Is There a Future for Minimal Access and Robots in Cardiac Surgery?
Abstract
:1. Introduction
2. Definition of Minimally Invasive Cardiac Surgery
3. Scientific Evidence
4. Minimally Invasive Cardiac Surgery Requires Specific Training
5. Perspectives of Minimally Invasive Cardiac Surgery
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CABG | Coronary Artery Bypass Grafting. |
CKD | Chronic Kidney Disease. |
ICU | Intensive Care Unit. |
LAD | Left Anterior Descending. |
LIMA | Left Internal Mammary Artery. |
MA | Meta-Analysis. |
MICS | Minimally Invasive Cardiac Surgery. |
MIDCAB | Minimally Invasive Direct Coronary Artery Bypass. |
PRCT | Prospective Randomized Clinical Trial. |
QOL | Quality of Life. |
SAVR | Surgical Aortic Valve Replacement. |
TAPSE | Tricuspid Annular Plane Systolic Excursion. |
TAVI | Transcatheter Aortic Valve Implantation. |
TCRAT | Total coronary revascularization via left anterior thoracotomy. |
References
- Doenst, T.; Schlensak, C.; Schibilsky, D.; Faerber, G. Do we need basic research in cardiac surgery? Thorac. Cardiovasc. Surg. 2018, 7, 002–006. [Google Scholar]
- Carpentier, A.; Loulmet, D.; Le Bret, E.; Haugades, B.; Dassier, P.; Guibourt, P. Open heart operation under videosurgery and minithoracotomy. First case (mitral valvuloplasty) operated with success. Comptes Rendus L’academie Sci. Ser. III Sci. Vie 1996, 319, 219–223. [Google Scholar]
- Mohr, F.; Onnasch, J.; Falk, V.; Walther, T.; Diegeler, A.; Krakor, R.; Schneider, F.; Autschbach, R. The evolution of minimally invasive mitral valve surgery—2 year experience. Eur. J. Cardio-Thorac. Surg. 1999, 15, 233–239. [Google Scholar] [CrossRef]
- Calafiore, A.M.; Di Giammarco, G.; Teodori, G.; Bosco, G.; D’Annunzio, E.; Barsotti, A.; Maddestra, N.; Paloscia, L.; Vitolla, G.; Sciarra, A. Left anterior descending coronary artery grafting via left anterior small thoracotomy without cardiopulmonary bypass. Ann. Thorac. Surg. 1996, 61, 1658–1665. [Google Scholar] [CrossRef] [PubMed]
- Falk, V.; Diegler, A.; Walther, T.; Autschbach, R.; Mohr, F.W. Developments in robotic cardiac surgery. Curr. Opin. Cardiol. 2000, 15, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Penkalla, A.; Pasic, M.; Drews, T.; Buz, S.; Dreysse, S.; Kukucka, M.; Mladenow, A.; Hetzer, R.; Unbehaun, A. Transcatheter aortic valve implantation combined with elective coronary artery stenting: A simultaneous approach. Eur. J. Cardio-Thorac. Surg. 2015, 47, 1083–1089. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, A.; Meyer, R.; Lewandowski, J.; Markewitz, A.; Blaßfeld, D.; Böning, A. German Heart Surgery Report 2022: The Annual Updated Registry of the German Society for Thoracic and Cardiovascular Surgery. Thorac. Cardiovasc. Surg. 2023, 71, 340–355. [Google Scholar] [CrossRef]
- Tkebuchava, S.; Färber, G.; Sponholz, C.; Fuchs, F.; Heinisch, P.; Bauer, M.; Doenst, T. Minimally-invasive parasternal aortic valve replacement-A slow learning curve towards improved outcomes. J. Card. Surg. 2020, 35, 544–548. [Google Scholar] [CrossRef]
- Faerber, G.; Gieck, K.; Diab, M.; Doenst, T. Minimally invasive aortic and mitral valve surgery with or without tricuspid valve surgery performed via right anterior thoracotomy approach. Thorac. Cardiovasc. Surg. 2016, 64, ePP80. [Google Scholar] [CrossRef]
