Predictive Value of Preoperative Morphology Parameters in Patients Undergoing On-Pump and Off-Pump Coronary Artery Bypass Surgery
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Blood Parameters
2.3. Statistical Analysis
2.4. Bioethical Approval
3. Results
3.1. Non-Standardized Population
3.1.1. Baseline and Procedural Characteristics
3.1.2. Preoperative Blood Parameters
3.1.3. Mortality
3.1.4. Correlations
3.2. IPTW Standardized Population
3.2.1. Baseline and Procedural Characteristics
3.2.2. Preoperative Blood Parameters
3.2.3. Mortality
4. Discussion
4.1. Results Discussion
4.2. Historical Results Comparison
4.3. What Are PLR, NLR and RDW-SD?
4.4. Clinical Implications
4.5. Limitations and Further Studies
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferreira-González, I. The Epidemiology of Coronary Heart Disease. Rev. Española Cardiol. 2014, 67, 139–144. [Google Scholar] [CrossRef]
- Goff, D.C.; Lloyd-Jones, D.M.; Bennett, G.; Coady, S.; D’Agostino, R.B.; Gibbons, R.; Greenland, P.; Lackland, D.T.; Levy, D.; O’Donnell, C.J.; et al. 2013 ACC/AHA Guideline on the Assessment of Cardiovascular Risk. J. Am. Coll. Cardiol. 2014, 63, 2935–2959. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, S.J.; Tuzcu, E.M.; Kalidindi, S.; Wolski, K.; Moon, K.-W.; Sipahi, I.; Schoenhagen, P.; Nissen, S.E. Effect of Diabetes on Progression of Coronary Atherosclerosis and Arterial Remodeling. J. Am. Coll. Cardiol. 2008, 52, 255–262. [Google Scholar] [CrossRef]
- Teo, K.K.; Ounpuu, S.; Hawken, S.; Pandey, M.; Valentin, V.; Hunt, D.; Diaz, R.; Rashed, W.; Freeman, R.; Jiang, L.; et al. Tobacco Use and Risk of Myocardial Infarction in 52 Countries in the INTERHEART Study: A Case-Control Study. Lancet 2006, 368, 647–658. [Google Scholar] [CrossRef] [PubMed]
- Matsuzawa, Y. The Metabolic Syndrome and Adipocytokines. FEBS Lett. 2006, 580, 2917–2921. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Newby, L.K.; Arnold, S.V.; Bittner, V.; Brewer, L.C.; Demeter, S.H.; Dixon, D.L.; Fearon, W.F.; Hess, B.; Johnson, H.M.; et al. 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guideline for the Management of Patients With Chronic Coronary Disease: A Report of the American Heart Association/American College of Cardiology Joint Committee on Clinical Practice Guidelines. Circulation 2023, 148, E9–E119. [Google Scholar] [CrossRef] [PubMed]
- Vrints, C.; Andreotti, F.; Koskinas, K.C.; Rossello, X.; Adamo, M.; Ainslie, J.; Banning, A.P.; Budaj, A.; Buechel, R.R.; Chiariello, G.A.; et al. 2024 ESC Guidelines for the Management of Chronic Coronary Syndromes. Eur. Heart J. 2024, 45, 3415–3537. [Google Scholar] [CrossRef] [PubMed]
- Byrne, R.A.; Rossello, X.; Coughlan, J.J.; Barbato, E.; Berry, C.; Chieffo, A.; Claeys, M.J.; Dan, G.-A.; Dweck, M.R.; Galbraith, M.; et al. 2023 ESC Guidelines for the Management of Acute Coronary Syndromes. Eur. Heart J. 2023, 44, 3720–3826. [Google Scholar] [CrossRef]
- Mohammad, M.A.; Stone, G.W.; Koul, S.; Olivecrona, G.K.; Bergman, S.; Persson, J.; Engstrøm, T.; Fröbert, O.; Jernberg, T.; Omerovic, E.; et al. On the Natural History of Coronary Artery Disease: A Longitudinal Nationwide Serial Angiography Study. J. Am. Heart Assoc. 2022, 11, e026396. [Google Scholar] [CrossRef]
