Effects of Lipid Lowering Therapies on Vulnerable Plaque Features: An Updated Narrative Review of the Literature
Abstract
:1. Introduction
2. Intracoronary Imaging and In Vivo Plaque Evaluation
3. Pharmacological Treatment and Reduction in Plaque Progression
4. Pharmacological Treatment and Plaque Regression
5. Pharmacological Treatment and Plaque Stabilization
6. Future Perspectives
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACS | acute coronary syndromes |
APC | adverse plaque characteristics |
CAD | coronary artery disease |
CCTA | computed tomography angiography |
CMR | Cardiac magnetic resonance |
CRP | C-reactive protein |
FDG | 18F-fluorodeoxyglucose |
ICI | intracoronary imaging |
LCBI | lipid core burden index |
LDL-C | low-density lipoprotein cholesterol |
MaxLCBI4mm | maximum LCBI in 4 mm of the investigated vessel |
MI | Myocardial infarction |
IVUS | intravascular ultrasound |
NIRS | new near-infrared spectroscopy |
OCT | optical coherence tomography |
PCSK9 | proprotein convertase subtilisin kexin type 9 |
PET | positron emission tomography |
References
- Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; et al. Heart Disease and Stroke Statistics-2019 Update: A Report from the American Heart Association. Circulation 2019, 139, e56–e528. [Google Scholar] [CrossRef]
- Townsend, N.; Wilson, L.; Bhatnagar, P.; Wickramasinghe, K.; Rayner, M.; Nichols, M. Cardiovascular disease in Europe: Epidemiological update 2016. Eur. Heart J. 2016, 37, 3232–3245. [Google Scholar] [CrossRef]
- Global, regional, and national age-sex-specific mortality for 282 causes of death in 195 countries and territories, 1980–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1736–1788. [CrossRef] [PubMed] [Green Version]
- Mach, F.; Baigent, C.; Catapano, A.L.; Koskinas, K.C.; Casula, M.; Badimon, L.; Chapman, M.J.; De Backer, G.G.; Delgado, V.; Ference, B.A.; et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020, 41, 111–188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Virmani, R.; Kolodgie, F.D.; Burke, A.P.; Farb, A.; Schwartz, S.M. Lessons from sudden coronary death: A comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler. Thromb. Vasc. Biol. 2000, 20, 1262–1275. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Libby, P. Mechanisms of acute coronary syndromes and their implications for therapy. N. Engl. J. Med. 2013, 368, 2004–2013. [Google Scholar] [CrossRef] [Green Version]
- Ference, B.A.; Ginsberg, H.N.; Graham, I.; Ray, K.K.; Packard, C.J.; Bruckert, E.; Hegele, R.A.; Krauss, R.M.; Raal, F.J.; Schunkert, H.; et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European Atherosclerosis Society Consensus Panel. Eur. Heart J. 2017, 38, 2459–2472. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.P.; Braunwald, E.; McCabe, C.H.; Rader, D.J.; Rouleau, J.L.; Belder, R.; Joyal, S.V.; Hill, K.A.; Pfeffer, M.A.; Skene, A.M. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N. Engl. J. Med. 2004, 350, 1495–1504. [Google Scholar] [CrossRef]
- Cholesterol Treatment Trialists, C.; Baigent, C.; Blackwell, L.; Emberson, J.; Holland, L.E.; Reith, C.; Bhala, N.; Peto, R.; Barnes, E.H.; Keech, A.; et al. Efficacy and safety of more intensive lowering of LDL cholesterol: A meta-analysis of data from 170,000 participants in 26 randomised trials. Lancet 2010, 376, 1670–1681. [Google Scholar] [CrossRef] [Green Version]
- Cannon, C.P.; Blazing, M.A.; Giugliano, R.P.; McCagg, A.; White, J.A.; Theroux, P.; Darius, H.; Lewis, B.S.; Ophuis, T.O.; Jukema, J.W.; et al. Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N. Engl. J. Med. 2015, 372, 2387–2397. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, G.G.; Steg, P.G.; Szarek, M.; Bhatt, D.L.; Bittner, V.A.; Diaz, R.; Edelberg, J.M.; Goodman, S.G.; Hanotin, C.; Harrington, R.A.; et al. Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N. Engl. J. Med. 2018, 379, 2097–2107. [Google Scholar] [CrossRef]
