Determining the Acceptance of Digital Cardiac Rehabilitation and Its Influencing Factors among Patients Affected by Cardiac Diseases
Abstract
:1. Introduction
Objectives
- Which level of acceptance of mHealth CR can be observed among patients with CD?
- Do individuals with CD differ in acceptance depending on sociodemographic and medical data?
- Is the proposed extended UTAUT model suitable for assessing the acceptance of digital CR and what are the influencing factors of acceptance in patients with CD?
2. Materials and Methods
2.1. Participants and procedure
2.2. Measures
2.2.1. Sociographic and Medical Data
2.2.2. Psychometric Data
2.2.3. eHealth-Related Data
2.2.4. Acceptance and UTAUT Predictors
2.3. Statistical Analysis
3. Results
3.1. Study Population
3.2. Acceptance of mHealth Cardiac Rehabilitation
3.3. Predictors of Acceptance of mHealth Cardiac Rehabilitation
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cardiovascular Diseases (CVDs). World Health Organization. WHO Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 6 February 2022).
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update From the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Aparicio, H.J.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics—2021 Update: A Report From the American Heart Association. Circulation 2021, 143, E254–E743. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Abate, D.; Abate, K.H.; Abay, S.M.; Abbafati, C.; Abbasi, N.; Abbastabar, H.; Abd-Allah, F.; Abdela, J.; Abdelalim, A.; et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [Google Scholar] [CrossRef] [PubMed]
- Barquera, S.; Pedroza-Tobías, A.; Medina, C.; Hernández-Barrera, L.; Bibbins-Domingo, K.; Lozano, R.; Moran, A.E. Global Overview of the Epidemiology of Atherosclerotic Cardiovascular Disease. Arch. Med. Res. 2015, 46, 328–338. [Google Scholar] [CrossRef]
- Rentrop, V.; Damerau, M.; Schweda, A.; Steinbach, J.; Schüren, L.C.; Niedergethmann, M.; Skoda, E.-M.; Teufel, M.; Bäuerle, A. Predicting Acceptance of e-Mental Health Interventions in Patients With Obesity by Using an Extended Unified Theory of Acceptance Model: Cross-sectional Study. JMIR Form. Res. 2022, 6, e31229. [Google Scholar] [CrossRef]
- Cho, N.H.; Shaw, J.E.; Karuranga, S.; Huang, Y.; da Rocha Fernandes, J.D.; Ohlrogge, A.W.; Malanda, B. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 2018, 138, 271–281. [Google Scholar] [CrossRef]
- Cohen, B.E.; Edmondson, D.; Kronish, I.M. State of the art review: Depression, stress, anxiety, and cardiovascular disease. Am. J. Hypertens. 2015, 28, 1295–1302. [Google Scholar] [CrossRef]
- McMahon, S.R.; Ades, P.A.; Thompson, P.D. The role of cardiac rehabilitation in patients with heart disease. Trends Cardiovasc. Med. 2017, 27, 420–425. [Google Scholar] [CrossRef]
- Blumenthal, J.A.; Sherwood, A.; Smith, P.J.; Watkins, L.; Mabe, S.; Kraus, W.E.; Ingle, K.; Miller, P.; Hinderliter, A. Enhancing Cardiac Rehabilitation With Stress Management Training: A Randomized, Clinical Efficacy Trial. Circulation 2016, 133, 1341–1350. [Google Scholar] [CrossRef]
- Visseren, F.L.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Andrés, E.; Cordero, A.; Magán, P.; Alegría, E.; León, M.; Luengo, E.; Botaya, R.M.; Ortiz, L.G.; Casasnovas, J.A. Long-term mortality and hospital readmission after acute myocardial infarction: An eight-year follow-up study. Rev. Esp. Cardiol. 2012, 65, 414–420. [Google Scholar] [CrossRef] [PubMed]