- Armstrong, P.W.; Gershlick, A.H.; Goldstein, P.; Wilcox, R.; Danays, T.; Lambert, Y.; Sulimov, V.; Rosell Ortiz, F.; Ostojic, M.; Welsh, R.C.; et al. Fibrinolysis or Primary PCI in ST-Segment Elevation Myocardial Infarction. N. Engl. J. Med. 2013, 368, 1379–1387. [Google Scholar] [CrossRef]
- Gaudino, M.; Angelini, G.D.; Antoniades, C.; Bakaeen, F.; Benedetto, U.; Calafiore, A.M.; Di Franco, A.; Di Mauro, M.; Fremes, S.E.; Girardi, L.N.; et al. Off-Pump Coronary Artery Bypass Grafting: 30 Years of Debate. J. Am. Heart Assoc. 2018, 7, e009934. [Google Scholar] [CrossRef]
- Kozora, E.; Kongs, S.; Collins, J.F.; Hattler, B.; Baltz, J.; Hampton, M.; Grover, F.L.; Novitzky, D.; Shroyer, A.L. Cognitive Outcomes After On- Versus Off-Pump Coronary Artery Bypass Surgery. Ann. Thorac. Surg. 2010, 90, 1134–1141. [Google Scholar] [CrossRef]
- Zhang, B.; Zhou, J.; Li, H.; Liu, Z.; Chen, A.; Zhao, Q. Comparison of Graft Patency Between Off-Pump and On-Pump Coronary Artery Bypass Grafting: An Updated Meta-Analysis. Ann. Thorac. Surg. 2014, 97, 1335–1341. [Google Scholar] [CrossRef] [PubMed]
- Khalaji, A.; Behnoush, A.H.; Jameie, M.; Sharifi, A.; Sheikhy, A.; Fallahzadeh, A.; Sadeghian, S.; Pashang, M.; Bagheri, J.; Ahmadi Tafti, S.H.; et al. Machine Learning Algorithms for Predicting Mortality after Coronary Artery Bypass Grafting. Front. Cardiovasc. Med. 2022, 9, 977747. [Google Scholar] [CrossRef] [PubMed]
- Momin, A.; Ranjan, R.; Valencia, O.; Jacques, A.; Lim, P.; Fluck, D.; Chua, T.P.; Chandrasekaran, V. Survival and Independent Predictors of Mortality Following Coronary Artery Bypass Graft Surgery in a Single-Unit Practice in the United Kingdom Over 20 Years. Cureus 2023, 15, e38413. [Google Scholar] [CrossRef] [PubMed]
- Podsiadło, P.; Brožek, T.; Balik, M.; Nowak, E.; Mendrala, K.; Hymczak, H.; Dąbrowski, W.; Miazgowski, B.; Rutkiewicz, A.; Burysz, M.; et al. Predictors of Cardiac Arrest in Severe Accidental Hypothermia. Am. J. Emerg. Med. 2024, 78, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.-M.; Xiong, Y.-Y.; Chen, Y.-B.; Xiao, J. Serum Platelet Distribution Width Predicts Cardiovascular and All-Cause Mortality in Patients Undergoing Peritoneal Dialysis. Postgrad. Med. 2023, 135, 394–401. [Google Scholar] [CrossRef]
- Wang, J.; Ma, X.; Si, X.; Wu, M.; Han, W. Mean Platelet Volume and the Association with All-Cause Mortality and Cardiovascular Mortality among Incident Peritoneal Dialysis Patients. BMC Cardiovasc. Disord. 2023, 23, 543. [Google Scholar] [CrossRef]
- Oylumlu, M.; Oylumlu, M.; Arslan, B.; Polat, N.; Özbek, M.; Demir, M.; Yildiz, A.; Toprak, N. Platelet-to-Lymphocyte Ratio Is a Predictor of Long-Term Mortality in Patients with Acute Coronary Syndrome. Postep. Kardiol. Interwencyjnej 2020, 16, 170–176. [Google Scholar] [CrossRef]
- Bazick, H.S.; Chang, D.; Mahadevappa, K.; Gibbons, F.K.; Christopher, K.B. Red Cell Distribution Width and All-Cause Mortality in Critically Ill Patients. Crit. Care Med. 2011, 39, 1913–1921. [Google Scholar] [CrossRef]