- Smit, P.; Shariff, M.A.; Nabagiez, J.P.; Khan, M.A.; Sadel, S.M.; McGinn, J.T., Jr. Experience with a minimally invasive approach to combined valve surgery and coronary artery bypass grafting through bilateral thoracotomies. Heart Surg. Forum 2013, 16, E125–E131. [Google Scholar] [CrossRef]
- Detter, C.; Reichenspurner, H.; Boehm, D.H.; Thalhammer, M.; Raptis, P.; Schütz, A.; Reichart, B. Minimally invasive direct coronary artery bypass grafting (MIDCAB) and off-pump coronary artery bypass grafting (OPCAB): Two techniques for beating heart surgery. Heart Surg. Forum 2002, 5, 157–162. [Google Scholar] [PubMed]
- Ruel, M.; Shariff, M.A.; Lapierre, H.; Goyal, N.; Dennie, C.; Sadel, S.M.; Sohmer, B.; McGinn, J.T., Jr. Results of the minimally invasive coronary artery bypass grafting angiographic patency study. J. Thorac. Cardiovasc. Surg. 2014, 147, 203–209. [Google Scholar] [CrossRef]
- Diab, M.; Färber, G.; Sponholz, C.; Tasar, R.; Lehmann, T.; Tkebuchava, S.; Franz, M.; Doenst, T. Coronary artery bypass grafting using bilateral internal thoracic arteries through a left-sided minithoracotomy: A single-center starting experience. Thorac. Cardiovasc. Surg. 2019, 67, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Une, D.; Kurata, A.; Ruel, M. Off-pump minimally invasive coronary artery bypass grafting using the bilateral internal thoracic arteries and the right gastroepiproic artery. Eur. J. Cardio-Thorac. Surg. 2016, 49, 1285–1286. [Google Scholar] [CrossRef] [PubMed]
- Balkhy, H.H.; Wann, L.S.; Krienbring, D.; Arnsdorf, S.E. Integrating coronary anastomotic connectors and robotics toward a totally endoscopic beating heart approach: Review of 120 cases. Ann. Thorac. Surg. 2011, 92, 821–827. [Google Scholar] [CrossRef] [PubMed]
- Puskas, J.D.; Halkos, M.E.; DeRose, J.J.; Bagiella, E.; Miller, M.A.; Overbey, J.; Bonatti, J.; Srinivas, V.; Vesely, M.; Sutter, F. Hybrid coronary revascularization for the treatment of multivessel coronary artery disease: A multicenter observational study. J. Am. Coll. Cardiol. 2016, 68, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Babliak, O.; Demianenko, V.; Melnyk, Y.; Revenko, K.; Pidgayna, L.; Stohov, O. Complete coronary revascularization via left anterior thoracotomy. Innovations 2019, 14, 330–341. [Google Scholar] [CrossRef]
- Bedeir, K.; Reardon, M.; Ramchandani, M.; Singh, K.; Ramlawi, B. Elevated stroke risk associated with femoral artery cannulation during mitral valve surgery. Semin. Thorac. Cardiovasc. Surg. 2015, 27, 97–103. [Google Scholar] [CrossRef]
- Lamelas, J.; Williams, R.F.; Mawad, M.; LaPietra, A. Complications associated with femoral cannulation during minimally invasive cardiac surgery. Ann. Thorac. Surg. 2017, 103, 1927–1932. [Google Scholar] [CrossRef]
- Moschovas, A.; Amorim, P.A.; Nold, M.; Faerber, G.; Diab, M.; Buenger, T.; Doenst, T. Percutaneous cannulation for cardiopulmonary bypass in minimally invasive surgery is associated with reduced groin complications. Interact. Cardiovasc. Thorac. Surg. 2017, 25, 377–383. [Google Scholar] [CrossRef]
- Doenst, T.; Lamelas, J. Do we have enough evidence for minimally-invasive cardiac surgery? A critical review of scientific and non-scientific information. J. Cardiovasc. Surg. 2017, 58, 613–623. [Google Scholar] [CrossRef] [PubMed]