- Sabatine, M.S.; Giugliano, R.P.; Keech, A.C.; Honarpour, N.; Wiviott, S.D.; Murphy, S.A.; Kuder, J.F.; Wang, H.; Liu, T.; Wasserman, S.M.; et al. Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N. Engl. J. Med. 2017, 376, 1713–1722. [Google Scholar] [CrossRef] [PubMed]
- Nissen, S.E.; Tuzcu, E.M.; Schoenhagen, P.; Brown, B.G.; Ganz, P.; Vogel, R.A.; Crowe, T.; Howard, G.; Cooper, C.J.; Brodie, B.; et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: A randomized controlled trial. JAMA 2004, 291, 1071–1080. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, S.J.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.M.; Libby, P.; Raichlen, J.S.; Uno, K.; Borgman, M.; Wolski, K.; et al. Effect of Two Intensive Statin Regimens on Progression of Coronary Disease. N. Engl. J. Med. 2011, 365, 2078–2087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayturan, O.; Kapadia, S.; Nicholls, S.J.; Tuzcu, E.M.; Shao, M.; Uno, K.; Shreevatsa, A.; Lavoie, A.J.; Wolski, K.; Schoenhagen, P.; et al. Clinical predictors of plaque progression despite very low levels of low-density lipoprotein cholesterol. J. Am. Coll. Cardiol. 2010, 55, 2736–2742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nissen, S.E.; Nicholls, S.J.; Sipahi, I.; Libby, P.; Raichlen, J.S.; Ballantyne, C.M.; Davignon, J.; Erbel, R.; Fruchart, J.C.; Tardif, J.C.; et al. Effect of very high-intensity statin therapy on regression of coronary atherosclerosis: The ASTEROID trial. JAMA 2006, 295, 1556–1565. [Google Scholar] [CrossRef] [Green Version]
- Nissen, S.E.; Tardif, J.C.; Nicholls, S.J.; Revkin, J.H.; Shear, C.L.; Duggan, W.T.; Ruzyllo, W.; Bachinsky, W.B.; Lasala, G.P.; Tuzcu, E.M. Effect of torcetrapib on the progression of coronary atherosclerosis. N. Engl. J. Med. 2007, 356, 1304–1316. [Google Scholar] [CrossRef]
- Räber, L.; Ueki, Y.; Otsuka, T.; Losdat, S.; Häner, J.D.; Lonborg, J.; Fahrni, G.; Iglesias, J.F.; van Geuns, R.J.; Ondracek, A.S.; et al. Effect of Alirocumab Added to High-Intensity Statin Therapy on Coronary Atherosclerosis in Patients with Acute Myocardial Infarction: The PACMAN-AMI Randomized Clinical Trial. JAMA 2022, 327, 1771–1781. [Google Scholar] [CrossRef]
- Brown, G.; Albers, J.J.; Fisher, L.D.; Schaefer, S.M.; Lin, J.T.; Kaplan, C.; Zhao, X.Q.; Bisson, B.D.; Fitzpatrick, V.F.; Dodge, H.T. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N. Engl. J. Med. 1990, 323, 1289–1298. [Google Scholar] [CrossRef]
- Räber, L.; Mintz, G.S.; Koskinas, K.C.; Johnson, T.W.; Holm, N.R.; Onuma, Y.; Radu, M.D.; Joner, M.; Yu, B.; Jia, H.; et al. Clinical use of intracoronary imaging. Part 1: Guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions. Eur. Heart J. 2018, 39, 3281–3300. [Google Scholar] [CrossRef] [Green Version]
- Prati, F.; Romagnoli, E.; Gatto, L.; La Manna, A.; Burzotta, F.; Ozaki, Y.; Marco, V.; Boi, A.; Fineschi, M.; Fabbiocchi, F.; et al. Relationship between coronary plaque morphology of the left anterior descending artery and 12 months clinical outcome: The CLIMA study. Eur. Heart J. 2020, 41, 383–391. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, G.W.; Maehara, A.; Lansky, A.J.; de Bruyne, B.; Cristea, E.; Mintz, G.S.; Mehran, R.; McPherson, J.; Farhat, N.; Marso, S.P.; et al. A prospective natural-history study of coronary atherosclerosis. N. Engl. J. Med. 2011, 364, 226–235. [Google Scholar] [CrossRef] [PubMed]
- Erlinge, D.; Maehara, A.; Ben-Yehuda, O.; Bøtker, H.E.; Maeng, M.; Kjøller-Hansen, L.; Engstrøm, T.; Matsumura, M.; Crowley, A.; Dressler, O.; et al. Identification of vulnerable plaques and patients by intracoronary near-infrared spectroscopy and ultrasound (PROSPECT II): A prospective natural history study. Lancet 2021, 397, 985–995. [Google Scholar] [CrossRef]
- Waksman, R.; Di Mario, C.; Torguson, R.; Ali, Z.A.; Singh, V.; Skinner, W.H.; Artis, A.K.; Cate, T.T.; Powers, E.; Kim, C.; et al. Identification of patients and plaques vulnerable to future coronary events with near-infrared spectroscopy intravascular ultrasound imaging: A prospective, cohort study. Lancet 2019, 394, 1629–1637. [Google Scholar] [CrossRef]
