-Eluting Epicardial and Thin Transvenous Pacemaker Leads in Pediatric and Congenital Heart Disease Patients. J. Interv. Card. Electrophysiol. 2005, 14, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Drago, F.; Di Carlo, D.; Placidi, S.; Brancaccio, G.; Carotti, A. Cardiac pacing in paediatric patients with congenital heart defects: Transvenous or epicardial? Europace 2013, 15, 1280–1286. [Google Scholar] [CrossRef]
- Vos, L.M.; Kammeraad, J.A.; Freund, M.W.; Blank, A.C.; Breur, J.M. Long-term outcome of transvenous pacemaker implantation in infants: A retrospective cohort study. Europace 2017, 19, 581–587. [Google Scholar] [CrossRef] [PubMed]
- Stojanov, P.; Velimirović, D.; Hrnjak, V.; Pavlovic, S.U.; Zivkovic, M.; Djordjevic, Z. Absorbable Suture Technique: Solution to the Growth Problem in Pediatric Pacing with Endocardial Leads. Pacing Clin. Electrophysiol. 1998, 21, 65–68. [Google Scholar] [CrossRef]
- Silvetti, M.S.; Drago, F.; Marcora, S.; Ravà, L. Outcome of single-chamber, ventricular pacemakers with transvenous leads im-planted in children. Europace 2007, 9, 894–899. [Google Scholar] [CrossRef]
- Antretter, H.; Colvin, J.; Schweigmann, U.; Hangler, H.; Hofer, H.; Dunst, K.; Margreiter, J.; Laufer, G. Special problems of pacing in children. Indian Pacing Electrophysiol. J. 2003; 3, 23–33. [Google Scholar]
- Klug, D.; Vaksmann, G.; Jarwé, M.; Wallet, F.; Francart, C.; Kacet, S.; Rey, C. Pacemaker Lead Infection in Young Patients. Pacing Clin. Electrophysiol. 2003, 26, 1489–1493. [Google Scholar] [CrossRef] [PubMed]
- Ragonese, P.; Guccione, P.; Drago, F.; Turchetta, A.; Galzolari, A.; Formigari, R. Efficacy and Safety of Ventricular Rate Responsive Pacing in Children with Complete Atrioventricular Block. Pacing Clin. Electrophysiol. 1994, 17, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Celiker, A.; Alehan, D.; Tokel, N.; Lenk, M.K.; Ozme, S. Initial experience with dual-sensor rate-responsive pacemakers in children. Eur. Heart J. 1996, 17, 1251–1255. [Google Scholar] [CrossRef]
- Silver, E.S.; Nash, M.C.; Liberman, L. Implantation of Permanent Pacemaker and ICD Leads in Children Using a Three-Dimensional Electroanatomic Mapping System as an Aid to Fluoroscopy. Pacing Clin. Electrophysiol. 2015, 38, 448–454. [Google Scholar] [CrossRef] [PubMed]
- Qiu, J.; Wang, Y.; Chen, G.; Zhao, C.; Wang, D.W. Progress in zero-fluoroscopy implantation of cardiac electronic device. Pacing Clin. Electrophysiol. 2020, 43, 609–617. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Placidi, S.; Palmieri, R.; Righi, D.; Ravà, L.; Drago, F. Percutaneous axillary vein approach in pediatric pacing: Comparison with subcla-vian vein approach. PACE 2013, 36, 1550–1557. [Google Scholar] [CrossRef] [PubMed]
- Atti, V.; Turagam, M.K.; Garg, J.; Koerber, S.; Angirekula, A.; Gopinathannair, R.; Natale, A.; Lakkireddy, D. Subclavian and Axillary Vein Access Versus Cephalic Vein Cutdown for Cardiac Implantable Electronic Device Implantation: A Meta-Analysis. JACC Clin. Electrophysiol. 2020, 6, 661–671. [Google Scholar] [CrossRef]
- Pelliccia, A.; Sharma, S.; Gati, S.; Bäck, M.; Börjesson, M.; Caselli, S.; Collet, J.-P.; Corrado, D.; Drezner, J.A.; Halle, M.; et al. 2020 ESC Guidelines on sports cardiology and exercise in patients with cardiovascular disease. Eur. Heart J. 2021, 42, 17–96. [Google Scholar] [CrossRef]