- Nasso, G.; Bonifazi, R.; Romano, V.; Bartolomucci, F.; Rosano, G.; Massari, F.; Fattouch, K.; Del Prete, G.; Riccioni, G.; Del Giglio, M. Three-year results of repaired Barlow mitral valves via right minithoracotomy versus median sternotomy in a randomized trial. Cardiology 2014, 128, 97–105. [Google Scholar] [CrossRef] [PubMed]
- Akowuah, E.F.; Maier, R.H.; Hancock, H.C.; Kharatikoopaei, E.; Vale, L.; Fernandez-Garcia, C.; Ogundimu, E.; Wagnild, J.; Mathias, A.; Walmsley, Z. Minithoracotomy vs. Conventional Sternotomy for Mitral Valve Repair: A Randomized Clinical Trial. JAMA 2023, 329, 1957–1966. [Google Scholar] [CrossRef] [PubMed]
- Doenst, T.; Berretta, P.; Bonaros, N.; Savini, C.; Pitsis, A.; Wilbring, M.; Gerdisch, M.; Kempfert, J.; Rinaldi, M.; Folliguet, T. Aortic cross-clamp time correlates with mortality in the Mini-mitral International Registry. Eur. J. Cardio-Thorac. Surg. 2023, 63, ezad147. [Google Scholar] [CrossRef] [PubMed]
- Al-Sarraf, N.; Thalib, L.; Hughes, A.; Houlihan, M.; Tolan, M.; Young, V.; McGovern, E. Cross-clamp time is an independent predictor of mortality and morbidity in low-and high-risk cardiac patients. Int. J. Surg. 2011, 9, 104–109. [Google Scholar] [CrossRef] [PubMed]
- Hancock, H.C.; Maier, R.H.; Kasim, A.S.; Mason, J.M.; Murphy, G.J.; Goodwin, A.T.; Owens, W.A.; Kirmani, B.H.; Akowuah, E.F. Mini-sternotomy versus conventional sternotomy for aortic valve replacement. J. Am. Coll. Cardiol. 2019, 73, 2491–2492. [Google Scholar] [CrossRef] [PubMed]
- Dalén, M.; Da Silva, C.O.; Sartipy, U.; Winter, R.; Franco-Cereceda, A.; Barimani, J.; Bäck, M.; Svenarud, P. Comparison of right ventricular function after ministernotomy and full sternotomy aortic valve replacement: A randomized study. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 790–797. [Google Scholar] [CrossRef]
- Rodríguez-Caulo, E.A.; Guijarro-Contreras, A.; Guzón, A.; Otero-Forero, J.; Mataró, M.J.; Sánchez-Espín, G.; Porras, C.; Villaescusa, J.M.; Melero-Tejedor, J.M.; Jiménez-Navarro, M. Quality of life after ministernotomy versus full sternotomy aortic valve replacement. Semin. Thorac. Cardiovasc. Surg. 2021, 33, 328–334. [Google Scholar] [CrossRef]
- Vukovic, P.M.; Milojevic, P.; Stojanovic, I.; Micovic, S.; Zivkovic, I.; Peric, M.; Milicic, M.; Milacic, P.; Milojevic, M.; Bojic, M. The role of ministernotomy in aortic valve surgery—A prospective randomized study. J. Card. Surg. 2019, 34, 435–439. [Google Scholar] [CrossRef]
- Hancock, H.C.; Maier, R.H.; Kasim, A.; Mason, J.; Murphy, G.; Goodwin, A.; Owens, W.A.; Akowuah, E. Mini-sternotomy versus conventional sternotomy for aortic valve replacement: A randomised controlled trial. BMJ Open. 2021, 11, e041398. [Google Scholar] [CrossRef]
- Feldman, T.; Foster, E.; Glower, D.D.; Kar, S.; Rinaldi, M.J.; Fail, P.S.; Smalling, R.W.; Siegel, R.; Rose, G.A.; Engeron, E.; et al. EVEREST II Investigators. Percutaneous repair or surgery for mitral regurgitation. N. Engl. J. Med. 2011, 14, 1395–1406. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R. 2021 ESC/EACTS Guidelines for the management of valvular heart disease: Developed by the Task Force for the management of valvular heart disease of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur. Heart J. 2022, 43, 561–632. [Google Scholar] [CrossRef] [PubMed]