- Mintz, G.S.; Garcia-Garcia, H.M.; Nicholls, S.J.; Weissman, N.J.; Bruining, N.; Crowe, T.; Tardif, J.C.; Serruys, P.W. Clinical expert consensus document on standards for acquisition, measurement and reporting of intravascular ultrasound regression/progression studies. EuroInterv. J. EuroPCR Collab. Work. Group Interv. Cardiol. Eur. Soc. Cardiol. 2011, 6, 1123–1130, 1129. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.M.; Garcia-Garcia, H.M.; de Boer, S.P.; Kardys, I.; Heo, J.H.; Akkerhuis, K.M.; Oemrawsingh, R.M.; van Domburg, R.T.; Ligthart, J.; Witberg, K.T.; et al. In vivo detection of high-risk coronary plaques by radiofrequency intravascular ultrasound and cardiovascular outcome: Results of the ATHEROREMO-IVUS study. Eur. Heart J. 2014, 35, 639–647. [Google Scholar] [CrossRef] [Green Version]
- Nicholls, S.J.; Hsu, A.; Wolski, K.; Hu, B.; Bayturan, O.; Lavoie, A.; Uno, K.; Tuzcu, E.M.; Nissen, S.E. Intravascular ultrasound-derived measures of coronary atherosclerotic plaque burden and clinical outcome. J. Am. Coll. Cardiol. 2010, 55, 2399–2407. [Google Scholar] [CrossRef] [Green Version]
- Waxman, S.; Dixon, S.R.; L’Allier, P.; Moses, J.W.; Petersen, J.L.; Cutlip, D.; Tardif, J.C.; Nesto, R.W.; Muller, J.E.; Hendricks, M.J.; et al. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: Initial results of the SPECTACL study. JACC Cardiovasc. Imaging 2009, 2, 858–868. [Google Scholar] [CrossRef] [Green Version]
- Oemrawsingh, R.M.; Cheng, J.M.; García-García, H.M.; van Geuns, R.J.; de Boer, S.P.; Simsek, C.; Kardys, I.; Lenzen, M.J.; van Domburg, R.T.; Regar, E.; et al. Near-infrared spectroscopy predicts cardiovascular outcome in patients with coronary artery disease. J. Am. Coll. Cardiol. 2014, 64, 2510–2518. [Google Scholar] [CrossRef]
- Madder, R.D.; Puri, R.; Muller, J.E.; Harnek, J.; Götberg, M.; VanOosterhout, S.; Chi, M.; Wohns, D.; McNamara, R.; Wolski, K.; et al. Confirmation of the Intracoronary Near-Infrared Spectroscopy Threshold of Lipid-Rich Plaques That Underlie ST-Segment-Elevation Myocardial Infarction. Arterioscler. Thromb. Vasc. Biol. 2016, 36, 1010–1015. [Google Scholar] [CrossRef] [Green Version]
- Madder, R.D.; Husaini, M.; Davis, A.T.; VanOosterhout, S.; Khan, M.; Wohns, D.; McNamara, R.F.; Wolschleger, K.; Gribar, J.; Collins, J.S.; et al. Large lipid-rich coronary plaques detected by near-infrared spectroscopy at non-stented sites in the target artery identify patients likely to experience future major adverse cardiovascular events. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 393–399. [Google Scholar] [CrossRef] [Green Version]
- Prati, F.; Guagliumi, G.; Mintz, G.S.; Costa, M.; Regar, E.; Akasaka, T.; Barlis, P.; Tearney, G.J.; Jang, I.K.; Arbustini, E.; et al. Expert review document part 2: Methodology, terminology and clinical applications of optical coherence tomography for the assessment of interventional procedures. Eur. Heart J. 2012, 33, 2513–2520. [Google Scholar] [CrossRef] [Green Version]
- Prati, F.; Regar, E.; Mintz, G.S.; Arbustini, E.; Di Mario, C.; Jang, I.K.; Akasaka, T.; Costa, M.; Guagliumi, G.; Grube, E.; et al. Expert review document on methodology, terminology, and clinical applications of optical coherence tomography: Physical principles, methodology of image acquisition, and clinical application for assessment of coronary arteries and atherosclerosis. Eur. Heart J. 2010, 31, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Fang, C.; Xu, X.; Xing, L.; Sun, S.; Peng, C.; Yin, Y.; Lei, F.; Wang, Y.; Li, L.; et al. Identification of High-Risk Coronary Lesions by 3-Vessel Optical Coherence Tomography. J. Am. Coll. Cardiol. 2023, 81, 1217–1230. [Google Scholar] [CrossRef] [PubMed]
- Biccirè, F.G.; Debelak, C.; Varricchione, G.; Budassi, S.; Gatto, L.; Romagnoli, E.; Di Pietro, R.; Sammartini, E.; Marco, V.; Paoletti, G.; et al. Sex-specific features of optical coherence tomography detected plaque vulnerability related to clinical outcomes: Insights from the CLIMA study. Int. J. Cardiovasc. Imaging 2023, 39, 873–881. [Google Scholar] [CrossRef]