- Berul, C.I.; Triedman, J.K.; Forbess, J.; Bevilacqua, L.M.; Alexander, M.E.; Dahlby, D.; Gilkerson, J.O.; Walsh, E.P. Minimally Invasive Cardioverter Defibrillator Implantation for Children: An Animal Model and Pediatric Case Report. Pacing Clin. Electrophysiol. 2001, 24, 1789–1794. [Google Scholar] [CrossRef]
- Winkler, F.; Dave, H.; Weber, R.; Gass, M.; Balmer, C. Long-term outcome of epicardial implantable cardioverter-defibrillator systems in chil-dren: Results justify its preference in paediatric patients. Europace 2018, 20, 1484–1490. [Google Scholar] [CrossRef] [PubMed]
- Müller, M.J.; Dieks, J.K.; Backhoff, D.; Schneider, H.E.; Ruschewski, W.; Tirilomis, T.; Paul, T.; Krause, U. Efficacy and safety of non-transvenous cardioverter defibrillators in infants and young children. J. Interv. Card. Electrophysiol. 2019, 54, 151–159. [Google Scholar] [CrossRef]
- Le Bos, P.A.; Pontailler, M.; Maltret, A.; Kraiche, D.; Gaudin, R.; Barbanti, C.; Marijon, E.; Raisky, O.; Bonnet, D.; Waldmann, V. Epicardial vs. transvenous implantable cardioverter defibrillators in children. Europace 2023, 25, 961–968. [Google Scholar] [CrossRef] [PubMed]
- Berul, C.I.; Van Hare, G.F.; Kertesz, N.J.; Dubin, A.M.; Cecchin, F.; Collins, K.K.; Cannon, B.C.; Alexander, M.E.; Triedman, J.K.; Walsh, E.P.; et al. Results of a Multicenter Retrospective Implantable Cardioverter-Defibrillator Registry of Pediatric and Congenital Heart Disease Patients. J. Am. Coll. Cardiol. 2008, 51, 1685–1691. [Google Scholar] [CrossRef]
- Janson, C.M.; Patel, A.R.; Bonney, W.J.; Smoots, K.; Shah, M.J. Implantable cardioverter-defibrillator lead failure in children and young adults: A matter of lead diameter or lead design? J. Am. Coll. Cardiol. 2014, 63, 133–140. [Google Scholar] [CrossRef] [PubMed]
- Zahedivash, A.; Hanisch, D.; Dubin, A.M.; Trela, A.; Chubb, H.; Motonaga, K.S.; Goodyer, W.R.; Maeda, K.; Reinhartz, O.; Ma, M.; et al. Implantable Cardioverter Defibrillators in Infants and Toddlers: Indications, Placement, Programming, and Outcomes. Circ. Arrhythmia Electrophysiol. 2022, 15, e010557. [Google Scholar] [CrossRef]
- Schneider, A.E.; Burkhart, H.M.; Ackerman, M.J.; Dearani, J.A.; Wackel, P.; Cannon, B.C. Minimally invasive epicardial implantable cardioverter-defibrillator placement for infants and children: An effective alternative to the transvenous approach. Heart Rhythm 2016, 13, 1905–1912. [Google Scholar] [CrossRef]
- Silvetti, M.S.; Pazzano, V.; Verticelli, L.; Battipaglia, I.; Saputo, F.A.; Albanese, S. S-ICD: Is it ready for use in children and young adults? A single-center study. Europace 2018, 20, 1966–1973. [Google Scholar] [CrossRef] [PubMed]
- Jarman, J.W.E.; Lascelles, K.; Wong, T.; Markides, V.; Clague, J.R.; Till, J. Clinical experience of entirely subcutaneous implantable cardioverter-defibrillators in children and adults: Cause for caution. Eur. Heart J. 2012, 33, 1351–1359. [Google Scholar] [CrossRef] [PubMed]
- Pettit, S.J.; Mclean, A.; Colquhoun, I.; Connelly, D.; Mcleod, K. Clinical Experience of Subcutaneous and Transvenous Implantable Cardioverter Defibrillators in Children and Teenagers. Pacing Clin. Electrophysiol. 2013, 36, 1532–1538. [Google Scholar] [CrossRef]