- Suaya, J.A.; Shepard, D.S.; Normand, S.-L.T.; Ades, P.A.; Prottas, J.; Stason, W.B. Use of cardiac rehabilitation by medicare beneficiaries after myocardial infarction or coronary bypass surgery. Circulation 2007, 116, 1653–1662. [Google Scholar] [CrossRef] [PubMed]
- Su, J.J.; Yu, D.S.-F. Effects of a nurse-led eHealth cardiac rehabilitation programme on health outcomes of patients with coronary heart disease: A randomised controlled trial. Int. J. Nurs. Stud. 2021, 122, 104040. [Google Scholar] [CrossRef] [PubMed]
- Duan, Y.P.; Liang, W.; Guo, L.; Wienert, J.; Si, G.Y.; Lippke, S. Evaluation of a web-based intervention for multiple health behavior changes in patients with coronary heart disease in home-based rehabilitation: Pilot randomized controlled trial. J. Med. Internet Res. 2018, 20, e12052. [Google Scholar] [CrossRef] [PubMed]
- Piotrowicz, E.; Stepnowska, M.; Leszczyńska-Iwanicka, K.; Piotrowska, D.; Kowalska, M.; Tylka, J.; Piotrowski, W.; Piotrowicz, R. Quality of life in heart failure patients undergoing home-based telerehabilitation versus outpatient rehabilitation—A randomized controlled study. Eur. J. Cardiovasc. Nurs. 2015, 14, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Jameie, S.; Haybar, H.; Aslani, A.; Saadat, M. Development and Usability Evaluation of Web-Based Telerehabilitation Platform for Patients After Myocardial Infarction. Stud. Health Technol. Inform. 2019, 261, 68–74. [Google Scholar] [PubMed]
- Pedretti, R.F.E.; Hansen, D.; Ambrosetti, M.; Back, M.; Berger, T.; Ferreira, M.C.; Cornelissen, V.; Davos, C.H.; Doehner, W.; Zarzosa, C.D.P.Y.; et al. How to optimize the adherence to a guideline-directed medical therapy in the secondary prevention of cardiovascular diseases: A clinical consensus statement from the European Association of Preventive Cardiology. Eur. J. Prev. Cardiol. 2023, 30, 149–166. [Google Scholar] [CrossRef]
- Varnfield, M.; Karunanithi, M.; Lee, C.-K.; Honeyman, E.; Arnold, D.; Ding, H.; Smith, C.; Walters, D.L. Smartphone-based home care model improved use of cardiac rehabilitation in postmyocardial infarction patients: Results from a randomised controlled trial. Heart 2014, 100, 1770–1779. [Google Scholar] [CrossRef]
- Su, J.J.; Yu, D.S.F.; Paguio, J.T. Effect of eHealth cardiac rehabilitation on health outcomes of coronary heart disease patients: A systematic review and meta-analysis. J. Adv. Nurs. 2020, 76, 754–772. [Google Scholar] [CrossRef]
- Xu, L.; Li, F.; Zhou, C.; Li, J.; Hong, C.; Tong, Q. The effect of mobile applications for improving adherence in cardiac rehabilitation: A systematic review and meta-analysis. BMC Cardiovasc. Disord. 2019, 19, 166. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319. [Google Scholar] [CrossRef]
- Hennemann, S.; Beutel, M.E.; Zwerenz, R. Drivers and barriers to acceptance of web-based aftercare of patients in inpatient routine care: A cross-sectional survey. J. Med. Internet Res. 2016, 18, e337. [Google Scholar] [CrossRef] [PubMed]
- Jzerman, R.V.H.I.; van der Vaart, R.; Evers, A.W.M. Internet-based cognitive behavioral therapy among psychologists in a medical setting: A survey on implementation. J. Med. Internet Res. 2019, 21, e13432. [Google Scholar] [CrossRef]
- Lin, J.; Faust, B.; Ebert, D.D.; Krämer, L.; Baumeister, H. A web-based acceptance-facilitating intervention for identifying patients’ acceptance, uptake, and adherence of internet- and mobile-based pain interventions: Randomized controlled trial. J. Med. Internet Res. 2018, 20, e244. [Google Scholar] [CrossRef]
