Conventional vs. Sutureless Aortic Valve Bioprosthesis: Is Faster Better?
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Source
2.2. Study Cohort
2.3. Echocardiographic Analysis
2.4. Surgical Technique
2.5. Statistical Analysis
3. Results
3.1. Baseline, Procedural, and Clinical Characteristics
3.2. Echocardiographic Findings
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nkomo, V.T.; Gardin, J.M.; Skelton, T.N.; Gottdiener, J.S.; Scott, C.G.; Enriquez-Sarano, M. Burden of valvular heart diseases: A population-based study. Lancet 2006, 368, 1005–1011. [Google Scholar] [CrossRef]
- Supino, P.G.; Borer, J.S.; Preibisz, J.; Bornstein, A. The epidemiology of valvular heart disease: A growing public health problem. Heart Fail. Clin. 2006, 2, 379–393. [Google Scholar] [CrossRef]
- Carabello, B.A.; Paulus, W.J. Aortic stenosis. Lancet 2009, 373, 956–966. [Google Scholar] [CrossRef]
- Otto, C.M. Valvular aortic stenosis: Disease severity and timing of intervention. J. Am. Coll. Cardiol. 2006, 47, 2141–2151. [Google Scholar] [CrossRef]
- Iung, B.; Baron, G.; Butchart, E.G.; Delahaye, F.; Gohlke-Bärwolf, C.; Levang, O.W.; Tornos, P.; Vanoverschelde, J.L.; Vermeer, F.; Boersma, E.; et al. A prospective survey of patients with valvular heart disease in Europe: The Euro Heart Survey on Valvular Heart Disease. Eur. Heart J. 2003, 24, 1231–1243. [Google Scholar] [CrossRef] [Green Version]
- Funkat, A.; Beckmann, A.; Lewandowski, J.; Frie, M.; Ernst, M.; Schiller, W.; Gummert, J.F.; Cremer, J. Cardiac surgery in Germany during 2013: A report on behalf of the German Society for Thoracic and Cardiovascular Surgery. Thorac. Cardiovasc. Surg. 2014, 62, 380–392. [Google Scholar] [CrossRef]
- Chandola, R.; Teoh, K.; Elhenawy, A.; Christakis, G. Perceval Sutureless Valve—Are Sutureless Valves Here? Curr. Cardiol. Rev. 2015, 11, 220–228. [Google Scholar] [CrossRef]
- Phan, K.; Tsai, Y.C.; Niranjan, N.; Bouchard, D.; Carrel, T.P.; Dapunt, O.E.; Eichstaedt, H.C.; Fischlein, T.; Gersak, B.; Glauber, M.; et al. Sutureless aortic valve replacement: A systematic review and meta-analysis. Ann. Cardiothorac. Surg. 2015, 4, 100–111. [Google Scholar] [CrossRef] [Green Version]
- Dalén, M.; Biancari, F.; Rubino, A.S.; Santarpino, G.; Glaser, N.; De Praetere, H.; Kasama, K.; Juvonen, T.; Deste, W.; Pollari, F.; et al. Aortic valve replacement through full sternotomy with a stented bioprosthesis versus minimally invasive sternotomy with a sutureless bioprosthesis. Eur. J. Cardiothorac. Surg. 2016, 49, 220–227. [Google Scholar] [CrossRef] [Green Version]
- Di Eusanio, M.; Phan, K. Sutureless aortic valve replacement. Ann. Cardiothorac. Surg. 2015, 4, 123–130. [Google Scholar] [CrossRef]
- König, K.C.; Wahlers, T.; Scherner, M.; Wippermann, J. Sutureless Perceval aortic valve in comparison with the stented Carpentier-Edwards Perimount aortic valve. J. Heart Valve Dis. 2014, 23, 253–258. [Google Scholar]
- Al-Sarraf, N.; Thalib, L.; Hughes, A.; Houlihan, M.; Tolan, M.; Young, V.; McGovern, E. Cross-clamp time is an independent predictor of mortality and morbidity in low- and high-risk cardiac patients. Int. J. Surg. 2011, 9, 104–109. [Google Scholar] [CrossRef] [Green Version]
- Santarpino, G.; Pfeiffer, S.; Concistré, G.; Grossmann, I.; Hinzmann, M.; Fischlein, T. The Perceval S aortic valve has the potential of shortening surgical time: Does it also result in improved outcome? Ann. Thorac. Surg. 2013, 96, 77–81; discussion 81–72. [Google Scholar] [CrossRef] [PubMed]