- Larsen, M.K.; Skov, V.; Kjær, L.; Eickhardt-Dalbøge, C.S.; Knudsen, T.A.; Kristiansen, M.H.; Sørensen, A.L.; Wienecke, T.; Andersen, M.; Ottesen, J.T.; et al. Neutrophil-to-Lymphocyte Ratio and All-Cause Mortality with and without Myeloproliferative Neoplasms—A Danish Longitudinal Study. Blood Cancer J. 2024, 14, 28. [Google Scholar] [CrossRef]
- Msaouel, P.; Lam, A.P.; Gundabolu, K.; Chrysofakis, G.; Yu, Y.; Mantzaris, I.; Friedman, E.; Verma, A. Abnormal Platelet Count Is an Independent Predictor of Mortality in the Elderly and Is Influenced by Ethnicity. Haematologica 2014, 99, 930–936. [Google Scholar] [CrossRef]
- Haran, C.; Gimpel, D.; Clark, H.; McCormack, D.J. Preoperative Neutrophil and Lymphocyte Ratio as a Predictor of Mortality and Morbidity After Cardiac Surgery. Heart Lung Circ. 2021, 30, 414–418. [Google Scholar] [CrossRef]
- Preeshagul, I.; Gharbaran, R.; Jeong, K.H.; Abdel-Razek, A.; Lee, L.Y.; Elman, E.; Suh, K.S. Potential Biomarkers for Predicting Outcomes in CABG Cardiothoracic Surgeries. J. Cardiothorac. Surg. 2013, 8, 176. [Google Scholar] [CrossRef]
- Wu, L.; Zou, S.; Wang, C.; Tan, X.; Yu, M. Neutrophil-to-Lymphocyte and Platelet-to-Lymphocyte Ratio in Chinese Han Population from Chaoshan Region in South China. BMC Cardiovasc. Disord. 2019, 19, 125. [Google Scholar] [CrossRef]
- Pruc, M.; Peacock, F.W.; Rafique, Z.; Swieczkowski, D.; Kurek, K.; Tomaszewska, M.; Katipoglu, B.; Koselak, M.; Cander, B.; Szarpak, L. The Prognostic Role of Platelet-to-Lymphocyte Ratio in Acute Coronary Syndromes: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 6903. [Google Scholar] [CrossRef]
- Tzikos, G.; Alexiou, I.; Tsagkaropoulos, S.; Menni, A.-E.; Chatziantoniou, G.; Doutsini, S.; Papavramidis, T.; Grosomanidis, V.; Stavrou, G.; Kotzampassi, K. Neutrophil-to-Lymphocyte Ratio and Platelet-to-Lymphocyte Ratio as Predictive Factors for Mortality and Length of Hospital Stay after Cardiac Surgery. J. Pers. Med. 2023, 13, 473. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.I.; Lee, S.Y.; Choi, C.H.; Park, C.-H.; Park, K.Y.; Son, K.H. Relation between Changes in Red Blood Cell Distribution Width after Coronary Artery Bypass Grafting and Early Postoperative Morbidity. J. Thorac. Dis. 2018, 10, 4244–4254. [Google Scholar] [CrossRef] [PubMed]
- Joshi, D.; Chowdhury, M.A.T.; Alauddin, M.; Ranjan, R.; Khan, O.S.; Hoque, M.R. Role of Pre-Operative Red Cell Distribution Width Estimation in the Prediction of in-Hospital Mortality after off-Pump Coronary Artery Bypass Grafting. J. Cardiothorac. Surg. 2021, 16, 232. [Google Scholar] [CrossRef]
- Bujak, K.; Wasilewski, J.; Osadnik, T.; Jonczyk, S.; Kołodziejska, A.; Gierlotka, M.; Gąsior, M. The Prognostic Role of Red Blood Cell Distribution Width in Coronary Artery Disease: A Review of the Pathophysiology. Dis. Markers 2015, 2015, 824624. [Google Scholar] [CrossRef] [PubMed]
- Gurbuz, O.; Kumtepe, G.; Ozkan, H.; Karal, I.H.; Ercan, A.; Ener, S. Red Blood Cell Distribution Width Predicts Long Term Cardiovascular Event after On-Pump Beating Coronary Artery Bypass Grafting. J. Cardiothorac. Surg. 2016, 11, 48. [Google Scholar] [CrossRef]