- Bestehorn, H.P.; Rensing, U.F.; Roskamm, H.; Betz, P.; Benesch, L.; Schemeitat, K.; Blümchen, G.; Claus, J.; Mathes, P.; Kappenberger, L.; et al. The effect of simvastatin on progression of coronary artery disease. The Multicenter coronary Intervention Study (CIS). Eur. Heart J. 1997, 18, 226–234. [Google Scholar] [CrossRef] [Green Version]
- Jukema, J.W.; Bruschke, A.V.G.; van Boven, A.J.; Reiber, J.H.C.; Bal, E.T.; Zwinderman, A.H.; Jansen, H.; Boerma, G.J.M.; van Rappard, F.M.; Lie, K.I. Effects of Lipid Lowering by Pravastatin on Progression and Regression of Coronary Artery Disease in Symptomatic Men with Normal to Moderately Elevated Serum Cholesterol Levels. Circulation 1995, 91, 2528–2540. [Google Scholar] [CrossRef]
- Takagi, T.; Yoshida, K.; Akasaka, T.; Hozumi, T.; Morioka, S.; Yoshikawa, J. Intravascular ultrasound analysis of reduction in progression of coronary narrowing by treatment with pravastatin. Am. J. Cardiol. 1997, 79, 1673–1676. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, S.; Yokoyama, T.; Miyauchi, K.; Shimada, K.; Kurata, T.; Sato, H.; Daida, H. Early statin treatment in patients with acute coronary syndrome: Demonstration of the beneficial effect on atherosclerotic lesions by serial volumetric intravascular ultrasound analysis during half a year after coronary event: The ESTABLISH Study. Circulation 2004, 110, 1061–1068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barter, P.J.; Caulfield, M.; Eriksson, M.; Grundy, S.M.; Kastelein, J.J.; Komajda, M.; Lopez-Sendon, J.; Mosca, L.; Tardif, J.C.; Waters, D.D.; et al. Effects of torcetrapib in patients at high risk for coronary events. N. Engl. J. Med. 2007, 357, 2109–2122. [Google Scholar] [CrossRef] [Green Version]
- Kini, A.S.; Baber, U.; Kovacic, J.C.; Limaye, A.; Ali, Z.A.; Sweeny, J.; Maehara, A.; Mehran, R.; Dangas, G.; Mintz, G.S.; et al. Changes in plaque lipid content after short-term intensive versus standard statin therapy: The YELLOW trial (reduction in yellow plaque by aggressive lipid-lowering therapy). J. Am. Coll. Cardiol. 2013, 62, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholls, S.J.; Puri, R.; Anderson, T.; Ballantyne, C.M.; Cho, L.; Kastelein, J.J.P.; Koenig, W.; Somaratne, R.; Kassahun, H.; Yang, J.; et al. Effect of Evolocumab on Progression of Coronary Disease in Statin-Treated Patients: The GLAGOV Randomized Clinical Trial. JAMA 2016, 316, 2373–2384. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Ando, K.; Daidoji, H.; Otaki, Y.; Sugawara, S.; Matsui, M.; Ikeno, E.; Hirono, O.; Miyawaki, H.; Yashiro, Y.; et al. A randomized controlled trial of eicosapentaenoic acid in patients with coronary heart disease on statins. J. Cardiol. 2017, 70, 537–544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Komukai, K.; Kubo, T.; Kitabata, H.; Matsuo, Y.; Ozaki, Y.; Takarada, S.; Okumoto, Y.; Shiono, Y.; Orii, M.; Shimamura, K.; et al. Effect of atorvastatin therapy on fibrous cap thickness in coronary atherosclerotic plaque as assessed by optical coherence tomography: The EASY-FIT study. J. Am. Coll. Cardiol. 2014, 64, 2207–2217. [Google Scholar] [CrossRef]
- Räber, L.; Koskinas, K.C.; Yamaji, K.; Taniwaki, M.; Roffi, M.; Holmvang, L.; Garcia Garcia, H.M.; Zanchin, T.; Maldonado, R.; Moschovitis, A.; et al. Changes in Coronary Plaque Composition in Patients with Acute Myocardial Infarction Treated with High-Intensity Statin Therapy (IBIS-4): A Serial Optical Coherence Tomography Study. JACC Cardiovasc. Imaging 2019, 12, 1518–1528. [Google Scholar] [CrossRef]
- Sugizaki, Y.; Otake, H.; Kawamori, H.; Toba, T.; Nagano, Y.; Tsukiyama, Y.; Yanaka, K.I.; Yamamoto, H.; Nagasawa, A.; Onishi, H.; et al. Adding Alirocumab to Rosuvastatin Helps Reduce the Vulnerability of Thin-Cap Fibroatheroma: An ALTAIR Trial Report. JACC Cardiovasc. Imaging 2020, 13, 1452–1454. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Kataoka, Y.; Nissen, S.E.; Prati, F.; Windecker, S.; Puri, R.; Hucko, T.; Aradi, D.; Herrman, J.R.; Hermanides, R.S.; et al. Effect of Evolocumab on Coronary Plaque Phenotype and Burden in Statin-Treated Patients Following Myocardial Infarction. JACC Cardiovasc. Imaging 2022, 15, 1308–1321. [Google Scholar] [CrossRef]