- Liu, L.; Miguel-Cruz, A.; Rincón, A.M.R.; Buttar, V.; Ranson, Q.; Goertzen, D. What factors determine therapists’ acceptance of new technologies for rehabilitation—A study using the Unified Theory of Acceptance and Use of Technology (UTAUT). Disabil. Rehabil. 2015, 37, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Hoque, R.; Sorwar, G. Understanding factors influencing the adoption of mHealth by the elderly: An extension of the UTAUT model. Int. J. Med. Inform. 2017, 101, 75–84. [Google Scholar] [CrossRef] [PubMed]
- Alam, M.Z.; Hu, W.; Barua, Z. Using the UTAUT Model to Determine Factors Affecting Acceptance and Use of Mobile Health (mHealth) Services in Bangladesh. J. Stud. Soc. Sci. 2018, 17, 137–172. [Google Scholar]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425. [Google Scholar] [CrossRef]
- Kroenke, K.; Strine, T.W.; Spitzer, R.L.; Williams, J.B.; Berry, J.T.; Mokdad, A.H. The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 2009, 114, 163–173. [Google Scholar] [CrossRef]
- Marsall, M.; Engelmann, G.; Skoda, E.-M.; Teufel, M.; Bäuerle, A. Measuring Electronic Health Literacy: Development, Validation, and Test of Measurement Invariance of a Revised German Version of the eHealth Literacy Scale. J. Med. Internet Res. 2022, 24, e28252. [Google Scholar] [CrossRef]
- Bäuerle, A.; Frewer, A.-L.; Rentrop, V.; Schüren, L.C.; Niedergethmann, M.; Lortz, J.; Skoda, E.-M.; Teufel, M. Determinants of Acceptance of Weight Management Applications in Overweight and Obese Individuals: Using an Extended Unified Theory of Acceptance and Use of Technology Model. Nutrients 2022, 14, 1968. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Academic Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Cimperman, M.; Makovec Brenčič, M.; Trkman, P. Analyzing older users’ home telehealth services acceptance behavior—Applying an Extended UTAUT model. Int. J. Med. Inform. 2016, 90, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Gun, S.Y.; Titov, N.; Andrews, G. Acceptability of internet treatment of anxiety and depression. Australas. Psychiatry 2011, 19, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Damerau, M.; Teufel, M.; Musche, V.; Dinse, H.; Schweda, A.; Beckord, J.; Steinbach, J.; Schmidt, K.; Skoda, E.-M.; Bäuerle, A. Determining acceptance of e-mental health interventions in digital psychodiabetology using a quantitative web-based survey: Cross-sectional study. JMIR Form. Res. 2021, 5, e27436. [Google Scholar] [CrossRef] [PubMed]
- Maloberti, A.; Monticelli, M.; Bassi, I.; Riccobono, S.; Giannattasio, C. Low Awareness of Cardiovascular Risk Factor Among Patients Admitted in Cardiac Rehabilitation: New Data for Further Implementation of Cardiovascular Rehabilitation Program. High Blood Press. Cardiovasc. Prev. 2021, 28, 253–254. [Google Scholar] [CrossRef]
- Schlitt, A.; Bestehorn, K.; Schwaab, B. Cardiac rehabilitation during the COVID-19 pandemic in Germany—A quick poll of the German Society of rehabilitation and Prevention of Heart and Circulation Diseases (DGPR). Z. Evid. Fortbild. Qual. Gesundhwes. 2021, 164, 11–14. [Google Scholar] [CrossRef]
- DVG. Ärzte Sollen Apps Verschreiben Können—Bundesgesundheitsministerium. Available online: https://www.bundesgesundheitsministerium.de/digitale-versorgung-gesetz.html (accessed on 18 November 2022).
- Crisp, D.A.; Griffiths, K.M. Participating in online mental health interventions: Who is most likely to sign up and why? Depress. Res. Treat. 2014, 2014, 790457. [Google Scholar] [CrossRef]
- Reiners, F.; Sturm, J.; Bouw, L.J.; Wouters, E.J. Sociodemographic Factors Influencing the Use of eHealth in People with Chronic Diseases. Int. J. Environ. Res. Public Health 2019, 16, 645. [Google Scholar] [CrossRef]