- Lim, H.A.; Kang, J.K.; Kim, H.W.; Song, H.; Lim, J.Y. The Neutrophil-to-Lymphocyte Ratio as a Predictor of Postoperative Outcomes in Patients Undergoing Coronary Artery Bypass Grafting. J. Chest Surg. 2023, 56, 99–107. [Google Scholar] [CrossRef] [PubMed]
- ŞAHIN, A.; Sisli, E. Retrospective Evaluation of the Pre- and Postoperative Neutrophil-Lymphocyte Ratio as a Predictor of Mortality in Patients Who Underwent Coronary Artery Bypass Grafting. Heart Surg. Forum 2021, 24, E814–E820. [Google Scholar] [CrossRef] [PubMed]
- Silberman, S.; Abu-Yunis, U.; Tauber, R.; Shavit, L.; Grenader, T.; Fink, D.; Bitran, D.; Merin, O. Neutrophil-Lymphocyte Ratio: Prognostic Impact in Heart Surgery. Early Outcomes and Late Survival. Ann. Thorac. Surg. 2018, 105, 581–586. [Google Scholar] [CrossRef]
- Navani, R.; Huang, K.; Jin, D.; Baradi, A.; Paleri, S.; Nguyen, J.; Ellis, Z.; Newcomb, A.; Wilson, A. Is Preoperative Platelet-to-Lymphocyte Ratio a Predictive Biomarker of Postoperative Atrial Fibrillation in Patients Following Coronary Artery Bypass Graft Surgery? Heart Lung Circ. 2019, 28, S337. [Google Scholar] [CrossRef]
- Montagnana, M.; Cervellin, G.; Meschi, T.; Lippi, G. The Role of Red Blood Cell Distribution Width in Cardiovascular and Thrombotic Disorders. Clin. Chem. Lab. Med. 2012, 50, 635–641. [Google Scholar] [CrossRef]
- Polat, V.; Iscan, S.; Etli, M.; El Kılıc, H.; Gürsu, Ö.; Eker, E.; Ozdemir, F. Red Cell Distribution Width as a Prognostic Indicator in Pediatric Heart Disease and after Surgery. Biomed. Res. Int. 2014, 2014, 681679. [Google Scholar] [CrossRef] [PubMed]
- Benedetto, U.; Angeloni, E.; Melina, G.; Pisano, C.; Lechiancole, A.; Roscitano, A.; Pooley, M.; Comito, C.; Codispoti, M.; Sinatra, R. Red Blood Cell Distribution Width Predicts Mortality after Coronary Artery Bypass Grafting. Int. J. Cardiol. 2013, 165, 369–371. [Google Scholar] [CrossRef]
- Danese, E.L.G.M.M. Red Blood Cell Distribution Width and Cardiovascular Diseases. J. Thorac. Dis. 2015, 7, E402–E411. [Google Scholar]
- Mortaz, E.; Alipoor, S.D.; Adcock, I.M.; Mumby, S.; Koenderman, L. Update on Neutrophil Function in Severe Inflammation. Front. Immunol. 2018, 9, 2171. [Google Scholar] [CrossRef]
- Fest, J.; Ruiter, T.R.; Groot Koerkamp, B.; Rizopoulos, D.; Ikram, M.A.; van Eijck, C.H.J.; Stricker, B.H. The Neutrophil-to-Lymphocyte Ratio Is Associated with Mortality in the General Population: The Rotterdam Study. Eur. J. Epidemiol. 2019, 34, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Adamstein, N.H.; MacFadyen, J.G.; Rose, L.M.; Glynn, R.J.; Dey, A.K.; Libby, P.; Tabas, I.A.; Mehta, N.N.; Ridker, P.M. The Neutrophil–Lymphocyte Ratio and Incident Atherosclerotic Events: Analyses from Five Contemporary Randomized Trials. Eur. Heart J. 2021, 42, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Park, S.-D.; Kwon, S.W.; Woo, S.-I.; Lee, M.-D.; Shin, S.-H.; Kim, D.-H.; Kwan, J.; Park, K.-S. Relation Between Neutrophil-to-Lymphocyte Ratio and Index of Microcirculatory Resistance in Patients With ST-Segment Elevation Myocardial Infarction Undergoing Primary Percutaneous Coronary Intervention. Am. J. Cardiol. 2016, 118, 1323–1328. [Google Scholar] [CrossRef]