- Madhavan, S.; Chan, S.P.; Tan, W.C.; Eng, J.; Li, B.; Luo, H.D.; Teoh, L.K. Cardiopulmonary bypass time: Every minute counts. J. Cardiovasc. Surg. 2018, 59, 274–281. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, N.; Kuss, O.; Aboud, A.; Schönbrodt, M.; Renner, A.; Hakim Meibodi, K.; Becker, T.; Zittermann, A.; Gummert, J.F.; Börgermann, J. Ministernotomy versus conventional sternotomy for aortic valve replacement: Matched propensity score analysis of 808 patients. Eur. J. Cardiothorac. Surg. 2014, 46, 221–226; discussion 226–227. [Google Scholar] [CrossRef]
- Meco, M.; Montisci, A.; Miceli, A.; Panisi, P.; Donatelli, F.; Cirri, S.; Ferrarini, M.; Lio, A.; Glauber, M. Sutureless Perceval Aortic Valve Versus Conventional Stented Bioprostheses: Meta-Analysis of Postoperative and Midterm Results in Isolated Aortic Valve Replacement. J. Am. Heart Assoc. 2018, 7, e006091. [Google Scholar] [CrossRef] [Green Version]
- Pollari, F.; Santarpino, G.; Dell’Aquila, A.M.; Gazdag, L.; Alnahas, H.; Vogt, F.; Pfeiffer, S.; Fischlein, T. Better short-term outcome by using sutureless valves: A propensity-matched score analysis. Ann. Thorac. Surg. 2014, 98, 611–616; discussion 616–617. [Google Scholar] [CrossRef]
- Aljalloud, A.; Shoaib, M.; Egron, S.; Arias, J.; Tewarie, L.; Schnoering, H.; Lotfi, S.; Goetzenich, A.; Hatam, N.; Pott, D.; et al. The flutter-by effect: A comprehensive study of the fluttering cusps of the Perceval heart valve prosthesis. Interact. Cardiovasc. Thorac. Surg. 2018, 27, 664–670. [Google Scholar] [CrossRef]
- Aljalloud, A.; Spetsotaki, K.; Tewarie, L.; Rossato, L.; Steinseifer, U.; Autschbach, R.; Menne, M. Stent deformation in a sutureless aortic valve bioprosthesis: A pilot observational analysis using imaging and three-dimensional modelling. Eur. J. Cardiothorac. Surg. 2021, 62, ezab485. [Google Scholar] [CrossRef]
- Christ, T.; Zhigalov, K.; Konertz, W.; Holinski, S. Clinical outcome and hemodynamic behavior of the Labcor Dokimos Plus aortic valve. J. Cardiothorac. Surg. 2016, 11, 160. [Google Scholar] [CrossRef] [Green Version]
- Lang, R.M.; Badano, L.P.; Mor-Avi, V.; Afilalo, J.; Armstrong, A.; Ernande, L.; Flachskampf, F.A.; Foster, E.; Goldstein, S.A.; Kuznetsova, T.; et al. Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 233–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zoghbi, W.A.; Chambers, J.B.; Dumesnil, J.G.; Foster, E.; Gottdiener, J.S.; Grayburn, P.A.; Khandheria, B.K.; Levine, R.A.; Marx, G.R.; Miller, F.A., Jr.; et al. Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: A report From the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J. Am. Soc. Echocardiogr. 2009, 22, 975–1014; quiz 1082–1014. [Google Scholar] [CrossRef] [PubMed]
- Beckmann, E.; Martens, A.; Alhadi, F.; Hoeffler, K.; Umminger, J.; Kaufeld, T.; Sarikouch, S.; Koigeldiev, N.; Cebotari, S.; Schmitto, J.D.; et al. Aortic valve replacement with sutureless prosthesis: Better than root enlargement to avoid patient-prosthesis mismatch? Interact. Cardiovasc. Thorac. Surg. 2016, 22, 744–749. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santarpino, G.; Berretta, P.; Fischlein, T.; Carrel, T.P.; Teoh, K.; Misfeld, M.; Savini, C.; Kappert, U.; Glauber, M.; Villa, E.; et al. Operative outcome of patients at low, intermediate, high and ‘very high’ surgical risk undergoing isolated aortic valve replacement with sutureless and rapid deployment prostheses: Results of the SURD-IR registry. Eur. J. Cardiothorac. Surg. 2019, 56, 38–43. [Google Scholar] [CrossRef]