- Griksaitis, M.J.; Rosengarten, J.A.; Gnanapragasam, J.P.; Haw, M.P.; Morgan, J.M. Implantable cardioverter defibrillator therapy in paediatric practice: A single-centre UK experience with focus on subcutaneous defibrillation. Europace 2013, 15, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Bettin, M.; Larbig, R.; Rath, B.; Fischer, A.; Frommeyer, G.; Reinke, F.; Köbe, J.; Eckardt, L. Long-Term Experience With the Subcutaneous Implantable Cardioverter-Defibrillator in Teenagers and Young Adults. J. Am. Coll. Cardiol. Clin. Electrophysiol. 2017, 13, 1499–1506. [Google Scholar] [CrossRef] [PubMed]
- Quast, A.B.E.; Brouwer, T.F.; Kooiman, K.M.; van Dessel, P.F.H.M.; Blom, N.A.; Wilde, A.A.M.; Knops, R.E. Comparison of complications and shocks in paediatric and young trans-venous and subcutaneous implantable cardioverter-defibrillator patients. Neth. Heart J. 2018, 26, 612–619. [Google Scholar] [CrossRef]
- von Alvensleben, J.C.; Dechert, B.; Fish, F.A.; Moore, J.P.; Pilcher, T.A. Subcutaneous implantable cardioverter-defibrillators in pediatrics and congenital heart disease: A pediatric and congenital electrophysiology society multicenter review. J. Am. Coll. Cardiol. Clin. Electrophysiol. 2020, 6, 1752–1761. [Google Scholar]
- Sarubbi, B.; Colonna, D.; Correra, A.; Romeo, E.; D’alto, M.; Palladino, M.T.; Virno, S.; D’onofrio, A.; Russo, M.G. Subcutaneous implantable cardioverter defibrillator in children and adolescents: Results from the S-ICD “Monaldi care” registry. J. Interv. Card. Electrophysiol. 2022, 63, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Bruyndonckx, L.; Maltret, A.; Gebauer, R.; Kwiatkowska, J.; Környei, L.; Albanese, S.; Raimondo, C.; Paech, C.; Kempa, M.; et al. The SIDECAR project: S-IcD registry in European paediatriC and young Adult patients with congenital heaRt defects. Europace 2023, 25, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Silvetti, M.S.; Tamburri, I.; Campisi, M.; Saputo, F.A.; Cazzoli, I.; Cantarutti, N.; Cicenia, M.; Adorisio, R.; Baban, A.; Ravà, L.; et al. ICD Outcome in Pediatric Cardiomyopathies. J. Cardiovasc. Dev. Dis. 2022, 9, 33. [Google Scholar] [CrossRef] [PubMed]
- Vetta, G.; Parlavecchio, A.; Magnocavallo, M.; Valente, D.; Caminiti, R.; Polselli, M.; Vetta, F.; Cirone, D.; Cauti, F.M.; Crea, P.; et al. Subcutaneous versus transvenous implantable cardioverter defibrillators in children and young adults: A meta-analysis. Pacing Clin. Electrophysiol. 2022, 45, 1409–1414. [Google Scholar] [CrossRef]
- Kulbachinskaya, E.; Termosesov, S.; Polyakova, E.; Khaspekov, D.; Grishin, I.; Bereznitskaya, V.; Shkolnikova, M. Video-assisted thoracoscopic pacemaker lead placement in children with atrioventricular block. Ann. Pediatr. Cardiol. 2021, 14, 67–71. [Google Scholar] [CrossRef]
- Clark, B.C.; Kumthekar, R.; Mass, P.; Opfermann, J.D.; Berul, C.I. Chronic performance of subxiphoid minimally invasive pericardial Model 20066 pacemaker lead insertion in an infant animal model. J. Interv. Card. Electrophysiol. 2020, 59, 13–19. [Google Scholar] [CrossRef]