- Li, W.; Hou, M.; Ding, Z.; Liu, X.; Shao, Y.; Li, X. Prognostic Value of Neutrophil-to-Lymphocyte Ratio in Stroke: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 686983. [Google Scholar] [CrossRef] [PubMed]
- Song, M.; Graubard, B.I.; Rabkin, C.S.; Engels, E.A. Neutrophil-to-Lymphocyte Ratio and Mortality in the United States General Population. Sci. Rep. 2021, 11, 464. [Google Scholar] [CrossRef]
- Suwalski, P.; Dąbrowski, E.J.; Batko, J.; Pasierski, M.; Litwinowicz, R.; Kowalówka, A.; Jasiński, M.; Rogowski, J.; Deja, M.; Bartus, K.; et al. Additional Bypass Graft or Concomitant Surgical Ablation? Insights from the HEIST Registry. Surgery 2024, 175, 974–983. [Google Scholar] [CrossRef]
- Pasierski, M.; Batko, J.; Kuźma, Ł.; Wańha, W.; Jasiński, M.; Widenka, K.; Deja, M.; Bartuś, K.; Hirnle, T.; Wojakowski, W.; et al. Surgical Ablation, Left Atrial Appendage Occlusion or Both? Nationwide Registry Analysis of Cardiac Surgery Patients with Underlying Atrial Fibrillation. Eur. J. Cardio-Thorac. Surg. 2024, 65, ezae014. [Google Scholar] [CrossRef]
- Rajtar-Salwa, R.; Bobrowska, B.; Batko, J.; Bartuś, S.; Petkow-Dimitrow, P.; Krawczyk-Ożóg, A. Lipid-Lowering Therapy after Acute Coronary Syndrome in Outpatient Practice—How to Achieve Goal. J. Clin. Med. 2023, 12, 6579. [Google Scholar] [CrossRef]
- Rams, D.; Batko, J.; Bartuś, K.; Filip, G.; Kowalewski, M.; Litwinowicz, R. Left Internal Mammary Artery Operative Topography for MIDCAB and TECAB Procedures. Innov. Technol. Tech. Cardiothorac. Vasc. Surg. 2022, 17, 499–505. [Google Scholar] [CrossRef]
- Batko, J.; Jakiel, R.; Krawczyk–Ożóg, A.; Litwinowicz, R.; Hołda, J.; Bartuś, S.; Bartuś, K.; Hołda, M.K.; Konieczyńska, M. Definition and Anatomical Description of the Left Atrial Appendage Neck. Clin. Anat. 2023, 37, 201–209. [Google Scholar] [CrossRef]
- Batko, J.; Rusinek, J.; Słomka, A.; Litwinowicz, R.; Burysz, M.; Bartuś, M.; Lakkireddy, D.R.; Lee, R.J.; Natorska, J.; Ząbczyk, M.; et al. Postoperative Coagulation Changes in Patients after Epicardial Left Atrial Appendage Occlusion Varies Based on the Left Atrial Appendage Size. Diseases 2023, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Perone, F.; Ancona, R.; di Stasio, F.; La Gambina, V.; Comenale Pinto, S. Myocardial Work Assessment in Patients after Coronary Artery Bypass Grafting during Cardiac Rehabilitation. J. Clin. Med. 2023, 12, 7540. [Google Scholar] [CrossRef] [PubMed]
- Krawczyk-Ożóg, A.; Batko, J.; Zdzierak, B.; Dziewierz, A.; Tyrak, K.; Bolechała, F.; Kopacz, P.; Strona, M.; Gil, K.; Hołda, J.; et al. Morphology of the Mural and Commissural Atrioventricular Junction of the Mitral Valve. Heart 2023, 110, 517–522. [Google Scholar] [CrossRef] [PubMed]
- Litwinowicz, R.; Batko, J.; Rusinek, J.; Olejek, W.; Rams, D.; Kowalewski, M.; Bartuś, K.; Burysz, M. LARIAT or AtriClip: Complications Profile and Comparison in Patients with Atrial Fibrillations Based on Manufacturer and User Facility Device Experience Database. Medicina 2023, 59, 2055. [Google Scholar] [CrossRef] [PubMed]