- Nicholls, S.J.; Tuzcu, E.M.; Sipahi, I.; Grasso, A.W.; Schoenhagen, P.; Hu, T.; Wolski, K.; Crowe, T.; Desai, M.Y.; Hazen, S.L.; et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 2007, 297, 499–508. [Google Scholar] [CrossRef] [Green Version]
- Tsujita, K.; Sugiyama, S.; Sumida, H.; Shimomura, H.; Yamashita, T.; Yamanaga, K.; Komura, N.; Sakamoto, K.; Oka, H.; Nakao, K.; et al. Impact of Dual Lipid-Lowering Strategy with Ezetimibe and Atorvastatin on Coronary Plaque Regression in Patients with Percutaneous Coronary Intervention: The Multicenter Randomized Controlled PRECISE-IVUS Trial. J. Am. Coll. Cardiol. 2015, 66, 495–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fujisue, K.; Yamanaga, K.; Nagamatsu, S.; Shimomura, H.; Yamashita, T.; Nakao, K.; Nakamura, S.; Ishihara, M.; Matsui, K.; Sakaino, N.; et al. Effects of Statin Plus Ezetimibe on Coronary Plaques in Acute Coronary Syndrome Patients with Diabetes Mellitus: Sub-Analysis of PRECISE-IVUS Trial. J. Atheroscler. Thromb. 2021, 28, 181–193. [Google Scholar] [CrossRef] [PubMed]
- Hiro, T.; Kimura, T.; Morimoto, T.; Miyauchi, K.; Nakagawa, Y.; Yamagishi, M.; Ozaki, Y.; Kimura, K.; Saito, S.; Yamaguchi, T.; et al. Effect of intensive statin therapy on regression of coronary atherosclerosis in patients with acute coronary syndrome: A multicenter randomized trial evaluated by volumetric intravascular ultrasound using pitavastatin versus atorvastatin (JAPAN-ACS [Japan assessment of pitavastatin and atorvastatin in acute coronary syndrome] study). J. Am. Coll. Cardiol. 2009, 54, 293–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nissen, S.E.; Tuzcu, E.M.; Brewer, H.B.; Sipahi, I.; Nicholls, S.J.; Ganz, P.; Schoenhagen, P.; Waters, D.D.; Pepine, C.J.; Crowe, T.D.; et al. Effect of ACAT inhibition on the progression of coronary atherosclerosis. N. Engl. J. Med. 2006, 354, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Insull, W., Jr.; Koren, M.; Davignon, J.; Sprecher, D.; Schrott, H.; Keilson, L.M.; Brown, A.S.; Dujovne, C.A.; Davidson, M.H.; McLain, R.; et al. Efficacy and short-term safety of a new ACAT inhibitor, avasimibe, on lipids, lipoproteins, and apolipoproteins, in patients with combined hyperlipidemia. Atherosclerosis 2001, 157, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Bhatt, D.L.; Steg, P.G.; Miller, M.; Brinton, E.A.; Jacobson, T.A.; Ketchum, S.B.; Doyle, R.T.; Juliano, R.A.; Jiao, L.; Granowitz, C.; et al. Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N. Engl. J. Med. 2018, 380, 11–22. [Google Scholar] [CrossRef] [PubMed]
- Puri, R.; Nissen, S.E.; Shao, M.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.; Libby, P.; Raichlen, J.S.; Uno, K.; et al. Sex-related differences of coronary atherosclerosis regression following maximally intensive statin therapy: Insights from SATURN. JACC Cardiovasc. Imaging 2014, 7, 1013–1022. [Google Scholar] [CrossRef]
- Kataoka, Y.; Nicholls, S.J.; Puri, R.; Kitahara, S.; Kiyoshige, E.; Nishimura, K.; Murai, K.; Iwai, T.; Sawada, K.; Matama, H.; et al. Sex Differences in the Density of Lipidic Plaque Materials: Insights from the REASSURE-NIRS MultiCenter Registry. Circulation. Cardiovasc. Imaging 2023, 16, e015107. [Google Scholar] [CrossRef]
- Puri, R.; Nissen, S.E.; Shao, M.; Ballantyne, C.M.; Barter, P.J.; Chapman, M.J.; Erbel, R.; Libby, P.; Raichlen, J.S.; Uno, K.; et al. Antiatherosclerotic effects of long-term maximally intensive statin therapy after acute coronary syndrome: Insights from Study of Coronary Atheroma by Intravascular Ultrasound: Effect of Rosuvastatin Versus Atorvastatin. Arterioscler. Thromb. Vasc. Biol. 2014, 34, 2465–2472. [Google Scholar] [CrossRef] [Green Version]