- Berul, C.I.; Dasgupta, S.; LeGras, M.D.; Peer, S.M.; Alsoufi, B.; Sherwin, E.D.; Desai, M.; Yerebakan, C.; Johnsrude, C. Tiny pacemakers for tiny babies. Heart Rhythm 2023, 20, 766–769. [Google Scholar] [CrossRef] [PubMed]
- Backhoff, D.; Müller, M.J.; Wilberg, Y.; Eildermann, K.; Paul, T.; Zenker, D.; Krause, U. Leadless epicardial pacing at the left ventricular apex: An animal study. Europace 2023, 25, euad303. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.J.; Borquez, A.A.; Cortez, D.; McCanta, A.C.; De Filippo, P.; Whitehill, R.D.; Imundo, J.R.; Moore, J.P.; Sherwin, E.D.; Howard, T.S.; et al. Transcatheter Leadless Pacing in Children: A PACES Collaborative Study in the Real-World Setting. Circ. Arrhythmia Electrophysiol. 2023, 16, e011447. [Google Scholar] [CrossRef] [PubMed]
- Sherwin, E.D.; Shah, M.J. Leadless Pacemakers in Patients with Congenital Heart Disease. Card. Electrophysiol. Clin. 2023, 15, 421–432. [Google Scholar] [CrossRef]
- Friedman, P.; Murgatroyd, F.; Boersma, L.V.A.; Manlucu, J.; O’donnell, D.; Knight, B.P.; Clémenty, N.; Leclercq, C.; Amin, A.; Merkely, B.P.; et al. Efficacy and Safety of an Extravascular Implantable Cardioverter–Defibrillator. N. Engl. J. Med. 2022, 387, 1292–1302. [Google Scholar] [CrossRef]
Class of Recommendation (COR) | ||
---|---|---|
Class I | Benefits >>> Risks. | Procedures/treatments should be performed/are recommended |
Class II a | Benefits >> Risks. | It is reasonable to perform procedure/treatment |
Class II b | Benefits ≥ Risks. | Procedures/treatments may be performed/uncertain efficacy |
Class III | Risks ≥ Benefits. | Procedures/treatments should not be performed/are not useful/may harm |
Level of Evidence (LOE) | ||
LOE A | Data derived from multiple randomized clinical trials or meta-analyses | |
LOE B | Evidence from non-randomized, observational studies or from registry (B-NR) | |
LOE C | Limited evidence from observational studies or case series (C-LO) or Consensus expert opinion, case studies, standard of care (C-EO). |
COR, LOE | ARRHYTHMIA, RECOMMENDATION | PREVIOUS COR |
---|---|---|
AVB | ||
I LOE B | -CCAVB with symptomatic bradycardia or in the presence of risk factors: wide QRS escape rhythm, complex ventricular ectopy, ventricular dysfunction (PACES) | |
I LOE C | -CCAVB or advanced AVB with one of the following risk factors: symptoms, pauses > 3 times the cycle length of the ventricular escape rhythm, wide QRS escape rhythm, long QT, complex ventricular ectopy, mean daytime HR < 50 bpm (ESC) | |
I LOE C | -CCAVB in asymptomatic neonates/infants and mean HR ≤ 50 bpm (PACES) | <55 bpm [7] |
I LOE C | -CCAVB in neonates/infants with complex CHD when bradycardia is associated with hemodynamic compromise or mean HR < 60–70 bpm (PACES) | <70 bpm [7] |
I LOE C | -symptomatic patients with idiopathic advanced II or III AVB not attributable to reversible causes (PACES) | New |
I LOE C | -Clinically significant pause-dependant VT or associated with severe bradycardia (reasonable alternative: ICD) (PACES) | |
II a LOE B | -asymptomatic CCAVB patients > 1 year old and mean HR < 50 bpm or with prolonged pauses (PACES) | I [2] |
II a LOE C | -CCAVB with LV dilatation (Z score ≥ 3) associated with significant mitral regurgitation or systolic ventricular dysfunction (PACES) | New |