Blood Parameter | Unit | Laboratory/Experimental Normal Range |
---|---|---|
white blood cells | 103/μL | 4–10 |
neutrocyes | 103/μL | 1800–8000 |
lymphocytes | 103/μL | 1500–4500 |
neutrocytes to lymphocytes ratio | - | 0.43–2.75 male and 0.37–2.87 female |
red cells distribution width standard deviation | fL | 36–47 |
platelets | 103/μL | 150–400 |
platelets to lymphocytes ratio | - | 36.63–149.13 male and 43.36–172.68 female |
mean platelet volume | fL | 7.5–10.5 |
platelet distribution width | fL | 6.1–11 |
CABG (404) | OPCAB (116) | p | ||
---|---|---|---|---|
Age (years) | 65.6 ± 7.4 | 68.1 ± 8.2 | <0.001 | |
BMI | 29.1 ± 4.5 | 28.8 ± 4.1 | 0.558 | |
Male | 301 (74.5%) | 90 (77.6%) | 0.498 | |
CCS Class | 1 | 25 (6.2%) | 8 (6.9%) | 0.871 |
2 | 257 (63.6%) | 75 (64.7%) | ||
3 | 120 (29.7%) | 33 (28.4%) | ||
4 | 2 (0.5%) | 0 (0%) | ||
Previous MI | 194 (48%) | 62 (53.4%) | 0.092 | |
Previous PCI | 18 (4.5%) | 3 (2.6%) | 0.367 | |
Ever smoker | active | 107 (26.5%) | 30 (25.9%) | 0.926 |
previous | 201 (49.8%) | 60 (51.7%) | ||
Diabetes | 183 (45.3%) | 58 (50%) | 0.371 | |
Diabetes treatment | diet | 33 (18%) | 11 (19%) | 0.977 |
oral | 88 (48.1%) | 27 (46.6%) | ||
insulin | 62 (33.9%) | 20 (34.5%) | ||
Hypertension | 369 (91.3%) | 106 (91.4%) | 0.989 | |
Hyperlipidemia | 376 (93.1%) | 110 (94.8%) | 0.500 | |
Chronic kidney injury | 11 (2.7%) | 6 (5.2%) | 0.232 | |
Vascular diseases | peripheral | 66 (16.3%) | 19 (16.4%) | 0.885 |
cerebral | 50 (12.4%) | 12 (10.3%) | ||
both | 69 (17.1%) | 18 (15.5%) | ||
Left coronary artery main stem obstruction | 24 (5.9%) | 6 (5.2%) | 0.754 | |
Hospital stay (days) | 12.7 ± 7.3 | 10.7 ± 2.7 | 0.001 | |
Operation time (min) | 173.4 ± 32.2 | 140.2 ± 30.1 | <0.001 | |
ICU time (hours) | 31.2 ± 89.1 | 30.4 ± 67.1 | 0.253 | |
Extubation time (hours) | 17.5 ± 98.1 | 27.6 ± 117.3 | 0.510 |
Parameter | CABG (404) | OPCAB (116) | p | |
---|---|---|---|---|
WBC | mean ± SD | 7.9 ± 2.2 | 7.6 ± 2.8 | 0.177 |
out of range (%) | 60 (14.9%) | 10 (8.6%) | 0.083 | |
Neutrocytes | mean ± SD | 5 ± 1.7 | 4.7 ± 1.3 | 0.216 |
out of range (%) | 20 (5%) | 1 (0.9%) | 0.058 | |
Lymphocytes | mean ± SD | 2.1 ± 0.7 | 2.2 ± 2.5 | 0.52 |
out of range (%) | 93 (23%) | 23 (19.8%) | 0.528 | |
NLR | mean ± SD | 2.7 ± 1.6 | 2.6 ± 1.2 | 0.788 |
out of range (%) | 78 (19.3%) | 20 (17.2%) | 0.616 | |
RDW-SD | mean ± SD | 44.3 ± 4.7 | 45.1 ± 5 | 0.216 |
out of range (%) | 96 (23.8%) | 33 (28.4%) | 0.303 | |
Platelets | mean ± SD | 241 ± 71 | 229.6 ± 62.8 | 0.192 |
out of range (%) | 44 (10.9%) | 13 (11.2%) | 0.872 | |
PLR | mean ± SD | 130.8 ± 65.9 | 127.2 ± 62.7 | 0.56 |
out of range (%) | 109 (27%) | 31 (26.7%) | 0.956 | |
MPV | mean ± SD | 10.5 ± 1 | 10.3 ± 1 | 0.081 |
out of range (%) | 181 (44.8%) | 43 (37.1%) | 0.138 | |
PDW | mean ± SD | 13 ± 2.2 | 12.5 ± 2.3 | 0.007 |
out of range (%) | 318 (78.7%) | 81 (69.8%) | 0.046 |
CABG (503) | OPCAB (507) | p | ||
---|---|---|---|---|
Age (years) | 66.3 ± 7.5 | 66 ± 8.8 | 0.746 | |