- Bilkhu, R.; Borger, M.A.; Briffa, N.P.; Jahangiri, M. Sutureless aortic valve prostheses. Heart 2019, 105 (Suppl. S2), s16–s20. [Google Scholar] [CrossRef]
- Konertz, J.; Zhigalov, K.; Weymann, A.; Dohmen, P.M. Initial Experience with Aortic Valve Replacement via a Minimally Invasive Approach: A Comparison of Stented, Stentless and Sutureless Valves. Med. Sci. Monit. 2017, 23, 1645–1654. [Google Scholar] [CrossRef] [Green Version]
- Minami, T.; Sainte, S.; De Praetere, H.; Rega, F.; Flameng, W.; Verbrugghe, P.; Meuris, B. Hospital cost savings and other advantages of sutureless vs stented aortic valves for intermediate-risk elderly patients. Surg. Today 2017, 47, 1268–1273. [Google Scholar] [CrossRef]
- Fischlein, T.; Folliguet, T.; Meuris, B.; Shrestha, M.L.; Roselli, E.E.; McGlothlin, A.; Kappert, U.; Pfeiffer, S.; Corbi, P.; Lorusso, R. Sutureless versus conventional bioprostheses for aortic valve replacement in severe symptomatic aortic valve stenosis. J. Thorac. Cardiovasc. Surg. 2021, 161, 920–932. [Google Scholar] [CrossRef]
- Lam, K.Y.; Akca, F.; Verberkmoes, N.J.; van Dijk, C.; Claessens, A.; Soliman Hamad, M.A.; van Straten, A.H.M. Conduction disorders and impact on survival after sutureless aortic valve replacement compared to conventional stented bioprostheses. Eur. J. Cardiothorac. Surg. 2019, 55, 1168–1173. [Google Scholar] [CrossRef]
- Brookes, J.D.L.; Mathew, M.; Brookes, E.M.; Jaya, J.S.; Almeida, A.A.; Smith, J.A. Predictors of Pacemaker Insertion Post-Sutureless (Perceval) Aortic Valve Implantation. Heart Lung Circ. 2021, 30, 917–921. [Google Scholar] [CrossRef]
- Kim, D.J.; Lee, S.; Joo, H.C.; Youn, Y.N.; Yoo, K.J.; Lee, S.H. Clinical and Hemodynamic Outcomes in 121 Patients Who Underwent Perceval Sutureless Aortic Valve Implantation—Early Results From a Single Korean Institution. Circ. J. 2021, 85, 1011–1017. [Google Scholar] [CrossRef] [PubMed]
- Papakonstantinou, N.A.; Baikoussis, N.G.; Dedeilias, P. Perceval S valve empire: Healing the Achilles’ heel of sutureless aortic valves. J. Cardiovasc. Surg. 2021, 62, 625–631. [Google Scholar] [CrossRef] [PubMed]
- Vogt, F.; Pfeiffer, S.; Dell’Aquila, A.M.; Fischlein, T.; Santarpino, G. Sutureless aortic valve replacement with Perceval bioprosthesis: Are there predicting factors for postoperative pacemaker implantation? Interact. Cardiovasc. Thorac. Surg. 2016, 22, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Fischlein, T.; Caporali, E.; Asch, F.M.; Vogt, F.; Pollari, F.; Folliguet, T.; Kappert, U.; Meuris, B.; Shrestha, M.L.; Roselli, E.E.; et al. Hemodynamic Performance of Sutureless vs. Conventional Bioprostheses for Aortic Valve Replacement: The 1-Year Core-Lab Results of the Randomized PERSIST-AVR Trial. Front. Cardiovasc. Med. 2022, 9, 844876. [Google Scholar] [CrossRef]
Variable | Perceval (n = 118) | Dokimos (n = 83) | p-Value |
---|---|---|---|
Age (years) | 76.26 ± 5.62 | 73.54 ± 6.33 | <0.001 |
Male gender, n (%) | 51 (43.20) | 53 (63.80) | 0.041 |
BMI kg/m2 | 27.50 (24.30–30.8) | 25.91 (24.22–29.67) | 0.060 |
COPD, n (%) | 10 (8.4) | 9 (10.80) | 0.556 |
NYHA > II | 17 (14.4) | 23 (27.70) | 0.02 |
STS mortality risk (%) | 1.89 (1.48–2.4) | 2.07 (1.55–2.92) | 0.083 |
LDH pre-op | 217.00 (188.75–245.75) | 216.00 (191.00–249.00) | 0.747 |