- van Deursen, A.J.A.M.; van Dijk, J.A.G.M.; Peters, O. Rethinking Internet skills: The contribution of gender, age, education, Internet experience, and hours online to medium- and content-related Internet skills. Poetics 2011, 39, 125–144. [Google Scholar] [CrossRef]
- Frees, B.; Koch, W. Internetnutzung: Frequenz und Vielfalt nehmen in allen Altersgruppen zu. Media Perspekt. 2015, 9, 366–377. [Google Scholar]
- Bianchi, S.; Maloberti, A.; Peretti, A.; Garatti, L.; Palazzini, M.; Occhi, L.; Bassi, I.; Sioli, S.; Biolcati, M.; Giani, V.; et al. Determinants of Functional Improvement After Cardiac Rehabilitation in Acute Coronary Syndrome. High Blood Press. Cardiovasc. Prev. 2021, 28, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Faries, M.D. Why We Don’t “Just Do It”: Understanding the Intention-Behavior Gap in Lifestyle Medicine. Am. J. Lifestyle Med. 2016, 10, 322–329. [Google Scholar] [CrossRef] [PubMed]
Total | High Acceptance | Moderate Acceptance | Low Acceptance | |
---|---|---|---|---|
N (%) | N (%) | N (%) | N (%) | |
Gender | ||||
Male | 141 (48.6) | 112 (49.3) | 22 (47.8) | 7 (41.2) |
Female | 149 (51.4) | 115 (50.7) | 24 (52.2) | 10 (58.8) |
Marital status | ||||
Single | 34 (11.7) | 23 (10.1) | 10 (21.7) | 1 (5.9) |
In a relationship | 41 (14.1) | 37 (16.3) | 3 (6.5) | 1 (5.9) |
Married | 149 (51.4) | 110 (48.5) | 25 (54.3) | 14 (82.4) |
Divorced/separated | 41 (14.1) | 36 (15.9) | 5 (10.9) | - |
Widowed | 23 (7.9) | 20 (8.8) | 2 (4.3) | 1 (5.9) |
Other | 2 (0.7) | 1 (0.4) | 1 (2.2) | - |
Education | ||||
No to lower secondary education/Other | 66 (22.8) | 53 (23.3) | 8 (17.4) | 5 (29.4) |
Secondary education | 103 (35.5) | 79 (34.8) | 16 (34.8) | 8 (47.1) |
Higher education entrance qualification | 55 (19.0) | 43 (18.9) | 11 (23.9) | 1 (5.9) |
University education | 66 (22.8) | 52 (22.9) | 11 (3.9) | 3 (17.6) |
Occupational status | ||||
In education | 5 (1.7) | 4 (1.8) | 1 (2.2) | - |
Unemployed | 17 (5.9) | 16 (7.0) | 1 (2.2) | - |
Sick leave | 17 (5.9) | 12 (5.3) | 4 (8.7) | 1 (5.9) |
Partially employed | 34 (11.7) | 27 (11.9) | 4 (8.7) | 3 (17.6) |
Fully employed | 88 (30.3) | 73 (32.2) | 14 (30.4) | 1 (5.9) |
Retired | 99 (34.1) | 75 (33.0) | 16 (34.8) | 8 (47.1) |
Other | 30 (10.3) | 20 (8.8) | 6 (13.0) | 4 (23.5) |
Unable to work: yes | 50 (17.2) | 39 (17.2) | 8 (17.4) | 3 (17.6) |
Place of residence (population size) | ||||
Large city (>100,000 residents) | 188 (64.8) | 156 (68.7) | 22 (47.8) | 10 (58.8) |
Medium sized city (>20,000 residents) | 53 (18.3) | 38 (16.7) | 10 (21.7) | 5 (29.4) |
Small town (> 5000residents) | 26 (9.0) | 19 (8.4) | 6 (13.0) | 1 (5.9) |
Rural area (<5000 residents) | 23 (7.9) | 14 (6.2) | 8 (17.4) | 1 (5.9) |
Flights of stairs | ||||
0 | 7 (2.4) | 6 (2.6) | 1 (2.2) | - |
1 | 53 (18.3) | 38 (16.7) | 10 (21.7) | 5 (29.4) |
2 | 93 (32.1) | 78 (34.4) | 10 (21.7) | 5 (29.4) |
3 | 51 (17.6) | 42 (18.5) | 5 (10.9) | 4 (23.5) |
4 | 32 (11.0) | 24 (10.6) | 6 (13.0) | 2 (11.8) |
No constraints | 54 (18.6) | 39 (17.2) | 14 (30.4) | 1 (5.9) |
Walking | ||||
0 to 5 min | 19 (6.6) | 15 (6.6) | 4 (8.7) | - |
5 to 10 min | 45 (15.5) | 43 (18.9) | 1 (2.2) | 1 (5.9) |
10 to 20 min | 53 (18.3) | 44 (19.4) | 5 (10.9) | 4 (23.5) |
20 to 30 min | 39 (13.4) | 29 (12.8) | 6 (13.0) | 4 (23.5) |
30 to 40 min | 29 (10.0) | 22 (9.7) | 5 (10.9) | 2 (11.8) |
More than 40 min | 25 (8.6) | 14 (6.2) | 7 (15.2) | 4 (23.5) |