BMI | 29.1 ± 4.4 | 29.2 ± 4 | 0.332 | |
Male | 376 (74.8%) | 380 (75%) | 0.942 | |
CCS Class | 1 | 30 (6%) | 35 (6.9%) | 0.911 |
2 | 323 (64.2%) | 311 (61.3%) | ||
3 | 147 (29.2%) | 161 (31.8%) | ||
4 | 3 (0.6%) | 0 (0%) | ||
Previous MI | 237 (47.1%) | 260 (51.3%) | 0.186 | |
Previous PCI | 22 (4.4%) | 13 (2.6%) | 0.117 | |
Ever smoker | active | 132 (26.2%) | 146 (28.8%) | 0.560 |
previous | 253 (50.3%) | 256 (50.5%) | ||
Diabetes | 236 (46.9%) | 231 (45.6%) | 0.687 | |
Diabetes treatment | diet | 40 (8%) | 41 (8.1%) | 0.943 |
oral | 116 (23.1%) | 110 (21.7%) | ||
insulin | 80 (15.9%) | 80 (15.8%) | ||
Hypertension | 458 (91.1%) | 461 (90.9%) | 0.943 | |
Hyperlipidemy | 471 (93.6%) | 473 (93.3%) | 0.825 | |
Chronic kidney injury | 15 (3%) | 15 (3%) | 0.982 | |
Vascular diseases | peripheral | 84 (16.7%) | 90 (17.8%) | 0.889 |
cerebral | 60 (11.9%) | 55 (10.8%) | ||
both | 84 (16.7%) | 90 (17.8%) | ||
Left coronary artery main stem obstruction | 30 (6%) | 24 (4.7%) | 0.385 | |
Hospital stay (days) | 12.9 ± 7.1 | 10.6 ± 2.7 | <0.001 | |
Operation time (min) | 179.8 ± 41.2 | 140.3 ± 31 | <0.001 | |
ICU time (hours) | 32.3 ± 89.6 | 30 ± 63.3 | 0.091 | |
Extubation time (hours) | 17.9 ± 96.8 | 40.7 ± 149.7 | 0.111 |
Parameter | CABG (503) | OPCAB (507) | p | |
---|---|---|---|---|
WBC | mean ± SD | 7.8 ± 2.1 | 7.8 ± 2.7 | 0.779 |
out of range (%) | 71 (14.1%) | 47 (9.3%) | 0.016 | |
Neutrocytes | mean ± SD | 5 ± 1.7 | 4.8 ± 1.4 | 0.555 |
out of range (%) | 23 (4.6%) | 8 (1.5%) | 0.006 | |
Lymphocytes | mean ± SD | 2 ± 0.7 | 2.2 ± 2.3 | 0.241 |
out of range (%) | 118 (23.5%) | 80 (15.9%) | 0.002 | |
NLR | mean ± SD | 2.8 ± 1.6 | 2.6 ± 1.2 | 0.293 |
out of range (%) | 96 (19.1%) | 92 (18.2%) | 0.712 | |
RDW-SD | mean ± SD | 44.4 ± 4.6 | 44.7 ± 4.9 | 0.484 |
out of range (%) | 117 (23.3%) | 134 (26.5%) | 0.244 | |
Platelets | mean ± SD | 239 ± 71 | 229.1 ± 65.3 | 0.054 |
out of range (%) | 57 (11.3%) | 60 (11.9%) | 0.803 | |
PLR | mean ± SD | 132.7 ± 68.8 | 122.9 ± 59.7 | 0.007 |
out of range (%) | 136 (27%) | 123 (24.3%) | 0.303 | |
MPV | mean ± SD | 10.4 ± 0.9 | 10.3 ± 0.9 | 0.010 |
out of range (%) | 225 (44.7%) | 193 (38%) | 0.032 | |
PDW | mean ± SD | 12.9 ± 2.2 | 12.4 ± 2.2 | <0.001 |
out of range (%) | 393 (78.1%) | 357 (70.5%) | 0.006 |
WBC Out of Range OR (95% CI) | Neutrocytes Out of Range OR (95% CI) | Lymphocytes Out of Range OR (95% CI) | ||
---|---|---|---|---|
OPCAB | 30 days mortality | - | - | - |
1 year mortality | 1.425 (0.409–4.969) | - | 3.425 (1.444–8.122) | |
5 years mortality | 2.243 (1.017–4.946) | - | 1.822 (0.927–3.581) | |
CABG | 30 days mortality | 0.657 (0.149–2.895) | 4.331 (1.166–16.082) | 1.533 (0.570–4.126) |
1 year mortality | 1.261 (0.536–2.963) | 2.735 (0.879–8.511) | 1.637 (0.816–3.285) | |
5 years mortality | 1.225 (0.648–2.316) | 1.734 (0.663–4.533) | 1.330 (0.787–2.247) | |
General Population | 30 days mortality | 0.574 (0.134–2.448) | 4.067 (1.159–14.269) | 2.098 (0.928–4.743) |
1 year mortality | 1.255 (0.603–2.611) | 2.344 (0.792–6.933) | 2.119 (1.227–3.661) | |
5 years mortality | 1.689 (1.036–2.753) | 1.492 (0.601–3.703) | 1.580 (1.045–2.387) | |