Thrombocytes pre-op (×103 µL) | 244.50 (204.75–284.0) | 213.0 (150.00–265.00) | 0.005 |
Cross-clamp time in minutes | 62.50 (51.00–83.00) | 74.45 (53.32–102.00) | 0.018 |
CPB Time in minutes | 98.00 (79.00–126.00) | 111.34 (80.98–149.18) | 0.081 |
LDH post-op | 332.0 (283.00–382.00) | 217 (188.75–244.25) | <0.001 |
Thrombocytes post-op (×103 µL) | 124.5 (102.75–165.50) | 121.0 (95.00–146.00) | 0.130 |
Variable | Perceval (n = 118) | Dokimos (n = 83) | p Value |
---|---|---|---|
AV-block with PM implantation need, n (%) | 10 (8.4) | 9 (10.8) | 0.556 |
VHF, n (%) | 30 (25.4) | 26 (31.3) | 0.359 |
Other arrhythmias, n (%) | 7 (6.0) | 3 (3.6) | 0.443 |
Bleeding with Re-do, n (%) | 8 (6.7) | 9 (10.8) | 0.302 |
Pneumonia, n (%) | 15 (12.7) | 28 (33.7) | <0.001 |
Delir, n (%) | 14 (11.8) | 25 (30.1) | <0.001 |
Pleural effusion, n (%) | 11 (9.3) | 8 (9.6) | 0.943 |
Apoplex, n (%) | 1 (0.8) | 0 (0.0) | 0.415 |
CPR, n (%) | 1 (0.8) | 0 (0.0) | 0.415 |
AKNI, n (%) | 2 (1.6) | 7 (8.4) | 0.021 |
Cardiogenic Shock, n (%) | 1 (0.8) | 0 (0.0) | 0.415 |
Significant pericardial effusion, n (%) | 1 (0.8) | 0 (0.0) | 0.415 |
HIT, n (%) | 0 (0.0) | 0 (0.0) | - |
Sepsis, n (%) | 1 (0.8) | 0 (0.0) | 0.415 |
Mild PVL, n (%) | 10 (8.4) | 2 (2.4) | 0.075 |
Moderate PVL, n (%) | 2 (1.7) | 0 (0.0) | 0.233 |
Severe PVL, n (%) | 0 (0.0) | 1 (1.2) | 0.234 |
PPM, n (%) | 0 (0.0) | 0 (0.0) | - |
Valve Dislocation, Navigation | 0 (0.0) | 0 (0.0) | - |
Need of ECLS | 0 (0.0) | 0 (0.0) | - |
30 days Mortality, n (%) | 6 (5.3) | 2 (2.4) | 0.339 |
Hospital stay (d) | 17.00 (13.00–27.00) | 13.00 (9.00–17.00) | <0.001 |
Variable | Perceval (n = 118) | Dokimos (n = 83) | p Value |
---|---|---|---|
MPG | 12.12 (10.0–17.0) | 9.0 (7.00–13.0) | <0.001 |
PPG | 24.0 (19.00–30.00) | 18.0 (14.00–25.00) | <0.001 |
AVA (Vmax) | 1.10 (0.9–1.39) | 1.72 (1.39–2.10) | <0.001 |
EOAI (VTI) | 0.65 (0.5–0.79) | 0.96 (0.79–1.20) | <0.001 |
EOAI (Vmax) | 0.61 (0.49–0.77) | 0.94 (0.78–1.16) | <0.001 |
ET | 255.30 ± 32.86 | 266.9 ± 32.35 | 0.028 |
AT | 66.41 ± 18.31 | 69.89 ± 15.06 | 0.200 |
EF % | 55.00 (50.00–58.00) | 56.00 (50.00–58.00) | 0.144 |
TAPSE | 15.00 (13.00–17.00) | 14.3 (13.20–16.10) | 0.396 |
IVSd | 14.00 (13.1–16.00) | 14.25 (13.2–16.15) | 0.019 |
LVSV | 53.00 (42.25–65.5) | 65.00 (55.00–82.00) | <0.001 |
Velocity ratio | 0.42 (0.38–0.49) | 0.53 (0.44–0.62) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljalloud, A.; Moza, A.; Arias, J.P.; Menne, M.; Becker, M.; Spetsotaki, K. Conventional vs. Sutureless Aortic Valve Bioprosthesis: Is Faster Better? J. Cardiovasc. Dev. Dis. 2023, 10, 311. https://doi.org/10.3390/jcdd10070311
Aljalloud A, Moza A, Arias JP, Menne M, Becker M, Spetsotaki K. Conventional vs. Sutureless Aortic Valve Bioprosthesis: Is Faster Better? Journal of Cardiovascular Development and Disease. 2023; 10(7):311. https://doi.org/10.3390/jcdd10070311
Chicago/Turabian StyleAljalloud, Ali, Ajay Moza, Jessica Paola Arias, Matthias Menne, Michael Becker, and Konstantina Spetsotaki. 2023. "Conventional vs. Sutureless Aortic Valve Bioprosthesis: Is Faster Better?" Journal of Cardiovascular Development and Disease 10, no. 7: 311. https://doi.org/10.3390/jcdd10070311
APA StyleAljalloud, A., Moza, A., Arias, J. P., Menne, M., Becker, M., & Spetsotaki, K. (2023). Conventional vs. Sutureless Aortic Valve Bioprosthesis: Is Faster Better? Journal of Cardiovascular Development and Disease, 10(7), 311. https://doi.org/10.3390/jcdd10070311