- Barili, F.; Brophy, J.M.; Ronco, D.; Myers, P.O.; Uva, M.S.; Almeida, R.M.; Marin-Cuartas, M.; Anselmi, A.; Tomasi, J.; Verhoye, J.-P. Risk of Bias in Randomized Clinical Trials Comparing Transcatheter and Surgical Aortic Valve Replacement: A Systematic Review and Meta-analysis. JAMA Netw. Open 2023, 6, e2249321. [Google Scholar] [CrossRef] [PubMed]
- Reardon, M.J.; Van Mieghem, N.M.; Popma, J.J.; Kleiman, N.S.; Søndergaard, L.; Mumtaz, M.; Adams, D.H.; Deeb, G.M.; Maini, B.; Gada, H. Surgical or transcatheter aortic-valve replacement in intermediate-risk patients. N. Engl. J. Med. 2017, 376, 1321–1331. [Google Scholar] [CrossRef] [PubMed]
- Beyersdorf, F.; Bauer, T.; Freemantle, N.; Walther, T.; Frerker, C.; Herrmann, E.; Bleiziffer, S.; Möllmann, H.; Landwehr, S.; Ensminger, S. Five-year outcome in 18 010 patients from the German Aortic Valve Registry. Eur. J. Cardio-Thorac. Surg. 2021, 60, 1139–1146. [Google Scholar] [CrossRef] [PubMed]
- Deharo, P.; Leroux, L.; Theron, A.; Ferrara, J.; Vaillier, A.; Jaussaud, N.; Porto, A.; Morera, P.; Gariboldi, V.; Iung, B. Long-term prognosis value of paravalvular leak and patient–prosthesis mismatch following transcatheter aortic valve implantation: Insight from the France-TAVI registry. J. Clin. Med. 2022, 11, 6117. [Google Scholar] [CrossRef] [PubMed]
- Oh, N.A.; Kampaktsis, P.N.; Gallo, M.; Guariento, A.; Weixler, V.; Staffa, S.J.; Avgerinos, D.V.; Colli, A.; Doulamis, I.P. An updated meta-analysis of MitraClip versus surgery for mitral regurgitation. Ann. Cardiothorac. Surg. 2021, 10, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Stone, G.W.; Lindenfeld, J.; Abraham, W.T.; Kar, S.; Lim, D.S.; Mishell, J.M.; Whisenant, B.; Grayburn, P.A.; Rinaldi, M.; Kapadia, S.R. Transcatheter mitral-valve repair in patients with heart failure. N. Engl. J. Med. 2018, 379, 2307–2318. [Google Scholar] [CrossRef]
- Gerçek, M.; Goncharov, A.; Narang, A.; Körber, M.L.; Friedrichs, K.P.; Baldridge, A.S.; Meng, Z.; Puthumana, J.J.; Davidson, L.J.; Malaisrie, S.C. Characterization of screen failures among patients evaluated for transcatheter tricuspid valve repair (TriSelect-study). Cardiovasc. Interv. 2023, 16, 1579–1589. [Google Scholar] [CrossRef]
- Barili, F.; Freemantle, N.; Casado, A.P.; Rinaldi, M.; Folliguet, T.; Musumeci, F.; Gerosa, G.; Parolari, A. Mortality in trials on transcatheter aortic valve implantation versus surgical aortic valve replacement: A pooled meta-analysis of Kaplan-Meier-derived individual patient data. Eur. J. Cardiothorac. Surg. 2020, 58, 221–229. [Google Scholar] [CrossRef]
- Makkar, R.R.; Thourani, V.H.; Mack, M.J.; Kodali, S.K.; Kapadia, S.; Webb, J.G.; Yoon, S.-H.; Trento, A.; Svensson, L.G.; Herrmann, H.C.; et al. Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement. N. Engl. J. Med. 2020, 382, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Van Mieghem, N.M.; Windecker, S.; Manoharan, G.; Bosmans, J.; Bleiziffer, S.; Modine, T.; Linke, A.; Scholtz, W.; Tchétché, D.; Finkelstein, A.; et al. Final 3-year clinical outcomes following transcatheter aortic valve implantation with a supra-annular self-expanding repositionable valve in a real-world setting: Results from the multicenter FORWARD study. Catheter. Cardiovasc. Interv. 2022, 99, 171–178. [Google Scholar] [CrossRef] [PubMed]