Platelets out of range OR (95% CI) | MPV out of range OR (95% CI) | PDW out of range OR (95% CI) | ||
OPCAB | 30 days mortality | - | - | - |
1 year mortality | - | 1.171 (0.510–2.691) | 3.033 (0.891–10.326) | |
5 years mortality | 0.400 (0.121–1.323) | 0.660 (0.357–1.220) | 1.096 (0.584–2.055) | |
CABG | 30 days mortality | 3.630 (1.336–9.862) | 1.735 (0.686–4.389) | 0.595 (0.221–1.602) |
1 year mortality | 2.112 (0.922–4.841) | 1.328 (0.701–2.517) | 0.952 (0.439–2.064) | |
5 years mortality | 1.691 (0.880–3.252) | 1.298 (0.816–2.067) | 0.736 (0.432–1.252) | |
General Population | 30 days mortality | 2.138 (0.848–5.386) | 0.916 (0.425–1.977) | 1.274 (0.511–3.178) |
1 year mortality | 1.096 (0.509–2.360) | 1.272 (0.766–2.114) | 1.533 (0.805–2.920) | |
5 years mortality | 1.053 (0.609–1.821) | 1.040 (0.724–1.493) | 0.926 (0.619–1.384) | |
RDW-SD out of range OR (95% CI) | NLR out of range OR (95% CI) | PLR out of range OR (95% CI) | ||
OPCAB | 30 days mortality | 4.767 (1.124–20.229) | - | - |
1 year mortality | 2.477 (1.081–5.672) | 4.189 (1.813–9.681) | 3.342 (1.461–7.648) | |
5 years mortality | 2.958 (1.663–5.261) | 1.497 (0.767–2.924) | 2.396 (1.333–4.306) | |
CABG | 30 days mortality | 2.525 (0.991–6.436) | 2.015 (0.746–5.446) | 3.148 (1.251–7.925) |
1 year mortality | 2.288 (1.176–4.449) | 2.199 (1.089–4.441) | 1.900 (0.976–3.698) | |
5 years mortality | 1.448 (0.861–2.435) | 1.849 (1.083–3.159) | 1.778 (1.089–2.903) | |
General Population | 30 days mortality | 3.139 (1.475–6.680) | 5.358 (2.504–11.463) | 6.149 (2.727–13.868) |
1 year mortality | 2.349 (1.399–3.944) | 2.836 (1.664–4.834) | 2.390 (1.427–4.003) | |
5 years mortality | 1.896 (1.299–2.766) | 1.678 (1.109–2.539) | 2.071 (1.427–3.008) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Greberski, K.; Batko, J.; Bugajski, P.; Łuczak, M.; Brzeziński, M.; Bartuś, K. Predictive Value of Preoperative Morphology Parameters in Patients Undergoing On-Pump and Off-Pump Coronary Artery Bypass Surgery. J. Cardiovasc. Dev. Dis. 2024, 11, 375. https://doi.org/10.3390/jcdd11110375
Greberski K, Batko J, Bugajski P, Łuczak M, Brzeziński M, Bartuś K. Predictive Value of Preoperative Morphology Parameters in Patients Undergoing On-Pump and Off-Pump Coronary Artery Bypass Surgery. Journal of Cardiovascular Development and Disease. 2024; 11(11):375. https://doi.org/10.3390/jcdd11110375
Chicago/Turabian StyleGreberski, Krzysztof, Jakub Batko, Paweł Bugajski, Maciej Łuczak, Maciej Brzeziński, and Krzysztof Bartuś. 2024. "Predictive Value of Preoperative Morphology Parameters in Patients Undergoing On-Pump and Off-Pump Coronary Artery Bypass Surgery" Journal of Cardiovascular Development and Disease 11, no. 11: 375. https://doi.org/10.3390/jcdd11110375
APA StyleGreberski, K., Batko, J., Bugajski, P., Łuczak, M., Brzeziński, M., & Bartuś, K. (2024). Predictive Value of Preoperative Morphology Parameters in Patients Undergoing On-Pump and Off-Pump Coronary Artery Bypass Surgery. Journal of Cardiovascular Development and Disease, 11(11), 375. https://doi.org/10.3390/jcdd11110375