- Ota, H.; Omori, H.; Kawasaki, M.; Hirakawa, A.; Matsuo, H. Clinical impact of PCSK9 inhibitor on stabilization and regression of lipid-rich coronary plaques: A near-infrared spectroscopy study. Eur. Heart J. Cardiovasc. Imaging 2022, 23, 217–228. [Google Scholar] [CrossRef]
- Hougaard, M.; Hansen, H.S.; Thayssen, P.; Maehara, A.; Antonsen, L.; Junker, A.; Mintz, G.S.; Jensen, L.O. Influence of Ezetimibe on Plaque Morphology in Patients with ST Elevation Myocardial Infarction Assessed by Optical Coherence Tomography: An OCTIVUS Sub-Study. Cardiovasc. Revascularization Med. Incl. Mol. Interv. 2020, 21, 1417–1424. [Google Scholar] [CrossRef]
- Gatto, L.; Alfonso, F.; Paoletti, G.; Burzotta, F.; La Manna, A.; Budassi, S.; Biccirè, F.G.; Fineschi, M.; Marco, V.; Fabbiocchi, F.; et al. Relationship betweeen the amount and location of macrophages and clinical outcome: Subanalysis of the CLIMA-study. Int. J. Cardiol. 2022, 346, 8–12. [Google Scholar] [CrossRef]
- Budassi, S.; Biccirè, F.G.; Paoletti, G.; Marco, V.; Boi, A.; Romagnoli, E.; Fabbiocchi, F.; Fineschi, M.; Di Pietro, R.; Versaci, F.; et al. The Role of the Association between Serum C-Reactive Protein Levels and Coronary Plaque Macrophage Accumulation in Predicting Clinical Events—Results from the CLIMA Registry. J. Cardiovasc. Transl. Res. 2022, 15, 1377–1384. [Google Scholar] [CrossRef]
- Bonaventura, A.; Mach, F.; Roth, A.; Lenglet, S.; Burger, F.; Brandt, K.J.; Pende, A.; Bertolotto, M.; Spinella, G.; Pane, B.; et al. Intraplaque Expression of C-Reactive Protein Predicts Cardiovascular Events in Patients with Severe Atherosclerotic Carotid Artery Stenosis. Mediat. Inflamm. 2016, 2016, 9153673. [Google Scholar] [CrossRef] [Green Version]
- Zanchin, C.; Ueki, Y.; Losdat, S.; Fahrni, G.; Daemen, J.; Ondracek, A.S.; Häner, J.D.; Stortecky, S.; Otsuka, T.; Siontis, G.C.M.; et al. In vivo relationship between near-infrared spectroscopy-detected lipid-rich plaques and morphological plaque characteristics by optical coherence tomography and intravascular ultrasound: A multimodality intravascular imaging study. Eur. Heart J. Cardiovasc. Imaging 2020, 22, 824–834. [Google Scholar] [CrossRef]
- Biccirè, F.G.; Budassi, S.; Ozaki, Y.; Boi, A.; Romagnoli, E.; Di Pietro, R.; Bourantas, C.V.; Marco, V.; Paoletti, G.; Debelak, C.; et al. Optical coherence tomography-derived lipid core burden index and clinical outcomes: Results from the CLIMA registry. Eur. Heart J. Cardiovasc. Imaging 2022, 24, 437–445. [Google Scholar] [CrossRef]
- Thomsen, C.; Abdulla, J. Characteristics of high-risk coronary plaques identified by computed tomographic angiography and associated prognosis: A systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 2016, 17, 120–129. [Google Scholar] [CrossRef]
- Gaur, S.; Øvrehus, K.A.; Dey, D.; Leipsic, J.; Bøtker, H.E.; Jensen, J.M.; Narula, J.; Ahmadi, A.; Achenbach, S.; Ko, B.S.; et al. Coronary plaque quantification and fractional flow reserve by coronary computed tomography angiography identify ischaemia-causing lesions. Eur. Heart J. 2016, 37, 1220–1227. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, R.; Shalev, A.; Doh, J.H.; Koo, B.K.; Gransar, H.; Gomez, M.J.; Leipsic, J.; Park, H.B.; Berman, D.S.; Min, J.K. Aggregate plaque volume by coronary computed tomography angiography is superior and incremental to luminal narrowing for diagnosis of ischemic lesions of intermediate stenosis severity. J. Am. Coll. Cardiol. 2013, 62, 460–467. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiran Munnur, R.; Andrews, J.; Kataoka, Y.; Psaltis, P.J.; Nicholls, S.J.; Malaiapan, Y.; Seneviratne, S.; Cameron, J.D.; Wong, D.T.L. Serial Coronary Plaque Assessment Using Computed Tomography Coronary Angiography. Circ. Cardiovasc. Imaging 2019, 12, e008404. [Google Scholar] [CrossRef] [PubMed]