II a LOE C | -any degree of AVB that progresses to advanced II or to III with exercise without reversible causes (PACES) | New |
II b LOE C | -CCAVB in asymptomatic adolescents with an acceptable HR and without risk factors (PACES) | II a [2] |
II b LOE C | -CCAVB or high degree AVB without risk factors (ESC) | |
II b LOE C | -intermittent advanced II or III AVB without reversible causes and associated with otherwise unexplained minimal symptoms (PACES) | New |
III LOE C | -PM not indicated in asymptomatic I degree or II Mobitz type 1 AVB (PACES) | |
POSTOPERATIVE AVB | ||
I LOE B | -postop. advanced II or III that persists for at least 7–10 days after cardiac surgery (PACES) | >7 days [7] >72 h [2] |
I LOE C | -late onset postop. advanced II or III AVB, especially when there is prior history of transient postop. AVB (PACES) | New |
II b LOE C | -unexplained syncope if there is a history of transient postop. advanced II or III AVB (PACES) | II a [7] |
II b LOE C | -postop. advanced II o III AVB < 7 days that is not expected to resolve due to extensive injury to conduction system (PACES) | New |
II b LOE C | -transient advanced postop. II or III degree AVB in selected patients predisposed to progressive conduction system abnormalities (PACES) | New |
II b LOE C | -persistent postop. bifascicular block associated with transient complete AVB (ESC) | |
ISOLATED SND | ||
I LOE B | -SND with symptoms correlated with age-inappropriate bradycardia (PACES) | |
I LOE C | -symptomatic SND secondary to chronic medical therapy for which there is no alternative treatment (PACES) | |
II a LOE C | -in patients with symptoms temporally associated with chronotropic incompetence (rate-responsive PM) (PACES) | |
II B LOE C | -in SND with symptoms likely attributable to bradycardia or prolonged pauses without conclusive evidence correlating symptoms with bradycardia after a thorough evaluation (PACES) | New |
III LOE C | -asymptomatic SND (PACES) | |
III LOE C | -symptomatic SND due to a reversible cause (PACES) | |
SND IN CHD | ||
II a LOE B | -PM with antitachycardia pacing in patients with CHD and recurrent IART when catheter ablation or medication are ineffective or not acceptable treatments (PACES) | |
II a LOE C | -in patients with CHD and impaired haemodynamics due to sinus bradycardia or loss of AV synchrony (PACES) | |
II a LOE C | -in patients with brady-tachy syndrome and symptoms attributable to pauses for sudden-onset bradycardia (PACES) | |
II a LOE C | -sinus or junctional bradycardia in complex CHD when mean awake resting HR is <40 bpm or with prolonged pauses (PACES) | |
II b LOE C | -sinus or junctional bradycardia in simple or moderate CHD when mean awake resting HR is <40 bpm or with prolonged pauses (PACES) | |
II b LOE C | -asymptomatic bradycardia with awake resting HR < 40 bpm or with pauses > 3 s in complex CHD (ESC) |
COR, LOE | Recommendations for ICD Implantation PACES 2021 | Recommendations for ICD Implantation ESC 2022 | Changes (PACES if Not Otherwise Specified) |
---|---|---|---|
HCM | |||
ESC risk calculator in patients > 16 aa | |||
Risk Kids score in patients < 16 aa | |||