- Armoiry, X.; Obadia, J.-F.; Pascal, L.; Polazzi, S.; Duclos, A. Comparison of transcatheter versus surgical aortic valve implantation in high-risk patients: A nationwide study in France. J. Thorac. Cardiovasc. Surg. 2018, 156, 1017–1025.e4. [Google Scholar] [CrossRef] [PubMed]
- Barbanti, M.; Tamburino, C.; D’errigo, P.; Biancari, F.; Ranucci, M.; Rosato, S.; Santoro, G.; Fusco, D.; Seccareccia, F.; For the OBSERVANT Research Group. Five-Year Outcomes of Transfemoral Transcatheter Aortic Valve Replacement or Surgical Aortic Valve Replacement in a Real World Population. Circ. Cardiovasc. Interv. 2019, 12, e007825. [Google Scholar] [CrossRef] [PubMed]
- Schaefer, A.; Schofer, N.; Goßling, A.; Seiffert, M.; Schirmer, J.; Deuschl, F.; Schneeberger, Y.; Voigtländer, L.; Detter, C.; Schaefer, U.; et al. Transcatheter aortic valve implantation versus surgical aortic valve replacement in low-risk patients: A propensity score-matched analysis. Eur. J. Cardiothorac. Surg. 2019, 56, 1131–1139. [Google Scholar] [CrossRef] [PubMed]
- Kowalówka, A.R.; Kowalewski, M.; Wańha, W.; Kołodziejczak, M.; Mariani, S.; Li, T.; Pasierski, M.; Łoś, A.; Stefaniak, S.; Malinowski, M.; et al. Surgical and transcatheter aortic valve replacement for severe aortic stenosis in low-risk elective patients: Analysis of the Aortic Valve Replacement in Elective Patients From the Aortic Valve Multicenter Registry. J. Thorac. Cardiovasc. Surg. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Jacquemyn, X.; Eynde, J.V.D.; Iwens, Q.; Billiau, J.; Jabagi, H.; Serna-Gallegos, D.; Chu, D.; Sultan, I.; Sá, M.P. Transcatheter aortic valve implantation versus surgical aortic valve replacement in chronic kidney disease: Meta-analysis of reconstructed time-to-event data. Trends Cardiovasc. Med. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Doenst, T. Training in mitral valve surgery at the expense of the patient? Z. Herz- Thorax- Gefäßchirurgie 2012, 26, 298–299. [Google Scholar] [CrossRef]
- Chikwe, J.; Toyoda, N.; Anyanwu, A.C.; Itagaki, S.; Egorova, N.N.; Boateng, P.; El-Eshmawi, A.; Adams, D.H. Relation of mitral valve surgery volume to repair rate, durability, and survival. J. Am. Coll. Cardiol. 2017, 69, 2397–2406. [Google Scholar] [CrossRef]
- Holzhey, D.M.; Seeburger, J.; Misfeld, M.; Borger, M.A.; Mohr, F.W. Learning minimally invasive mitral valve surgery: A cumulative sum sequential probability analysis of 3895 operations from a single high-volume center. Circulation 2013, 128, 483–491. [Google Scholar] [CrossRef]
- Berretta, P.; Kempfert, J.; Van Praet, F.; Salvador, L.; Lamelas, J.; Nguyen, T.C.; Wilbring, M.; Gerdisch, M.; Rinaldi, M.; Bonaros, N.; et al. Risk-related clinical outcomes after minimally invasive mitral valve surgery: Insights from the Mini-Mitral International Registry. Eur. J. Cardiothorac. Surg. 2023, 63, ezad090. [Google Scholar] [CrossRef] [PubMed]
- Färber, G.; Tkebuchava, S.; Dawson, R.S.; Kirov, H.; Diab, M.; Schlattmann, P.; Doenst, T. Minimally Invasive, Isolated Tricuspid Valve Redo Surgery: A Safety and Outcome Analysis. Thorac. Cardiovasc. Surg. 2018, 66, 564–571. [Google Scholar] [CrossRef] [PubMed]