- Nakazato, R.; Otake, H.; Konishi, A.; Iwasaki, M.; Koo, B.K.; Fukuya, H.; Shinke, T.; Hirata, K.; Leipsic, J.; Berman, D.S.; et al. Atherosclerotic plaque characterization by CT angiography for identification of high-risk coronary artery lesions: A comparison to optical coherence tomography. Eur. Heart J. Cardiovasc. Imaging 2015, 16, 373–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sandfort, V.; Lima, J.A.C.; Bluemke, D.A. Noninvasive Imaging of Atherosclerotic Plaque Progression. Circ. Cardiovasc. Imaging 2015, 8, e003316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibrahim, T.; Makowski, M.R.; Jankauskas, A.; Maintz, D.; Karch, M.; Schachoff, S.; Manning, W.J.; Schömig, A.; Schwaiger, M.; Botnar, R.M. Serial contrast-enhanced cardiac magnetic resonance imaging demonstrates regression of hyperenhancement within the coronary artery wall in patients after acute myocardial infarction. JACC Cardiovasc. Imaging 2009, 2, 580–588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macedo, R.; Chen, S.; Lai, S.; Shea, S.; Malayeri, A.A.; Szklo, M.; Lima, J.A.; Bluemke, D.A. MRI detects increased coronary wall thickness in asymptomatic individuals: The multi-ethnic study of atherosclerosis (MESA). J. Magn. Reson. Imaging JMRI 2008, 28, 1108–1115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miao, C.; Chen, S.; Macedo, R.; Lai, S.; Liu, K.; Li, D.; Wasserman, B.A.; Vogel-Claussen, J.; Lima, J.A.; Bluemke, D.A. Positive remodeling of the coronary arteries detected by magnetic resonance imaging in an asymptomatic population: MESA (Multi-Ethnic Study of Atherosclerosis). J. Am. Coll. Cardiol. 2009, 53, 1708–1715. [Google Scholar] [CrossRef] [Green Version]
- Evans, N.R.; Tarkin, J.M.; Chowdhury, M.M.; Warburton, E.A.; Rudd, J.H. PET Imaging of Atherosclerotic Disease: Advancing Plaque Assessment from Anatomy to Pathophysiology. Curr. Atheroscler. Rep. 2016, 18, 30. [Google Scholar] [CrossRef] [Green Version]
- Yun, M.; Yeh, D.; Araujo, L.I.; Jang, S.; Newberg, A.; Alavi, A. F-18 FDG uptake in the large arteries: A new observation. Clin. Nucl. Med. 2001, 26, 314–319. [Google Scholar] [CrossRef]
- Davies, J.R.; Rudd, J.H.; Fryer, T.D.; Graves, M.J.; Clark, J.C.; Kirkpatrick, P.J.; Gillard, J.H.; Warburton, E.A.; Weissberg, P.L. Identification of culprit lesions after transient ischemic attack by combined 18F fluorodeoxyglucose positron-emission tomography and high-resolution magnetic resonance imaging. Stroke 2005, 36, 2642–2647. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, A.L.; Subramanian, S.S.; Cury, R.C.; Truong, Q.A.; Gardecki, J.A.; Tearney, G.J.; Hoffmann, U.; Brady, T.J.; Tawakol, A. Distribution of inflammation within carotid atherosclerotic plaques with high-risk morphological features: A comparison between positron emission tomography activity, plaque morphology, and histopathology. Circ. Cardiovasc. Imaging 2012, 5, 69–77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Trial/Author | Year | Trial Design | Therapy | Patients (N) | Population | Age (y) Active Drug vs. Placebo | Women (%) | Follow-Up (Months) | Mean Change in PAV (%) | Mean Change in TAV (%) |
---|---|---|---|---|---|---|---|---|---|---|
Takagi et al. [38] | 1997 | R | Pravastatin 10 mg vs. control | 25 | Patients undergoing PCI, TOT-C between 200 and 260 mg/dL | 56 vs. 56 | 0 | 36 | −7 vs. +27 (area) p < 0.0005 | −7 vs. +41 (area) p < 0.0005 |
REVERSAL [13] | 2004 | R | Atorvastatin 80 mg vs. Pravastatin 40 mg | 502 | Documented coronary artery disease (at least one stenosis ≥20%; target segment with stenosis ≤50% and minimum length 30 mm) | 55.8 vs. 56.6 | 29 vs. 27 | 18 | +0.2 vs. +1.6 p < 0.001 | −0.9 vs. +4.4 p = 0.02 |
ASTEROID [16] | 2006 | P | Rosuvastatin 40 mg | 349 | Documented coronary artery disease (at least one stenosis ≥20%; target segment with stenosis ≤50% and minimum length 40 mm) | 58.5 | 29.8 | 24 | −0.79% p < 0.01 | −6.8% p < 0.01 |
ACTIVATE [40] | 2006 | R | Pactimibe 100 mg vs. placebo | 408 | Documented coronary artery disease (at least one stenosis ≥20%; target segment with stenosis ≤50% and minimum length 30 mm) | 58.8 vs. 59.6 | 34.2 s 28.4 | 18 | +0.69% vs. +0.59% p = 0.77 | −1.3 mm3 vs. −5.6 mm3 p = 0.03 |