II a LOE B | ≥1 RF: Syncope, NSVT, familial history of SCD, severe LVH | -ESC risk calculator: ≥6% | ≥2 RF [12] |
-ESC risk calculator: ≥4, <6% (in the presence of LGE > 15% LV mass, LVEF < 50%, exercise-related hypotension, apical aneurism) | NEW-ESC | ||
-Risk Kids score: ≥6% | NEW-ESC | ||
II a LOE C | Hemodynamically tolerated SMVT | NEW-ESC | |
II b LOE B | HCM with only other RF: | -ESC risk calculator: ≥4, <6% | NEW-ESC |
LGE, systolic dysfunction | -ESC risk calculator: <4 (low risk) in the presence of LGE > 15% LV mass, LVEF < 50%, apical aneurism | ||
ACM | |||
Definite ACM | |||
II a LOE B | Hemodynamicslly tolerated STV, arrhythmic syncope, LVEF ≤ 35%, | Arrhythmic syncope | I [12] NEW-ESC |
II a LOE C | Severe LV or RV systolic dysfunction, moderate dysfunction with NSVT and SMVT inducibility | ||
II a LOE C | Symptomatic (palpitations, presyncope) patients with definite ACM, moderate RV or LV dysfunction, and either NSVT or inducibility of SMVT at EPS | NEW-ESC | |
IIa LOE C | Hemodynamically tolerated SMVT | ||
II b LOE C | ACM with + genetic and addictional RF | new | |
DCM | |||
II a LOE A | Symptomatic CHF (NYHA II-III) and LVEF ≤ 35% in OMT, | I [12,13] | |
LMNA mutation (risk calculator score ≥ 10%, NSVT, LVEF < 50%, AV conduction delay) | |||
II a LOE C | -LVEF ≤ 50% with > 2 RF (LGE, SMVT inducibility at EPS, pathogenic mutations of LMNA, PLN, FLMC, RBM20 genes) | NEW-ESC | |
-Patients with hemodynamically tolerated SMVT | NEW ESC | ||
II b LOE C | Syncope, LVEF ≤ 35% with OMT | I [12] | |
LQTS | |||
I LOE B | In patients with symptoms (arrhythmic syncope/VT) and BB is ineffective/not tolerated and LCSD or other drugs are not effective alternatives | ||
I LOE C | In patients with symptoms (arrhythmic syncope/not tolerated VT) while receiving BB and genotype-specific therapy | ESC: II a [13] | |
II a LOE C | In patients with symptoms if BB and genotype-specific therapy are not tolerated ot contraindicated | ||
II b LOE B | In asymptomatic high risk patients (1-2-3- LQTS risk calculator) in addition to genotype-specific therapy (mexiletine in LQTS3) | ||
II b LOE C | Clinical RF: | New (QTc > 500 ms was II b) [12,13] | |
QTc > 550 ms, | |||
QTc > 500 ms in LQTS1, in females LQTS2, in males LQTS3, and/or mutations of JLN, Timothy, calmodulinopathies | |||
III LOE C | In asymptomatic low-risk patients without BB therapy | ||
SQTS | |||
II a | In patients with arrhythmic syncope | NEW-ESC | |
CPVT | |||
II a LOE C | In patients with aborted SCD as initial presentation ICD is reasonable in association with drug therapy with or without LCSD. Drug therapy and/or LCSD without ICD may be an alternative | Arrhythmic syncope and/or documented bidirectional/polimorphic VT in therapy with BB and flecainide at maximal tolerated doses | I [12,13] |
ESC I [12,13,14] | |||
II b LOE C | Bidirectional/polimorphic VT despite OMT, with or without LCSD | I [14] | |
BRUGADA | |||
II a | Type I spontaneous pattern and recent syncope due to probable VA (LOE B) | Type I pattern and arrhythmic or unexplained syncope (LOE C) | I [12] |
II b LOE C | Drug induced type I pattern and recent syncope due to probable VA | Selected asymptomatic patients with inducible VF (1–2 extrastimuli at EPS) | New |