- Ökten, E.M.; Özcan, Z.S.; Arslanhan, G.; Şenay, Ş.; Güllü, A.; Koçyiğit, M.; Değirmencioğlu, A.; Alhan, C. Robotic-assisted mitral valve surgery without aortic cross-clamping: A safe and feasible technique. Front. Cardiovasc. Med. 2023, 10, 1111496. [Google Scholar] [CrossRef] [PubMed]
- Romano, M.A.; Haft, J.W.; Pagani, F.D.; Bolling, S.F. Beating heart surgery via right thoracotomy for reoperative mitral valve surgery: A safe and effective operative alternative. J. Thorac. Cardiovasc. Surg. 2012, 144, 334–339. [Google Scholar] [CrossRef]
- Borger, M.A.; Raschpichler, M.; Makkar, R. Repeat Aortic Valve Surgery or Transcatheter Valve-in-Valve Therapy: We Need a Randomized Trial. J. Am. Coll. Cardiol. 2020, 76, 500–502. [Google Scholar] [CrossRef]
Author | Journal/ Year | Valve | Comparison | Number of Randomized Observations | Result | Mortality |
---|---|---|---|---|---|---|
Rodríguez-Caulo et al. [28] | STCVS 2021 | Aortic | Sternotomy vs. MICS | 100 | Better QOL at 1 year in MIC arm | No difference |
Vukovic et al. [29] | JCS 2019 | Aortic | Sternotomy vs. MICS | 100 | Lower hospital stay in MICS arm | No difference |
Hancock et al. [30] | BMJ 2021 | Aortic | Sternotomy vs. MICS | 270 | Equal transfusions rate | No difference |
Dalen et al. [27] | ICVTS 2018 | Aortic | Sternotomy vs. MICS | 40 | Higher postoperative TAPSE in MICS arm | No difference |
Feldman et al. [31] | NEJM 2011 | Mitral | Sternotomy vs. MitraClip | 279 | Less re-do surgeries and residual MR in surgical arm | No difference |
Nasso et al. [22] | Cardiology 2014 | Mitral | Sternotomy vs. MICS | 160 | Longer operative, bypass and cross-clamp times, but shorter ventilation, ICU and in-hospital stay in MICS arm | No difference |
Akowuah et al. [23] | 2023 | Mitral | Sternotomy vs. MICS | 330 | No difference in QOL in 3 months | Lower in MICS |
Surgical Scenarios in Which Minimally Invasive Approaches Have Provided Advantages for the Conduct of Classic Cardiac Surgery through Sternotomy (Modified from Doenst and Lamelas [21]) |
---|
Tricuspid valve: surgery without sternotomy, as a redo without pericardial dissection, with or without cross-clamping |
Mitral valve: surgery without sternotomy, as a redo (specifically with patent mammary) with or without pericardial dissection, with or without cross-clamping, beating heart/fibrillating heart. |
Redo cases with previous sternal wound infection (specifically those with loss of sternal bone) |
Cases with morbid obesity |
Frail patients with or without significant osteoporosis |
Patients with large breast implants |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faerber, G.; Mukharyamov, M.; Doenst, T. Is There a Future for Minimal Access and Robots in Cardiac Surgery? J. Cardiovasc. Dev. Dis. 2023, 10, 380. https://doi.org/10.3390/jcdd10090380
Faerber G, Mukharyamov M, Doenst T. Is There a Future for Minimal Access and Robots in Cardiac Surgery? Journal of Cardiovascular Development and Disease. 2023; 10(9):380. https://doi.org/10.3390/jcdd10090380
Chicago/Turabian StyleFaerber, Gloria, Murat Mukharyamov, and Torsten Doenst. 2023. "Is There a Future for Minimal Access and Robots in Cardiac Surgery?" Journal of Cardiovascular Development and Disease 10, no. 9: 380. https://doi.org/10.3390/jcdd10090380