ILLUSTRATE [17] | 2007 | R | Atorvastatin vs. Atorvastatin/Torcetrapib 60 mg | 1188 | Documented coronary artery disease (at least one stenosis ≥ 20%; target segment with stenosis ≤ 50% and minimum length 40 mm) | 57 vs. 56.9 | 29.5 vs. 29.6 | 24 | +0.19% vs. + 0.12% p = 0.72 | −6.3 mm3 vs. −9.4 mm3 p = 0.02 |
SATURN [14] | 2011 | R | Atorvastatin 80 mg vs. Rosuvastatin 40 mg | 1039 | Documented coronary artery disease (at least one vessel with stenosis > 20%; target segment with stenosis ≤50%) | 57.4 vs. 57.9 | 25.6 vs. 27.1 | 8.7 | −0.99% vs. −1.22% p = 0.17 | −4.42 mm3 vs. −6.39 mm3 p = 0.01 |
YELLOW [41] | 2013 | R | Rosuvastatin 40 mg vs. standard therapy | 87 | Multivessel stable coronary artery disease (at least two vessels with stenosis ≥70%) | 64.4 vs. 62.9 | 20.5 vs. 27.9 | 1.7 | - | - |
GLAGOV [42] | 2016 | R | Evolocumab 420 mg once at month vs. placebo | 968 | Documented coronary artery disease (at least one stenosis ≥20%; target segment with stenosis ≤50%) on optimized statin therapy | 59.8 vs. 59.8 | 27.9 vs. 27.7 | 19 | −0.95% vs. + 0.05% p < 0.001 | −5.80 mm3 vs. −0.91 mm3 p < 0.001 |
CHERRY [43] | 2017 | R | Pitavastatin 4 mg/EPA 1800 mg vs. Pitavastatin 4 mg | 193 | Patients undergoing PCI | 67 vs. 68 | 20 vs. 16 | 8 | - | - |
Trial/Author | Year | Patients (n) | Population | Mean Age (Years) | Women (%) | Therapy | Dose | Follow-Up (Months) | Mean Change in Fibrous Cap Thickness | Mean Change in Lipid Burden | Mean Change in Minimal Luminal Area | Macrophage Accumulation |
---|---|---|---|---|---|---|---|---|---|---|---|---|
EASY-FIT [44] | 2014 | 60 | Non treated unstable angina and dislipidemia | 63 vs. 69 | 13 vs. 27 | Atorvastatin | 20 mg vs. 5 mg | 12 | +73 µm (p < 0.001) vs. +19 µm (p = 0.002) | −50° (p < 0.001) vs. −20° (p < 0.001) | −0.05 mm2 (p = 0.256) vs. −0.09 mm2 (p = 0.101) | −4.5 (p < 0.001) vs. −2 (p < 0.001) (accumulation grades) |
IBIS-4 [45] | 2015 | 103 | ACS (STEMI) | 58.2 | 9.7 | Rosuvastatin | 40 mg | 13 | +23 µm p = 0.008 | −12.4° | - | −3.2° (angolar extension) p < 0.0001 |
ALTAIR [46] | 2019 | 24 | ACS or stable CAD | 61.3 vs. 61.3 | 33.3 vs. 25.8 | Alirocumab + rosuvastatin vs. rosuvastatin alone | 75 mg every 2 weeks | 36 weeks | +18 µm vs. +13.2 µm p = 0.029 | −15.1° vs. −8.4° p = 0.008 | +0.20 mm2 vs. +0.13 mm2 p = 0.006 | - |
HUYGENS [47] | 2021 | 161 | ACS (NSTEMI) | 60.5 | 28.6 | Evolocumab vs. placebo | 420 mg/month | 52 weeks | +42.7 µm vs. +21.5 µm p = 0.015 | −57.5° vs. −31.4° p = 0.04 | - | −3.17 mm vs. −1.45 mm (macrophages index) p = 0.04 |
PACMAN [18]. | 2022 | 300 | ACS (NSTEMI or STEMI) | 58.5 | 18.7 | Alirocumab vs. placebo (together with Rosuvastatina) | 150 mg every 2 weeks | 12 | +62.67 µm vs. +33.19 µm p = 0.001 | −79.42 vs. −37.60 (LCBI) p = 0.006 | - | −25.98° vs. −15.95° (angular extension) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biccirè, F.G.; Gatto, L.; La Porta, Y.; Pignatelli, P.; Prati, F.; Pastori, D. Effects of Lipid Lowering Therapies on Vulnerable Plaque Features: An Updated Narrative Review of the Literature. J. Cardiovasc. Dev. Dis. 2023, 10, 260. https://doi.org/10.3390/jcdd10060260
Biccirè FG, Gatto L, La Porta Y, Pignatelli P, Prati F, Pastori D. Effects of Lipid Lowering Therapies on Vulnerable Plaque Features: An Updated Narrative Review of the Literature. Journal of Cardiovascular Development and Disease. 2023; 10(6):260. https://doi.org/10.3390/jcdd10060260
Chicago/Turabian StyleBiccirè, Flavio Giuseppe, Laura Gatto, Ylenia La Porta, Pasquale Pignatelli, Francesco Prati, and Daniele Pastori. 2023. "Effects of Lipid Lowering Therapies on Vulnerable Plaque Features: An Updated Narrative Review of the Literature" Journal of Cardiovascular Development and Disease 10, no. 6: 260. https://doi.org/10.3390/jcdd10060260
APA StyleBiccirè, F. G., Gatto, L., La Porta, Y., Pignatelli, P., Prati, F., & Pastori, D. (2023). Effects of Lipid Lowering Therapies on Vulnerable Plaque Features: An Updated Narrative Review of the Literature. Journal of Cardiovascular Development and Disease, 10(6), 260. https://doi.org/10.3390/jcdd10060260