III LOE C | In asymptomatic patients without RF | ||
ERS | |||
II b | ICD or quinidine in: | NEW-ESC | |
-Patients with ERP and arrhythmic syncope and additional RF (family history of unexplained SD < 40 yrs, family history of ERS) | |||
-Asymptomatic subjects with high risk ERP (J waves > 2 mm, dynamic changes of J point and ST morphology) in the presence of family history of unexplained juvenile SCD | |||
CHD | |||
I LOE C | ACHD with biventricular physiology, systemic LV with NYHA II-III, EF ≤ 35% after ≥ 3 months of OMT. | ||
II a LOE C | Systemic LV EF < 35% and SVT or presumed syncope due to arrhythmias | Presumed syncope due to arrhythmias with either moderate (at least) ventricular dysfunction or EPS inducible SMVT | |
II a LOE C | TOF: arrhythmia symptoms and positive EPS, or combinations of RF (moderate RV or LV dysfunction, extensive RV scarring at CMR, QRS ≥ 180 ms, severe QRS fragmentation) | ||
II b LOE C | Spontaneous hemodynamically stable SVT after hemodynamic/EPS evaluation. Ablation or surgery may be alternatives is selected cases | New | |
II b LOE C | Unexplained syncope in presence of ventricular dysfunction, NS VT, inducible VA at EPS | ||
II b LOE C | Single or systemic RV with EF ≤ 35%, especially with additional RF: VT, arrhythmic syncope, severe systemic AV valve regurgitation | Advanced dysfunction of single ventricle or systemic RV and additional RF: NSVT, NYHA II-III, severe AV valve regurgitation, QRS ≥ 140 ms (TGA) |
PACEMAKER | ||
---|---|---|
AGE, WEIGHT | PACING SYSTEM ACCESS | PACING MODE |
Neonates, infants, children 0–15 kg | Epicardial | VVI/VVIR/DDD |
Children > 15 kg | Transvenous | VVIR |
Adolescents (post-puberty) | Transvenous | DDD |
ICD | ||
AGE, WEIGHT | PACING SYSTEM ACCESS | PACING MODE |
Infants, Children (<30 kg) | Epicardial + coils | VVI |
Children>30 kg | Transvenous | VVI |
Adolescents | Transvenous | VVI-DDD |
Adolescents | S-ICD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvetti, M.S.; Colonna, D.; Gabbarini, F.; Porcedda, G.; Rimini, A.; D’Onofrio, A.; Leoni, L. New Guidelines of Pediatric Cardiac Implantable Electronic Devices: What Is Changing in Clinical Practice? J. Cardiovasc. Dev. Dis. 2024, 11, 99. https://doi.org/10.3390/jcdd11040099
Silvetti MS, Colonna D, Gabbarini F, Porcedda G, Rimini A, D’Onofrio A, Leoni L. New Guidelines of Pediatric Cardiac Implantable Electronic Devices: What Is Changing in Clinical Practice? Journal of Cardiovascular Development and Disease. 2024; 11(4):99. https://doi.org/10.3390/jcdd11040099
Chicago/Turabian StyleSilvetti, Massimo Stefano, Diego Colonna, Fulvio Gabbarini, Giulio Porcedda, Alessandro Rimini, Antonio D’Onofrio, and Loira Leoni. 2024. "New Guidelines of Pediatric Cardiac Implantable Electronic Devices: What Is Changing in Clinical Practice?" Journal of Cardiovascular Development and Disease 11, no. 4: 99. https://doi.org/10.3390/jcdd11040099
APA StyleSilvetti, M. S., Colonna, D., Gabbarini, F., Porcedda, G., Rimini, A., D’Onofrio, A., & Leoni, L. (2024). New Guidelines of Pediatric Cardiac Implantable Electronic Devices: What Is Changing in Clinical Practice? Journal of Cardiovascular Development and Disease, 11(4), 99. https://doi.org/10.3390/jcdd11040099