No constraints | 80 (27.6) | 60 (26.4) | 18 (39.1) | 2 (11.8) |
Angina: yes | 129 (44.5) | 101 (44.5) | 22 (47.8) | 6 (35.2) |
Nocturnal urination (per night) | ||||
Not affected | 95 (32.8) | 79 (34.8) | 12 (26.1) | 4 (23.5) |
1 to 2 times | 157 (54.1) | 117 (51.5) | 30 (65.2) | 10 (58.8) |
2 to 3 times | 26 (9.0) | 21 (9.3) | 2 (4.3) | 3 (17.6) |
More than 3 times | 12 (4.1) | 10 (4.4) | 2 (4.3) | - |
Peripheral edema | ||||
Not affected | 134 (46.2) | 99 (43.6) | 26 (56.5) | 9 (52.9) |
Pressure marks from stockings | 104 (35.9) | 85 (37.4) | 14 (30.4) | 5 (29.4) |
Visible fluid accumulation | 27 (9.3) | 24 (10.6) | 1 (2.2) | 2 (11.8) |
Use of compression stockings | 25 (8.6) | 19 (8.4) | 5 (10.9) | 1 (5.9) |
Medication: yes | 201 (69.3) | 159 (70.0) | 32 (69.6) | 10 (58.8) |
Smoking: yes | 45 (15.5) | 37 (16.3) | 7 (15.2) | 1 (5.9) |
Depressive symptoms (PHQ-8 ≥ 10) | 128 (44.1) | 115 (50.7) | 10 (21.7) | 3 (17.6) |
Total | 290 (100.0) | 227 (100.0) | 46 (100.0) | 17 (100.0) |
Predictors | B | β | t | R2 | ∆R2 | p |
---|---|---|---|---|---|---|
(Intercept) | 0.22 | 0.07 | 0.59 | 0.554 | ||
Step 1: Sociodemographic data | 0.007 | 0.007 | ||||
Age | 0 | −0.05 | −1.28 | 0.201 | ||
Gender: Female | 0.04 | 0.05 | 0.61 | 0.544 | ||
Education: University education | 0.00 | 0.00 | 0.01 | 0.994 | ||
Education: No to lower secondary education/ Other | −0.09 | −0.10 | −0.88 | 0.379 | ||
Education: Lower secondary education | 0.07 | 0.07 | 0.76 | 0.449 | ||
Step 2: Medical and psychometric data | 0.130 | 0.123 | ||||
Mental illness: No | −0.13 | −0.14 | −1.63 | 0.104 | ||
Depressive symptoms (PHQ-8) | 0.02 | 0.10 | 2.28 | 0.024 | ||
Flights of stairs | 0.05 | 0.07 | 1.80 | 0.074 | ||
Step 3: eHealth-related data | 0.183 | 0.050 | ||||
Digital confidence | −0.00 | −0.00 | −0.00 | 0.997 | ||
Internet anxiety | 0.11 | 0.07 | 1.74 | 0.083 | ||
Prior experiences with mHealth interventions: No | 0.02 | 0.02 | 0.32 | 0.747 | ||
Step 4: UTAUT predictors | 0.695 | 0.512 | ||||
Effort expectancy | 0.37 | 0.34 | 6.85 | <0.001 | ||
Performance expectancy | 0.33 | 0.34 | 6.27 | <0.001 | ||
Social influence | 0.26 | 0.25 | 4.93 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bäuerle, A.; Mallien, C.; Rassaf, T.; Jahre, L.; Rammos, C.; Skoda, E.-M.; Teufel, M.; Lortz, J. Determining the Acceptance of Digital Cardiac Rehabilitation and Its Influencing Factors among Patients Affected by Cardiac Diseases. J. Cardiovasc. Dev. Dis. 2023, 10, 174. https://doi.org/10.3390/jcdd10040174
Bäuerle A, Mallien C, Rassaf T, Jahre L, Rammos C, Skoda E-M, Teufel M, Lortz J. Determining the Acceptance of Digital Cardiac Rehabilitation and Its Influencing Factors among Patients Affected by Cardiac Diseases. Journal of Cardiovascular Development and Disease. 2023; 10(4):174. https://doi.org/10.3390/jcdd10040174
Chicago/Turabian StyleBäuerle, Alexander, Charlotta Mallien, Tienush Rassaf, Lisa Jahre, Christos Rammos, Eva-Maria Skoda, Martin Teufel, and Julia Lortz. 2023. "Determining the Acceptance of Digital Cardiac Rehabilitation and Its Influencing Factors among Patients Affected by Cardiac Diseases" Journal of Cardiovascular Development and Disease 10, no. 4: 174. https://doi.org/10.3390/jcdd10040174
APA StyleBäuerle, A., Mallien, C., Rassaf, T., Jahre, L., Rammos, C., Skoda, E. -M., Teufel, M., & Lortz, J. (2023). Determining the Acceptance of Digital Cardiac Rehabilitation and Its Influencing Factors among Patients Affected by Cardiac Diseases. Journal of Cardiovascular Development and Disease, 10(4), 174. https://doi.org/10.3390/jcdd10040174